一种三官能度异氰酸酯改性聚氨酯增稠剂及其制备方法与流程

文档序号:23652974发布日期:2021-01-15 13:49阅读:511来源:国知局
一种三官能度异氰酸酯改性聚氨酯增稠剂及其制备方法与流程

本发明涉及一种聚氨酯增稠剂,具体涉及一种三官能度异氰酸酯改性水性星型缔合型聚氨酯增稠剂及其制备方法与应用,属于精细化工领域。



背景技术:

传统的缔合型聚氨醋增稠剂的结构较为简单,通常是由过量的异氰酸酯与聚乙二醇反应制备预聚体,然后长链的烷醇进行封端制备得到的线性缔合型聚氨醋增稠剂。这种直链型缔合型聚氨醋增稠剂是两端带有疏水基团的结构,其在乳液体系中形成的是两点缔合的方式来达到增稠效果,但是其增稠效果容易受温度影响而变差。如cn109439056a公开了一种线型水性聚氨酯增稠剂的合成方法,其所合成的聚氨酯增稠剂属于传统的烷基链封端的聚氨酯增稠剂,两点缔合,其增稠效果一般,且增稠后的乳液储存稳定性不好。

为了解决传统线型聚氨酯增稠剂增稠效果差和贮存稳定性差的问题,cn104211941a公开了一种星型聚氨酯增稠剂的合成方法,在起始剂的作用下,利用通入环氧乙烷气体,合成星型的聚乙二醇,然后与含长链烷基异氰酸酯反应合成星形聚氨酯缔合型增稠剂,其增稠效果和稳定性都得到提高,这是因为在聚氨酯缔合型增稠剂中,疏水基团的疏水缔合作用对增稠性能起主导,多点缔合的结构要优于传统线型聚氨酯增稠剂,但是在该星型聚乙二醇制备中,环氧乙烷是一种有毒的致癌物质,易燃易爆,不易长途运输,存在一定的安全隐患,利用该方法合成星形聚乙二醇对设备要求较高。此外,该反应过程繁琐复杂,操作难度大,反应过程难以控制,实际应用比较困难。

cn106380572a公开了一种星型聚氨酯增稠剂的制备方法,利用脱水后的聚乙二醇与二异氰酸酯反应,制备预聚体,然后利用长链烷醇进行半封端,最后采用具有多元醇结构的扩链剂进行扩链,得到星型水性聚氨酯缔合型增稠剂,该方法简化了星形聚氨酯合成步骤,降低了星形聚氨酯增稠剂的合成条件,但是用多元醇作为扩链剂,反应活性低、反应时间长,缺乏刚性结构,仍然会存在传统聚氨酯增稠剂不稳定的缺点。

中国发明专利2014106088302公开了一种多臂型聚氨酯增稠剂的制备方法,包括如下步骤:1)将聚乙二醇进行脱水处理;2)将物质的量为聚乙二醇1.5~3倍的二异氰酸酯稀释至30~40wt%,在40~60℃、搅拌条件下缓慢加入经步骤1)处理后的聚乙二醇中得到反应原液;3)向反应原液中加入催化剂,在惰性气体保护下反应一段时间;然后加入扩链剂反应一段时间;其次加入连接剂反应一段时间;最后加入封端剂反应后得到初产物;4)待所述初产物冷却后加入沉淀剂进行沉淀,然后经过滤、干燥得到所述多臂型聚氨酯增稠剂。该方法选用的扩链剂价格便宜,制得产品分子具有两个以上疏水基团,增稠效果佳,成本低廉,利于工业化生产。其中,二异氰酸酯为异佛尔酮二异氰酸酯;催化剂为二月桂酸二丁基锡和辛酸亚锡中的任意一种;扩链剂为二乙醇胺或三羟甲基氨基甲烷;连接剂为甲苯二异氰酸酯、二苯基甲烷二异氰酸酯、苯二亚甲基二异氰酸酯、环己基甲烷二异氰酸酯、己二异氰酸酯和异佛尔酮二异氰酸酯中的任意一种。但是该技术用二乙醇胺或三羟甲基氨基甲烷作为扩链剂,反应活性过高,反应难以控制,发生暴聚的风险大大增强,不利于实际生产,并且分子量过大容易导致分散不佳导致增稠效果不佳的问题。

