醋酸加氢制备乙醇的方法_2

文档序号:9803058阅读:来源:国知局
重的20wt%? 80wt%。
[0026]所述步骤(I)加氢催化剂含有载体、钴元素、银元素,其中钴元素的含量占催化剂总重的15wt%? 50wt%,银元素的含量占催化剂总重的0.lwt%? 10wt%,所述的载体选自氧化硅、硅藻土、硅酸钙、氧化锆、氧化钛的至少一种,其含量占催化剂总重的20wt %?80wt % ο
[0027]所述步骤(I)中加氢催化剂含有载体、钴元素、碱土金属元素、IB族元素,其中钴元素的含量占催化剂总重的15wt%?50wt%,碱土金属元素的含量占催化剂总重的Iwt %?30wt%, IB族元素的含量占催化剂总重的0.1wt %?15.0wt 所述的载体为氧化物,其含量占催化剂总重的10wt%?80wt%。
[0028]所述步骤(I)中加氢催化剂选自二氧化硅负载的钼-锡催化剂、活性炭负载的钯-铼催化剂中一种。
[0029]所述步骤(I)中加氢催化剂为中国石化北京化工研究院申请的专利中的一种或者组合,具体专利为:CN 201210429219.4、CN201210429218.X、CN201210429995.4、CN201210429959.8、CN201210429785.5、CN201210430033.0、CN201210429960.0、CN201210429958.3、CN201210428055.3、CN201210429720.0、CN201210428802.3。
[0030]另外,适用于醋酸加氢制乙醇的催化剂在使用前可经任意方式改性。例如,利用扩孔剂或水热处理方式来调节载体的孔结构以提高催化剂的选择性和稳定性;又如,通过在制备载体过程加入某金属化合物来调节载体的酸碱性以提高催化剂活性;又如,通过在载体中添加某金属像镧等以提高催化剂的稳定性,这可有效提高催化剂寿命;还有,可通过对催化剂进行表面硅烷基化或者铝烷基化处理调节其表面特殊性质来减少某些化合物在催化剂表面的沉积或者活性组分的流失以延长催化剂寿命。
[0031]对于本技术领域的技术人员,可根据以上详细描述得到启发从而对本发明的催化剂载体及制备方法做各种改变。例如,可采用任何已知的加氢催化剂、催化剂载体或改性后的催化剂载体。
[0032]在本发明的技术方案中,所述气相加氢反应器可以是固定床形式或其他对醋酸加氢工艺有用的形式。气相加氢反应的工艺条件无特殊要求,可根据醋酸转化率及乙醇收率进行调节。举例来说,加氢反应在常压下进行,反应温度为200°C?350°C,醋酸的液相进料体积空速为0.05?0.5h 1O醋酸加氢也可以在加压下进行,例如,醋酸加氢的工艺条件为:醋酸的液相进料体积空速为0.05?1.5h \氢气与醋酸的摩尔比为5?30:1,反应温度为80°C?150°C,反应压力为3.0至9.0MPa0所述液相进料体积空速是指醋酸的流量按照醋酸进料时的液相体积计,单位时间内的进料体积与催化剂的体积之比。醋酸的液相进料体积空速影响着反应器的处理量,并且影响反应产物的组成及其含量。
[0033]在气相加氢反应器后,液相产品A经过换热回收热量和冷却,再进行气液分离,气体经压缩机循环使用,再适当补入一些新鲜的氢气,液体进入后续的分离阶段。
[0034]尽管本发明使用了非常高活性的催化剂,反应粗产物还有一定量的未反应的醋酸存在,这可能是在工业实施过程中,本发明的固相需要以一定的粒径(I?8_)存在,由于反应器存在许多非理想流动情况,如众所周知的短路、沟流、死角等,另一个原因就是催化剂在反应末期会存在活性下降。
[0035]本发明通过所述的高活性催化剂后,加氢反应器出口的醋酸含量控制在2wt%以内,优化为1.5wt %,更优化的情况为Iwt %。
