一种梯形大分子衍生物及其制备方法与应用与流程

文档序号:11318804阅读:341来源:国知局
一种梯形大分子衍生物及其制备方法与应用与流程

本发明属于光电材料和应用技术领域,具体涉及一种梯形大分子衍生物材料及其制备方法与应用。



背景技术:

π-有机共轭分子由于出色的光电性能和易于加工的特性,在有机发光二极管(oled),有机场效应晶体管(ofet),有机太阳能电池(opv)及有机激光(organiclasers)等领域有着越来越广泛的应用。有机激光作为新的发展方向,是半导体激光未来一个非常重要的发展领域。七十年代,美国贝尔实验室成功研制异质结固态激光器,大大降低阈值电流密度,为半导体激光的应用开启了大门。但是,使用化学气相沉积等方法在gaas、蓝宝石等衬底上制造的半导体激光器,有发射波长范围窄和面积小等缺点。近年来,oled的发光强度已经达到实用化的程度,外部量子效率已经接近理论的水平。更重要的是,oled器件制作工艺简单,利用喷墨打印技术制造的优点是无机发光半导体所无法替代的。而且,oled器件的发射光谱范围广,在380-700nm的可视光范围内均有报道。随着oled技术的日趋成熟,有机半导体激光逐渐引起科研工作者的广泛关注。但是,现有的有机发光材料体系仍存在明显不足,比如,迁移率低、光热稳定性差、激光增益系数低、激光转换效率差等,限制了其在有机半导体激光领域中的广泛应用。如何设计和开发具有应用潜力的有机激光增益介质是发展有机半导体激光面临的关键问题。

梯形分子由于其高的荧光量子效率、高迁移率、优异的电化学、热稳定性,是一类非常重要的有机激光材料体系。但梯形聚合物有着明显的结构缺陷,而梯形小分子又易于结晶不利于成膜等缺点。因此,设计合成结构明确的梯形大分子结构,有望融合梯形聚合物和梯形小分子的各自优点,从而开发出具有优异光电性能的有机激光增益介质,具有重要的意义。



技术实现要素:

针对现有技术的不足,本发明的目的在于提供一种梯形大分子衍生物材料及其制备方法与应用,所述梯形大分子衍生物材料是一类具有应用潜力的有机激光材料,解决了目前有机激光增益介质材料体系材料种类缺乏、光热稳定性差、增益低、阈值高等难题。

为解决现有技术问题,本发明采取的技术方案为:

一种梯形大分子衍生物,具有如下结构通式trl-1

trl-2trl-3所述结构通式以三并茚为核、梯形芴为臂,结合官能团形成的梯形大分子化合物,其中,r1、r2为烷基、烷氧基、烷苯基、烷氧苯基中任一种,ar为氢原子、苯基、1-奈基、2-奈基、菲基、邻菲罗琳基、蒽基、9-苯基-蒽基、4-苯基萘基、2-噻吩基、吡啶基、苯基恶二唑、芘基、喹啉基、吡啶基、喹唑啉基、二苯三唑基、苯基咪唑基、苯基噻唑基、苯基恶唑基、螺二芴基、9-咔唑基、3-(9-苯基咔唑)基、二苯胺基、三苯胺基、苯基萘胺基、三氟苯基、对氟苯基、苯氰基、氰基或氟基。

作为改进的是,所述r1、r2为甲基、乙基、正丙基、正丁基、甲氧基、乙氧基、正己氧基、异辛氧基、丁基苯基、己基苯基中任一种。

作为改进的是,所述ar为苯基、1-奈基、2-奈基、菲基、邻菲罗琳基、蒽基、9-苯基-蒽基、4-苯基萘基、2-噻吩基、吡啶基、苯基恶二唑、芘基、喹啉基、吡啶基、喹唑啉基、二苯三唑基、苯基咪唑基、苯基噻唑基、苯基恶唑基、螺二芴基、9-咔唑基、3-(9-苯基咔唑)基、二苯胺基、三苯胺基、苯基萘胺基、三氟苯基、对氟苯基、苯氰基、氰基或氟基中任一种。