中国发明专利201911332115x公开了一种支链型聚氨酯增稠剂及其制备方法。以聚乙二醇、二异氰酸酯、1,4-丁二醇、超支化聚酯boltornh20、长碳链烷醇为原料,合成支链型聚氨酯增稠剂。与传统的直链型聚氨酯增稠剂分子仅能形成两点缔合相比,该发明提供的支链型聚氨酯增稠剂分子为多点缔合;相对于现有的支链型聚氨酯增稠剂支化度不够高而言,该发明提供的支链型聚氨酯增稠剂支链结构更复杂,能形成更加完整的网状结构,大大提高了增稠效果。本发明制备的支链型聚氨酯增稠剂效果好,稳定性高,便于工业化生产,且以水为溶剂,符合当前环保法规的要求。但是该方法难以控制引入的疏水链数,容易导致疏水长链过多导致分子量过大、水溶性不佳的问题,严重影响在配漆应用中的分散性,给应用带来不便。



技术实现要素:

本发明的首要目的在于针对现有技术存在的缺点,提供一种有效防止现有技术存在暴聚的风险,可有效避免疏水链段过多带来的分子量过大、水溶性不佳而导致分散不佳、反应时间短、增稠效果好、制备工艺简单、价格低廉且化学稳定性高的星形水性缔合型聚氨酯缔合型增稠剂的制备方法。

理论上,支化链数越多,缔合位点越多,形成的网络结构越复杂,增稠的效果越好,但是在实际运用中,多臂型聚氨酯增稠剂和支链型聚氨酯增稠剂往往会由于疏水链段过多、分子量过大而导致难以在水性体系分散开来,进而影响实际的增稠效果,所以必须对疏水链段数进行控制。本发明针对上述现有技术存在的问题,使用三官能度异氰酸酯对聚氨酯进行改性合成的增稠剂,避免了使用二乙醇胺或三羟甲基氨基甲烷,大大降低发生暴聚的风险,从而使得实际生产变得更加可行,同时三官能度异氰酸酯对聚氨酯进行改性合成的增稠剂,可以控制疏水链段数,避免疏水链段过多带来的分子量过大、水溶性不佳导致分散不佳进而导致增稠效果不良的问题。通过水分散性实验测试,本发明可以得到透明均一的水分散体,而发明专利cn2014106088302和发明专利cn201911332115x的水分散体不均一透明,含有析出颗粒状物质。本发明兼顾了聚氨酯增稠剂水溶性和增稠效果的平衡。

本发明目的通过如下技术方案实现:

一种三官能度异氰酸酯改性聚氨酯增稠剂的制备方法,包括如下步骤:

1)星形聚氨酯预聚体的制备:将聚乙二醇升温至100℃-140℃,脱水至含水量低于300ppm;然后在氮气保护下将聚乙二醇冷却至60-70℃,缓慢滴加三官能度异氰酸酯的甲苯溶液,滴加完毕后加入质量为聚乙二醇0.1-2%的催化剂,在70℃-100℃反应2-3h,得到星形预聚体;所述的催化剂为n,n-二甲基环己胺、n,n,n',n'-四甲基亚烷基二胺、三乙胺、n,n-二甲基苄胺、二月桂酸二丁基锡、双二甲氨基乙基醚、有机铋、辛酸亚锡、顺丁烯二酸二丁基锡和辛酸锌中的一种或多种;

2)三官能度异氰酸酯改性聚氨酯增稠剂的制备:降温星形预聚体温度至50℃-70℃,加入二异氰酸酯,升温至100℃-120℃反应1-2h,然后加入长链脂肪醇,100℃-120℃反应2-4h,脱去甲苯,降温至50-60℃,添加助溶剂和水,充分搅拌30-60min,得到三官能度异氰酸酯改性聚氨酯增稠剂;所述的长链脂肪醇的烷基链长为c8~20。

为进一步实现本发明目的,优选地,以质量百分比计,原料组成为:聚乙二醇30-45%、三官能度异氰酸酯2-6%、二异氰酸酯2-10%、长链脂肪醇3-15%,助溶剂20-35%,其余为水。

