控制iPP相结构的方法及制备含中间相结构iPP的方法与流程

文档序号:12814824阅读:801来源:国知局
控制iPP相结构的方法及制备含中间相结构iPP的方法与流程

本发明涉及一种控制ipp相结构的方法及制备含中间相结构ipp的方法,属于高分子材料领域。



背景技术:

等规聚丙烯是一种典型的多形态半结晶性聚合物,广泛应用于工业生产和人们的日常生活中。从晶体结构上看,目前聚丙烯已知的有三种晶型(α、β和γ晶)和一个中间相结构。常见的聚丙烯制品多为α晶与非晶的两相体系,另外还有β相(或者γ相)与α晶共存的体系。

等规聚丙烯的中间相则是处于晶体和非晶之间的亚稳相,一般条件下通过淬冷法制备,但该方法获得的制品体积小,形状单一(薄膜状),并且所得制品结构不均一,极大的限制了其应用。

另外,聚合物的加工成型过程大都采用冷却固化法,其本质是利用过冷度δt(平衡熔点和结晶温度的差值)使聚合物凝固。值得注意的是,聚合物熔体的热导率较低,冷却过程往往存在较大的温度梯度,产生大量的结构缺陷。实际上,大多数高分子材料(如等规聚丙烯)的熔点随压力的增加而升高,改变压力同样可以使熔体固化,压力在熔体内部的传播速率极快,不存在明显的压力梯度分布,因此完全适合制备大块的结构均一的聚合物制品。如c.angelloz等(crystallizationofisotacticpolypropyleneunderhighpressure.macromolecules33.33(2005):4138-4145.)报道了在不同温度,200mpa~250mpa的压力下等规聚丙烯的结晶行为,发现在200mpa~250mpa的压力下,等规聚丙烯以γ相结晶。研究者认为压力影响了等规聚丙烯的平衡熔点和粘度,最终影响了其结晶过程。而不同增压速率下聚合物熔体固化行为的研究几乎是空白。

可见,目前尚未有通过控制压力和控制升压速率来得到不同相结构的等规聚丙烯的相关报道。



技术实现要素:

本发明提供一种控制等规聚丙烯相结构的方法,该方法通过控制压力、温度和升压速率即可得到不同相结构的等规聚丙烯,并且能够根据需求调控各相的含量。

本发明的技术方案:

本发明要解决的第一个技术问题是提供一种控制等规聚丙烯相结构的方法,所述方法为:

将熔融状态下的等规聚丙烯的压力由常压增压至2gpa,然后降温至30℃~50℃,最后泄压;其中,控制增压速率≤0.0025gpa/s时,所得等规聚丙烯含有γ相和非晶相;控制增压速率在:0.0025gpa/s<增压速率<0.02gpa/s时,所得等规聚丙烯含有中间相,γ相和非晶相;控制增压速率≥0.02gpa/s时,所得等规聚丙烯含有中间相和非晶相;

或者所述方法为:

将熔融状态下的等规聚丙烯的压力由常压增压至1gpa,然后降温至30℃~50℃,最后泄压;其中,控制增压速率≤0.0025gpa/s时,所得等规聚丙烯含有γ相和非晶相;控制增压速率>0.0025gpa/s时,所得等规聚丙烯含有中间相、γ相和非晶相;

或者所述方法为:

将熔融状态下的等规聚丙烯的压力由常压增压至1.25gpa,然后降温至30℃~50℃,最后泄压;其中,控制增压速率≤0.00104gpa/s时,所得等规聚丙烯含有γ相和非晶相;控制增压速率在:0.00104gpa/s<增压速率<0.0125gpa/s时,所得等规聚丙烯含有中间相,γ相和非晶相;控制增压速率≥0.0125gpa/s时,所得等规聚丙烯含有中间相和非晶相;

或者所述方法为:

将熔融状态下的等规聚丙烯的压力由常压增压至1.5gpa,然后降温至30℃~50℃,最后泄压;其中,控制增压速率≤0.00875gpa/s时,所得等规聚丙烯含有γ相和非晶相;控制增压速率在0.00875gpa/s<增压速率<0.015gpa/s时,所得等规聚丙烯含有中间相,γ相和非晶相;控制增压速率≥0.015gpa/s时,所得等规聚丙烯含有中间相和非晶相。

进一步,上述控制等规聚丙烯相结构的方法包括如下步骤:

1)将等规聚丙烯放入容器中,填满密封,施加10~15mpa的压力预压使等规聚丙烯和容器紧密接触,以保证后续加压时受力均匀;然后升温至180~220℃保温5~10min使等规聚丙烯充分熔融,消除热历史;所述容器由导热且流动性好的材料制成,如铝质容器或铜质容器;

2)然后将等规聚丙烯的压力增加到1~2gpa;

3)将温度降至30℃~50℃,然后降压,取样。

优选的,步骤1)中,预压压力为10mpa,升温至200℃退火10min。

本发明要解决的第二个技术问题是提供一种制备含中间相结构的等规聚丙烯的方法,所述方法为:

将熔融状态下的等规聚丙烯的压力由常压增压至2gpa,然后降温至30℃~50℃,最后泄压;其中,控制增压速率>0.0025gpa/s;

或者所述方法为:

将熔融状态下的等规聚丙烯的压力由常压增压至1gpa,然后降温至30℃~50℃,最后泄压;其中,控制增压速率>0.0025gpa/s;