上述梯形大分子衍生物的制备方法,包括以下步骤:

步骤1,制备中间体1和中间体2取对溴苯二甲酸溶于二氯亚砜中,80-120℃下搅拌8-16小时,除去二氯亚砜,再与柔性链r2、三氯化铝混合,溶于二氯甲烷中0-25℃下反应2-6小时,待反应结束后经柱色谱纯化得中间体1然后在避光且氮气保护下,将中间体1四三苯基膦钯催化剂、对苯二硼酸酯、相转移催化剂四丁基溴化铵溶于甲苯和碳酸钾的混合溶液中,80-100℃下反应24-48小时,反应结束后经柱色谱纯化得中间体2

步骤2,合成前驱体1前驱体2和前驱体3

在避光且氮气保护下,将含ar官能团、中间体1四三苯基膦钯催化剂、相转移催化剂四丁基溴化铵分别与苯基芴偶联的硼酸单体和甲基芴偶联的硼酸单体混合再溶于甲苯和碳酸钾的混合溶液中,80-100℃下搅拌12-24小时,待反应结束后经柱色谱纯化得前驱体1和前驱体2将ar官能团、苯偶联的硼酸单体与中间体2再溶于甲苯和碳酸钾的混合溶液中,80-100℃下搅拌12-24小时,待反应结束后经柱色谱纯化得前驱体3;

步骤3,合成化合物tr-1tr-2tr-3

在避光且氮气保护下,将前驱体1四三苯基膦钯催化剂、三并茚三硼酸酯、相转移催化剂四丁基溴化铵溶于甲苯和碳酸钾的混合溶液中,80-100℃下反应24-48h,反应结束后经柱色谱纯化得化合物tr-1再将前驱体2前驱体3分别与三并茚三硼酸酯偶联反应得到化合物tr-2tr-3

步骤4,合成通式ⅰ中化合物trl-1trl-2trl-3

在氮气保护下,将溴代柔性链r2加入无水四氢呋喃溶剂中,冷却至-78℃,滴加丁基锂溶液,反应0.5-2小时后,将化合物tr-1滴加入反应体系中,反应8-12小时,反应结束经柱色谱纯化得到叔醇中间体,将叔醇中间体溶于二氯甲烷溶剂中,加入三氟化硼乙醚,0-25℃下反应0.5-1小时,反应结束后经柱色谱纯化得化合物trl-1化合物trl-2和化合物trl-3分别由化合物tr-2和tr-3制成,反应条件同合成trl-1。作为改进的是,步骤1中,合成中间体1时,每摩尔对溴苯二甲酸加入二氯亚砜溶剂20-200ml,柔性链r2:对溴苯二甲酸:三氯化铝的摩尔比为(1.5-3):(1.5-3):1,每摩尔对溴苯二甲酸对应二氯甲烷溶剂20-200ml,合成中间体2时,对苯二硼酸酯与中间体1摩尔比为1:(4-20),四三苯基膦钯催化剂:相转移催化剂四丁基溴化铵:对苯二硼酸酯摩尔比为(0.1-0.3):(0.2-0.6):1,每摩尔中间体1加入甲苯溶剂0.5-5l,甲苯与碳酸钾水溶液体积比为(2-3):1;

步骤2中,合成前驱体1和前驱体2时,含ar官能团的苯偶联硼酸单体或甲基芴偶联硼酸单体:四三苯基膦钯催化剂:相转移催化剂四丁基溴化铵:中间体1摩尔比为(0.2-0.5):(0.02-0.05):(0.05-0.1):1,每摩尔中间体1加入甲苯溶剂40-400ml,甲苯与碳酸钾水溶液体积比为(2-3):1,合成前驱体3时,含ar官能团的苯偶联硼酸单体:四三苯基膦钯催化剂:相转移催化剂四丁基溴化铵:中间体体2摩尔比为(0.2-0.5):(0.02-0.05):(0.05-0.1):1,每摩尔中间体2加入甲苯溶剂40-400ml,甲苯与碳酸钾水溶液体积比为(2-3):1;