优选地,所述的聚乙二醇为peg1000、peg2000、peg4000、peg6000和peg8000中的一种或多种。

优选地,所述的三官能度异氰酸酯为2,4-甲苯二异氰酸酯三聚体、六亚甲基二异氰酸酯三聚体、异佛尔酮二异氰酸酯三聚体、三苯基甲烷三异氰酸酯和赖氨酸三异氰酸酯中的一种或多种。

优选地,所述的二异氰酸酯为甲苯二异氰酸酯(tdi)、异佛尔酮二异氰酸酯(ipdi)、二苯基甲烷二异氰酸酯(mdi)、二环己基甲烷二异氰酸酯(hmdi)、六亚甲基二异氰酸酯(hdi)和赖氨酸二异氰酸酯(ldi)中的一种或多种。

优选地,所述的长链脂肪醇为十三醇、十六醇和十八醇中的一种或多种。

优选地,所述的助溶剂为n-甲基吡咯烷酮、n-乙基吡咯烷酮、丙二醇、二甘醇单丁醚、二丙二醇单丁醚中的一种或多种。

优选地,所述的聚乙二醇与三官能度的异氰酸酯的-oh/-nco值控制在2.0-2.2;所述的二异氰酸酯与聚乙二醇中的-nco/-oh值控制在1.0~1.2。

优选地,所述的三官能度异氰酸酯的甲苯溶液是三官能度异氰酸酯和甲苯按照质量比1:10~1:15配制而成;所述聚乙二醇真空脱水的真空度为0.08-0.1mpa;所述的脱水至含水量低于300ppm是通过真空脱水实现,时间为3-5h;所述的脱去甲苯是通过110~130℃抽真空实现。

一种三官能度异氰酸酯改性聚氨酯增稠剂,由上述的制备方法制得;该增稠剂在水性体系中形成更加稳定的疏水缔合型网络结构,减少了水性体系中分散相的流动性,具有良好的增稠性能和较好的稳定性;该三官能度异氰酸酯改性聚氨酯增稠剂在0.3wt%的添加量下体系粘度超过2000mpas;该三官能度异氰酸酯改性聚氨酯增稠剂在水中分散呈现透明均匀。

本发明增稠剂用于水性树脂的增稠,该增稠剂在水性体系中可以形成更加稳定的疏水缔合型网络结构,减少了水性体系的流动性,因此具有更强的增稠性能和较好的稳定性。同时,在较低的增稠剂添加量下,即实现优异的增稠效果。并且在同等的添加量下,该增稠剂要优于市面上常见的线性水性缔合型聚氨酯增稠剂。

本发明所合成的三官能度异氰酸酯改性星形聚氨酯有两条以上的疏水性长链结构,在水性体系中可以形成较为稳定的疏水缔合型网络结构,减少了水性体系的流动性,因此具有较强的增稠性能和较好的稳定性。本发明所制备的三官能度异氰酸酯改性水性聚氨酯增稠剂可应用于水性体系的增稠,包括清漆、清漆、水性乳液、粘合剂、水性分散体,可以广泛应用于木器工业、皮革、造纸、印染、化妆品及个人护理产品行业。

本发明与现有技术相比,具有以下有益效果:

1)本发明兼顾了聚氨酯增稠剂水溶性和增稠效果的平衡。针对现有技术在较低的增稠剂添加量下,增稠效果不佳的痛点,本发明在同等测试条件下,三官能度异氰酸酯改性聚氨酯增稠剂在0.3wt%的添加量下体系粘度超过2000mpas;该三官能度异氰酸酯改性聚氨酯增稠剂在水中分散呈现透明均匀;在同等的增稠剂添加量下,本发明增稠剂要明显优于市面上常见的线性水性缔合型聚氨酯增稠剂;并且在同样条件下,本发明能得到均匀透明的水分散体,具有优秀的水分散性能。

2)与传统线型聚氨酯增稠剂相比,这种经过改性的聚氨酯增稠剂,有两条以上的疏水性长链,在水性体系中可以形成更加稳定的疏水缔合型网络结构,减少了水性体系的流动性,因此具有较强的增稠性能和较好的稳定性。