或者所述方法为:

将熔融状态下的等规聚丙烯的压力由常压增压至1.25gpa,然后降温至30℃~50℃,最后泄压;其中,控制增压速率>0.00104gpa/s;

或者所述方法为:

将熔融状态下的等规聚丙烯的压力由常压增压至1.5gpa,然后降温至30℃~50℃,最后泄压;其中,控制增压速率>0.00875gpa/s。

本发明的有益效果:

1、本发明首次指出:通过控制压力和升压速率,即可控制等规聚丙烯的相结构。

2、本发明制备出体积较大,结构均一的等规聚丙烯制品。

3、本发明发现等规聚丙烯升压至1gpa~2gpa,可得到多形态等规聚丙烯,其含有中间相,γ相和非晶相中的至少两种相结构。

4、本发明得到的等规聚丙烯相结构以及相含量可控,可以通过压力和增压速率的变化来调控样品各相的组成和含量比。

5、本发明方法加工成本低,加工工艺简单。

6、本发明提供了一种如何获得含中间相结构的等规聚丙烯的方法。

附图说明:

图1a为200℃,增压之2gpa的条件下,等规聚丙烯不同增压速率的waxs图;图1b为不同增压速率下等规聚丙烯中间相,γ相以及非晶相的相对含量。

图2为200℃,增压至2gpa的条件下,以0.02gpa/s的增压速率(实施例4)得到的等规聚丙烯制品从中心到边缘处的waxs图。

图3为200℃,增压至1.5gpa的条件下,不同增压速率下等规聚丙烯中间相,γ相以及非晶相的相对含量。

图4为200℃,增压至1.25gpa的条件下,不同增压速率下等规聚丙烯中间相,γ相以及非晶相的相对含量。

图5为200℃,增压至1gpa的条件下,不同增压速率下等规聚丙烯中间相,γ相以及非晶相的相对含量。

具体实施方式

实施例1:

1、首先,在80℃的条件下,将等规聚丙烯置于真空干燥箱中干燥8小时;

2、将上述等规聚丙烯加入铝盒中,铝盒内径为25mm,上下底间距离为1mm,填满密封,施加10mpa的压力预压;

3、升温,给上述填满等规聚丙烯的铝盒加热,温度至200℃,等温10min,然后以13.33gpa/s的增压速率(增压时间为0.15s)将压力増至2gpa;

4、压力增加至2gpa后,给样品降温,降温至40℃,然后卸压,取出样品。

实施例2-6:

具体制备方法步骤同实施例1,仅仅改变步骤3中的增压速率分别为:0.01gpa/s(实施例2)、0.0025gpa/s(实施例3)、0.02gpa/s(实施例4)、0.0017gpa/s(实施例5)、0.005gpa/s(实施例6)。

性能测试:

制备材料的表征:利用广角x射线(waxs)对实施例1-6所得样品的相结构进行表征,然后又用分峰拟合法对其各相的含量进行了定量分析。

由图1a和图1b我们可以看出200℃,2gpa的压力下,当增压速率为13.33gpa/s时(实施例1),得到的是含有中间相和非晶相的等规聚丙烯;随着增压速率的减小,逐渐向中间相,γ相以及非晶相转变;当增压速率足够小(0.0025gpa/s,实施例3)时,为γ相和非晶相的等规聚丙烯。

从图1可以看出,在200℃,2gpa的压力下,随着增压速率的增加,γ相的相对含量逐渐减小直至完全消失,中间相是从无到有,最后趋于稳定。对于非晶相,在低增压速率时较小,高增压速率时比较大。

图2为200℃,2gpa的条件下,以0.02gpa/s的增压速率(实施例4)得到的等规聚丙烯制品从中心到边缘处的waxs图。由图2可以看出,在同一制品三个不同位置处的waxs曲线表现出几乎相同的走势,这表明本发明所得等规聚丙烯制品结构是均匀的,即利用变速增压得到了结构均一的等规聚丙烯制品。

实施例7-12

具体制备步骤同实施例1,不同在于:将步骤3中的压力增至1.5gpa,并且增压速率分别为:10gpa/s(实施例7)、0.015gpa/s(实施例8)、0.0075gpa/s(实施例9)、0.00375gpa/s(实施例10)、0.001875gpa/s(实施例11)、0.00125gpa/s(实施例12)。不同增压速率下等规聚丙烯中间相,γ相以及非晶相的相对含量如图3所示。

实施例13-18

具体制备步骤同实施例1,不同在于:将步骤3中的压力增至1.25gpa,并且增压速率分别为:8.33gpa/s(实施例13)、0.0125gpa/s(实施例14)、0.00625gpa/s(实施例15)、0.00313gpa/s(实施例16)、0.001563gpa/s(实施例17)、0.00104gpa/s(实施例18)。不同增压速率下等规聚丙烯中间相,γ相以及非晶相的相对含量如图4所示。

实施例19-24

具体制备步骤同实施例1,不同在于:将步骤3中的压力增至1gpa,并且增压速率分别为:6.67gpa/s(实施例19)、0.01gpa/s(实施例20)、0.005gpa/s(实施例21)、0.0025gpa/s(实施例22)、0.00125gpa/s(实施例23)、0.00083gpa/s(实施例24)。不同增压速率下等规聚丙烯中间相,γ相以及非晶相的相对含量如图5所示。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1