步骤3中,三并茚三硼酸酯:四三苯基膦钯催化剂:相转移催化剂四丁基溴化铵:前驱体1前驱体2或前驱体3为1:(0.1-0.3):(0.2-0.6):(4-6),每摩尔前驱体1、前驱体2或前驱体3加入甲苯溶剂1-50l,甲苯与碳酸钾水溶液体积比为(2-3):1;

步骤4中,tr-1或tr-2溴代柔性链r2摩尔比为1:(20-200),tr-3溴代柔性链r2摩尔比为1:(40-400),每摩尔溴代柔性链r2加入四氢呋喃溶剂1-50l,每摩尔叔醇中间体加入二氯甲烷溶剂1-200l,叔醇中间体:三氟化硼乙醚摩尔比为1:(20-500)。

上述梯形大分子衍生物在光泵浦有机激光或电泵浦有机激光器件上的应用。

上述梯形大分子衍生物在蓝光有机电致发光器件或白光器件中的应用。

上述梯形大分子衍生物在钙钛矿有机无极杂化太阳能电池器件上的应用。

有益效果

本发明通过巧妙的分子结构设计,提供一种性能优异的梯形大分子作为有机激光增益介质的应用。通过采用suzuki偶联、傅克酰化/烃化反应、环化反应等反应类型,实现了材料的高效制备;得到了结构明确、发光稳定、光热稳定性好、荧光量子效率高的有机发光材料体系;同时通过选用不同电活性的官能团封端,可以调节材料的发光特性和电学性能,改善载流子迁移率,使得这类材料有了更加广阔的应用;制备的激光器件显示,该材料体系具备极高的激光增益特性、优异的激光热稳定性和超低的ase/激光阈值,有效解决了目前有机激光增益介质材料体系材料种类缺乏、光热稳定性差、增益低、阈值高等技术难题,是一类具有重要应用潜力的有机激光材料。同时,该材料体系可以获得良好的蓝光发射,可以实现高效的蓝光和白光oled器件,具有良好的产业化应用潜力;也可以作为空穴传输材料应用于钙钛矿有机无机杂化太阳能电池等领域。

附图说明

图1为化合物a的1hnmr谱图;

图2为化合物a的13cnmr谱图;

图3为化合物b的1hnmr谱图;

图4为化合物b的13cnmr谱图;

图5为化合物c的1hnmr谱图;

图6为化合物c的13cnmr谱图;

图7为化合物a的溶液和薄膜uv光谱;

图8为化合物a的溶液和薄膜pl光谱;

图9为化合物a、b、c的热失重曲线;

图10为化合物a的发光效率;

图11为化合物a的半峰宽和ase输出斜率随激光强度变化图;

图12为化合物a的增益系数随激光强度变化图。

具体实施方式

实施例1前驱体1、前驱体2、前驱体3的合成

第一步,对溴苯二甲酸实现傅克酰化和傅克烃化反应得中间体1

第二步,将中间体1与三苯胺硼酸酯进行suzuki偶联反应得到前驱体1

第三步,由原料2,7-二溴甲基芴和二苯胺在叔丁醇钠、l-脯氨酸作用下二氧六环做溶剂100℃条件下实现乌尔曼偶联反应得到

第四步,由通过联硼酸频那醇酯、二价钯催化、二氧六环溶剂条件下得到其硼酸酯单体

第五步,由和中间体1进行suzuki偶联反应得到前驱体2

第六步,由对苯二硼酸酯和中间体1进行suzuki偶联反应得到中间体1

第七步,由中间体2和三苯胺硼酸酯进行suzuki偶联反应得到前驱体3

实施例2

用实施例1的前驱体1、前驱体2和前驱体3制备化合物a

化合物b

和化合物c三种梯形大分子化合物。其中,合成路线分别如下所示:

反应路线一

反应路线二

反应路线三

化合物a、化合物b和化合物c的合成方法相同,此处以化合物a合成为例,具体步骤如下:

步骤i:在氮气条件下,将三溴三并茚(2.2g,2.0mmol),联硼酸频那醇酯(2.55g,10.0mmol),乙酸钾(1.23g,15.0mmol)和1,4-二氧六环(40ml)加入100ml反应瓶中,随后加入二价钯催化剂(0.30g,0.4mmol),在100℃条件下反应过夜。冰水淬灭反应,用二氯甲烷萃取有机相,去离子水洗两三次后,无水硫酸镁干燥,抽滤。真空减压浓缩粗产物,柱层析(淋洗液为dcm)纯化,得到三并茚三硼酸酯白色固体1.59g,产率65%。

步骤ii:在氮气条件下,将前驱体1(288mg,0.40mmol),四丁基溴化铵(15mg,0.045mmol),三并茚三硼酸酯(100mg,0.08mmol),四三苯基膦钯(23mg,0.02mmol),2mk2co3(7ml)和四氢呋喃(15ml)加入50ml反应瓶中。85℃反应48小时。冰水淬灭反应,用二氯甲烷萃取有机相,去离子水洗两三次后,无水硫酸镁干燥,抽滤。真空减压浓缩粗产物,柱层析(淋洗液为dcm:pe=2:1)纯化,得到黄色三臂三并茚前驱体163mg,产率72%。

步骤iii:在氮气条件下,将对溴丁基苯(580mg,1.80mmol)、无水四氢呋喃溶液(20ml)加入100ml反应瓶中,冷却至-78℃,滴加0.7ml丁基锂(2.5minhexane),反应1个小时后,将溶解于3ml四氢呋喃中的三臂三并茚前驱体87mg(0.045mmol)滴加入反应瓶,反应缓慢升温过夜。冰水淬灭反应,用二氯甲烷萃取有机相,去离子水洗两三次后,无水硫酸镁干燥,抽滤。真空减压浓缩粗产物,柱层析(淋洗液为dcm:pe=1:1)纯化,得到黄色透明胶体120mg。将黄色胶体溶解于20ml二氯甲烷溶液中,然后滴加0.2ml三氟化硼乙醚,室温条件下反应搅拌30分钟。冰水淬灭反应,用二氯甲烷萃取有机相,去离子水洗两三次后,无水硫酸镁干燥,抽滤。真空减压浓缩粗产物,柱层析(淋洗液为dcm:pe=4:1)纯化,得到浅黄色梯形化合物a99mg,产率64%。

化合物a的验证结果如下:1hnmr(400mhz,cdcl3,δ):8.38(s,3h),7.78(d,j=13.5hz,6h),7.63–7.52(m,6h),7.19(d,j=6.7hz,30h),7.02(d,j=29.0hz,54h),2.57(s,36h),1.58(s,42h),1.40(d,j=32.6hz,42h),0.89(d,j=29.5,22.7hz,66h).13cnmr(100mhz,cdcl3,δ):153.65,153.45,151.82,150.89,150.16,147.70,147.05,144.35,144.16,143.36,141.09,140.93,139.89,139.63,139.41,138.48,138.45,135.79,135.17,129.10,128.29,128.24,128.18,128.15,125.55,123.94,123.43,122.57,122.30,122.13,120.60,117.60,117.41,113.30,64.64,64.39,55.41,35.26,33.56,31.54,30.35,29.34,22.57,22.52,22.24,13.99,13.97,13.87.maldi-tof-ms(m/z):calcdforc261h285n3,exactmass:m+3464.08;found:3464.288(m+),3395.031([m-c6h13]+)。