3)本发明合成的三官能度异氰酸酯改性的水性星形聚氨酯增稠剂,合成条件要求大大降低,生产工艺安全可靠,生产成本低廉,合成工艺更加简单,操作更加方便,增稠效果好,产品性能稳定,可施工性好,能够调节水性体系的成膜硬度,具有良好的应用前景。

4)本发明有效防止现有技术存在暴聚的风险,并可有效避免疏水链段过多带来的分子量过大、水溶性不佳而导致分散不佳的问题。

5)本发明采用三官能度的异氰酸酯作为合成星形聚合物的起始剂,反应活性大、反应需要的时间短;制备工艺简单、价格低廉,具有明显的制备工艺优势。

附图说明

图1为实施例1中三官能度改性聚氨酯树脂的红外光谱图。

具体实施方式

为使本发明的目的、技术方案及优点更加清楚,以下结合具体实施例以及附图对本发明进行进一步的说明。应当理解的是,具体实施方式仅用以解释本发明,并不限定本发明的保护范围。

对比例1为rm-12w,由美国陶氏公司生产,是一种缔合型聚氨酯增稠剂,主要应用于木器漆、工业漆领域。

对比例2为按照中国发明专利2014106088302实施例1制备的多臂型聚氨酯增稠剂。

对比例3为按照中国发明专利201911332115x实施例1制备的支链型聚氨酯增稠剂。

实施例1:

原料配方:

表1

制备工艺包括如下步骤:

1)星形聚氨酯预聚体的制备:先向反应容器中加入144gpeg1500,升温至110℃,真空脱水3h,当体系含水量小于300ppm时,在氮气保护下体系冷却至60℃,缓慢往反应容器中滴加121ghdi三聚体的甲苯溶液,滴加完毕后加入0.339g二月桂酸二丁基锡,100℃反应3h,得到星形预聚体。

2)三官能度异氰酸酯改性聚氨酯增稠剂的制备:降低星形预聚体的温度至50℃,加入22.2gipdi,升温至100℃反应2h,得到中间体,最后加入20g十三醇,110℃反应2h,110℃抽真空脱去甲苯,将温至60℃,加入二甘醇单丁醚50g,二丙二醇单丁醚74g,充分搅拌30min,再加入35g水,充分搅拌45min,得到固含为40%的淡黄色透明的三官能度异氰酸酯改性星形聚氨酯增稠剂。

增稠剂性能:25℃下旋转粘度为1250mpas。

增稠剂应用:以质量份计:按照表2方案配漆:

表2

将上述配方物质加入到容器中,添加顺序为,丙烯酸树脂和消泡剂先加入容器中,在1500r/min的转速下分散,dpm、dpnb、去离子水和增稠剂在另外的容器中混合、开稀,在1500r/min的转速下加入到树脂中,高速分散10min,静置30min后,使用ndj-5型数显旋转粘度计测定25℃下体系旋转粘度。按照去离子水和增稠剂总份数为6.5份,分别调节增稠剂为0.3份以及1.0份,剩下的为去离子水,根据上述方法,测定不同增稠剂添加量下体系的旋转粘度。最后测得不同增稠剂添加量下,配漆体系在25℃时的旋转粘度如表3所示。

表3

表3说明本实施例制备的三官能度异氰酸酯改性聚氨酯增稠剂在较低的增稠剂添加量下,即可达到较好的增稠效率。并且在同等的添加量下,相对于对比例1、对比例2、对比例3,本实施例的增稠性能优异。

由图1可知,2270cm-1处异氰酸酯-nco基特征吸收峰消失,1718.38cm-1处氨基甲酸酯吸收峰明显增强,说明-nco基与-oh发生反应生成了氨基甲酸酯键,进而说明了hdi三聚体和ipdi完全参与反应。脲基中羰基的吸收峰出现在波数1643.74cm-1,3473.74cm-1出现脲基中nh基的明显吸收峰,这不仅说明了说明hdi三聚体作为星形聚合物的核成功嵌入聚合物中,为增加缔合位点打下基础,同时也说明成功地向聚合物中引入刚性结构,从而提高聚合物的稳定性。1114cm-1处为聚氨酯中醚键-c-o-c-的伸缩振动峰。2875.56cm-1处的吸收峰表示ch2的νch,1347.58、1466.31cm-1处的振动表示ch2的δch(面内)。从这些吸收峰的位置和强度可以判断,三官能度异氰酸酯改性聚氨酯增稠剂已经合成。