[0036]醋酸含量对于乙醇的产品品质有着重要的作用,如工业乙醇中国国家标准中酸值不能超过10mg/L,燃料乙醇中国国标中酸值不超过56mg/L,因此脱除粗产品中醋酸是必要的。现有技术主要通过精馏的方式将醋酸脱除,占产品质量绝大多数的乙醇和水需要通过汽化,因此精馏脱酸的能耗极高,并且脱酸塔的尺寸较大和材质要求较高,投资成本极高;并且在现实的精馏分离中,可能存在塔顶存在极微量醋酸的情况,而作为燃料乙醇和工业乙醇产品都是对酸度有严格要求的,因此在操作波动等情况下造成产品不合格。酸度值是乙醇产品主要的衡量指标,特别是在应用到燃料乙醇中时,极微量的醋酸将会使得发动机和油路的腐蚀速率加倍,并且还会一定程度的影响油品的稳定性,因此导致油品质量下降。
[0037]本发明人发现中和反应器的控制对于后续产品的分离非常重要,是本发明成功的重要控制参数之一,控制中和反应器PH在8.0?11.0,更优化的值为8.5?10。
[0038]对于中和的碱性物质,可以选自碳酸铵、碳酸氢铵、氨水、苛性钠、碳酸钠、碳酸氢钠、氢氧化钾、氢氧化钙中的一种,更优选的碱为苛性钠的水溶液。
[0039]中和反应器的位置选择对本发明的效果是重要的,本发明要求的位置是发明人经过精心推导试验的的,经过材质试验,本发明人发现经过中和后的物料腐蚀速率大幅降低,在普通的碳钢材料中速率可以低于0.01mm/a,产品色泽清亮,而如果不将物料中的醋酸中和,发现需要使用较高等级的材质,即使如此,塔釜产品还是存在一定的颜色,因此中和反应器尽量地放置在靠近反应器的精馏塔前可以降低设备投资,并且使得塔釜液体色度降低。
[0040]同时,本发明经过仔细考察发现,碱的加入或者说是碱与醋酸形成的醋酸盐对微量组分的分离是具有重要意义的,因此中和反应器位置的选择对于产品的品质意义还在于此:本发明人发现,醋酸盐在液相中存在时将影响乙醛的分离,尽管发明人不想受理论限制,但这可能是由于盐的存在改变了乙醛的相对挥发度,从而导致作为轻组分的乙醛出现在其理论上不会出现的塔釜液相中,本发明人在试验测试中发现,醋酸盐的存在可以使得塔釜的乙醛含量超过10wtppm,众所周知,醛的含量对醇的品质有重要影响,尽量少的醛有利于乙醇在各个方面的使用,包括燃料乙醇、工业乙醇、日用方面等。
[0041]众所周知,本发明人通过在小型精馏处理装置上的试验发现,在(如ASPEN软件模拟)理论计算上可实现醋酸完全分离的情形下,试验结果表明乙醇产品中的酸含量较高,在许多次试验中,酸度值绝大部分情况是超过产品中国国标要求的,酸度值基本都在10?100mg/L 左右。
[0042]微量的醋酸出口控制不仅通过高活性催化剂的选择,对于反应器和反应器的组合也有要求,优选的方式为一台或者两台以上列管式固定床反应器、自热式反应器和塔式反应器,更优选的具有自热式反应器和列管式反应器的组合,并且具有入口温度差。
[0043]由于醋酸与碱中和后,会导致醋酸物料的损失,显然这是发明人不愿意看到的,因此本发明在加氢反应器后增加了一个酯化反应器,将醋酸转化为醋酸乙酯,由于醋酸乙酯在本发明的方法中是可以循环回反应器被加氢为乙醇。本发明人通过仔细的考察后发现,气液分离和酯化反应器的匹配可以极大地降低。在气液分离后,冷凝的粗产物部分或者全部通过一个酯化反应器,酯化反应器的温度控制为80?130°C,酯化反应器的设计优化绝热床反应器。所述的中间酯化反应器装填有酯化催化剂,所述的酯化催化剂选自离子树脂、分子筛、氧化铝、超强酸中的一种。更优选的酯化催化剂为强酸性离子树脂和超强酸,如美国罗门哈斯公司生产的A-15等。优化的方式为,在气相加氢反应器后,得到粗乙醇产品先冷却至60?130°C,再经过一级气液分离,将分离后的液相送入中间酯化反应器,将气相进一步冷却和气液分离后送入产品精制。通过所述的二级气液分离器结合酯反应器的方式能够最大程度的降低物耗。
[0044]在本发明实施中,本技术领域的技术人员可根据工厂实际的气相加氢反应粗产物中各个组分的比例来适当的选择气液分离器和酯化反应器的使用,也可以根据本发明给出的各种技术启示对本发明的技术方案进行修改。
当前第2页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1