化合物b的验证结果如下:1hnmr(400mhz,cdcl3,δ):8.37(s,3h),7.90(s,3h),7.80(s,3h),7.71(s,3h),7.61(s,6h),7.51(d,j=8.2hz,3h),7.32–7.28(m,24h),7.23(s,3h),7.18(s,3h),7.11(t,j=7.6hz,42h),7.01(t,j=7.1hz,12h),2.62–2.52(m,36h),1.63–1.55(m,48h),1.47(s,18h),1.41–1.32(m,36h),0.93–0.82(m,66h).13cnmr(100mhz,cdcl3,δ):155.52,153.66,153.21,153.11,151.76,151.71,151.61,150.28,148.01,147.10,144.39,144.21,143.78,141.12,140.95,140.33,139.98,139.70,139.16,138.61,138.48,136.86,134.48,129.20,128.41,128.30,128.22,128.18,126.77,123.94,123.59,122.53,120.51,118.89,117.55,117.23,114.21,113.37,64.43,64.39,55.42,46.57,35.29,33.57,33.56,31.55,29.34,27.39,22.60,22.59,22.24,13.99,13.89.maldi-tof-ms(m/z):calcdforc288h309n3,exactmass:m+3812.56;found:3812.737(m+),3727.516([m-c6h13]+)。

化合物c的验证结果如下:1hnmr(400mhz,cdcl3,δ):8.30(s,3h),7.73(s,6h),7.67–7.55(m,18h),7.49(d,j=7.4hz,6h),7.17(s,18h),7.03(d,j=31.4hz,108h),2.56(s,72h),1.55(s,72h),1.36(s,48h),0.92(s,102h).13cnmr(100mhz,cdcl3,δ):153.59,153.57,152.05,151.84,151.72,151.58,151.57,150.77,150.43,147.66,147.06,144.37,144.10,143.65,143.53,143.15,141.06,141.00,140.86,140.47,140.19,140.15,140.13,139.87,139.69,139.59,139.52,138.45,138.32,138.31,134.96,129.0,128.53,128.46,128.29,128.25,128.21,128.17,128.07,123.91,122.56,122.10,120.55,117.68,117.65,117.64,117.62,117.60,117.56,117.50,117.49,117.47,117.27,117.24,113.35,113.33,113.31,64.63,64.45,64.31,64.28,55.39,35.25,35.21,33.50,33.48,33.45,33.43,31.51,29.72,29.27,22.61,22.56,22.49,22.19,13.99,13.96,13.86.maldi-tof-ms(m/z):calcdforc423h453n3,exactmass:m+5579.14;found:5578.948(m+),5493.262([m-c6h13]+)。

实施例3

oled器件的制备

ito玻璃经过超声波清洗后,用氧等离子体处理,ito玻璃的方块电阻为10ω/cm2。空穴注入层为pedot或pvk,发光层采用化合物a、化合物b或者化合物c中任意一种。空穴注入层和发光层均采用旋凃的方式制作。阴极电极分别采用ca/al,或者ba/al金属。其中,化合物a的最大发光效率0.82cd/a,最大亮度776cd/m2,cie坐标(0.17,0.18)。

实施例4

有机激光器件的制备

石英片经过超声波清洗,采用甲苯做溶剂,发光主体采用化合物中任意一种,制备20mg/ml的溶液。采用旋凃的方式制作,旋涂条件为1000rpm,膜厚100nm。其中,化合物a的pl光谱的发射峰427nm和451nm,fwhm大约为90nm。ase峰在450nm;fwhm在4.0nm左右;ase阈值0.84kw/cm2(4.22μj/cm2)。材料a光学增益参数随激光能量有一定幅度的变化,在115cm-1-176cm-1之间,最大增益参数176cm-1,是目前有机激光半导体中得到最好结果。

上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所做的改进和变换,均应为等效的置换方式,都包含在本发明的保护范围内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1