与传统的线性聚氨酯增稠剂(中国发明专利cn109439056a)相比,本实施例合成的三官能度异氰酸酯改性聚氨酯增稠剂有三条疏水性长链,在水性体系中可以形成更加稳定的疏水缔合型网络结构,减少了水性体系的流动性,因此具有更强的增稠性能和较好的稳定性。

与中国发明专利cn104211941a相比,本实施例采用三官能度的异氰酸酯作为合成星形聚合物的起始剂,反应活性大、反应需要的时间短,降低能耗。

与中国发明专利2014106088302和中国发明专利201911332115x相比,本发明避免使用二乙醇胺或三羟甲基氨基甲烷,大大降低发生暴聚的风险,从而使得实际生产变得更加可行,同时三官能度异氰酸酯对聚氨酯进行改性合成的增稠剂,含3条疏水链段数,疏水链数可控,避免疏水链段数量失控带来的分子量过大、水溶性不佳容易导致分散不佳进而导致增稠效果不的问题。

为了测试本实施例1以及对比例产品的亲水性和水分散性能,往100g去离子水里加入10g的增稠剂样品,在1500r/min的转速下分散10分钟后静置5h,观察增稠剂在水中分散情况,结果如表4所示。

表4

从测试结果可以看出实施例1比对比例1、对比例2和对比例3的增稠效果要更好。从表4结果可以看出,实施例1可以比对比例2和对比例3分散的更均匀,无颗粒状物质析出,并且实施例1水分散体比对比例1更加透明,表明实施例1具有更强的亲水性,进而可以推出实施例1具有优秀的水分散性能。缔合型聚氨酯增稠剂的增稠作用主要来自于聚氨酯分子的疏水链段,疏水链段越多,缔合效果越好,但是水分散性越差,而良好的水分散性有助于聚氨酯增稠剂更好地分散在水性漆中,从而形成更复杂的缔合网络,因此要想获得更好的增稠效果,需要在增稠效果和水分散性寻求合适的平衡。实施例1在具有更高的增稠效率的同时也没有牺牲它的水分散性,兼顾了聚氨酯增稠剂水溶性和增稠效果的平衡。总的来说,反映在增稠效果层面上,实施例1在同等条件下,效果比对比例1、对比例2和对比例3要更高。

从实施例1的制备方法可见,本发明合成所需要的条件大大降低,合成工艺变得更加简单,使得操作更加方便;本发明所使用的生产原材料价格低廉易得,生产成本更加低廉。同时反应过程无需用到高压设备和易燃易爆气体,因此本实施例的生产技术排除了风险产生的点,整个生产过程更加安全可靠,生产人员的生命财产安全得以保障。

实施例2:

原料配方:

表5

制备工艺包括如下步骤:

1)星形聚氨酯预聚体的制备:先向反应容器中加入192gpeg2000,升温至110℃,真空脱水4h,当体系含水量小于300ppm时,在氮气保护下体系冷却至60℃,缓慢往反应容器中滴加121ghdi三聚体的甲苯溶液,滴加完毕后加入3.1gn,n-二甲基环己胺,90℃反应2h,得到星形预聚体。

2)三官能度异氰酸酯改性聚氨酯增稠剂的制备:降低星形预聚体的温度至50℃,加入24.8ghmdi,升温至100℃反应3h,得到中间体,最后加入28.345g十八醇,110℃反应2h,110℃抽真空脱去甲苯,将温至60℃,加入二甘醇单丁醚64g,二丙二醇单丁醚95g,充分搅拌30min,再加入222g水,充分搅拌45min,得到固含为40%的淡黄色透明的三官能度异氰酸酯改性星形聚氨酯增稠剂。

增稠剂性能:25℃下旋转粘度为1550mpas。

增稠剂应用:测定方案参考实施例1,测得不同增稠剂添加量下,配漆体系在25℃时的旋转粘度如表6所示。

表6

本实施例2以及对比例产品的亲水性和水分散性能测试结果如表7所示。

表7

实施例3:

原料配方:

表8

制备工艺包括如下步骤:

1)星形聚氨酯预聚体的制备:先向反应容器中加入192gpeg2000,升温至100℃,真空脱水3h,当体系含水量小于300ppm时,在氮气保护下体系冷却至60℃,缓慢往反应容器中滴加111gtdi三聚体的甲苯溶液,滴加完毕后加入2g有机铋,100℃反应2h,得到星形预聚体。

2)三官能度异氰酸酯改性聚氨酯增稠剂的制备:降低星形预聚体的温度至50℃,加入22.2gipdi,升温至100℃反应2h,得到中间体,最后加入28.345g十六醇,110℃反应2h,110℃抽真空脱去甲苯,将温至60℃,加入二甘醇单丁醚64g,二丙二醇单丁醚96g,充分搅拌30min,再加入224g水,充分搅拌45min,得到固含为40%的淡黄色透明的三官能度异氰酸酯改性星形聚氨酯增稠剂。

增稠剂性能:25℃下旋转粘度为1300mpas。

增稠剂应用:测定方案参考实施例1,测得不同增稠剂添加量下,配漆体系在25℃时的旋转粘度如表9所示。

表9

本实施例3以及对比例产品的亲水性和水分散性能测试结果如表10所示。

表10

实施例4:

配方

表11

制备工艺包括如下步骤:

1)星形聚氨酯预聚体的制备:先向反应容器中加入144gpeg1500,升温至120℃,真空脱水3h,当体系含水量小于300ppm时,在氮气保护下体系冷却至60℃,缓慢往反应容器中滴加101g三苯基甲烷三异氰酸酯的甲苯溶液,滴加完毕后加入1.4g辛酸亚锡,80℃反应3h,得到星形预聚体。

2)三官能度异氰酸酯改性聚氨酯增稠剂的制备:降低星形预聚体的温度至50℃,加入16.8ghdi,升温至100℃反应2h,得到中间体,最后加入28.345g十八醇,110℃反应2h,110℃抽真空脱去甲苯,将温至60℃,加入丙二醇50g,n-乙基吡咯烷酮75g,充分搅拌30min,再加入175g水,充分搅拌45min,得到固含为40%的淡黄色透明的三官能度异氰酸酯改性星形聚氨酯增稠剂。

3)增稠剂性能:25℃下旋转粘度为1000mpas。

4)增稠剂应用:测定方案参考实施例1,测得不同增稠剂添加量下,配漆体系在25℃时的旋转粘度如表12所示。

表12

本实施例3以及对比例产品的亲水性和水分散性能测试结果如表13所示。

表13

实施例5:

原料配方:

表14

制备工艺包括如下步骤:

1)星形聚氨酯预聚体的制备:先向反应容器中加入576gpeg6000,升温至140℃,真空脱水5h,当体系含水量小于300ppm时,在氮气保护下体系冷却至60℃,缓慢往反应容器中滴加141gipdi三聚体的甲苯溶液,滴加完毕后加入5g辛酸锌,80℃反应3h,得到星形预聚体。

2)三官能度异氰酸酯改性聚氨酯增稠剂的制备:降低星形预聚体的温度至50℃,加入16.8ghdi,升温至100℃反应2h,得到中间体,最后加入28.345g十八醇,110℃反应2h,110℃抽真空脱去甲苯,将温至60℃,加入n-甲基吡咯烷酮159g,二丙二醇单丁醚238g,充分搅拌30min,再加入555g水,充分搅拌45min,得到固含为40%的淡黄色透明的三官能度异氰酸酯改性星形聚氨酯增稠剂。

增稠剂性能:25℃下旋转粘度为2000mpas。

增稠剂应用:测定方案参考实施例1,测得不同增稠剂添加量下,配漆体系在25℃时的旋转粘度如表15所示:

表15

本实施例4以及对比例产品的亲水性和水分散性能测试结果如表16所示。

表16

本发明的实施方式并不限于此,其它任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在发明的保护范围之内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1