混合动力车辆的控制装置的制作方法

文档序号:11567528阅读:236来源:国知局
混合动力车辆的控制装置的制造方法

本发明涉及以具备发动机和两个电动机作为驱动力源的混合动力车辆为对象的控制装置,尤其涉及进行在发动机停止而利用电动机进行行驶的状态下使发动机起动的控制的控制装置。



背景技术:

这种混合动力车辆在要求驱动力小的情况下,能够仅通过电动机的驱动力进行行驶(电动机行驶)。在电动机行驶状态下要求驱动力因加速器踏板被踩踏等而增大的情况下,会使发动机起动。这种情况下,由于混合动力车辆具备电动机作为驱动力源,因此能够通过该电动机来拖动发动机。在专利文献1中记载了一种构成为通过为了行驶而使用的电动机来拖动发动机的装置。

专利文献1所记载的混合动力车的驱动装置中,由行星齿轮机构构成的动力分配机构的齿轮架与发动机连结,且具备阻止该齿轮架的逆旋转(与发动机的旋转方向相反方向的旋转)的单向离合器。第一电动机与动力分配机构中的太阳轮连结,而且齿圈与输出构件连结,还以能够对该输出构件附加转矩的方式设置有第二电动机。因此,在关于构成动力分配机构的行星齿轮机构的列线图上,与发动机连结的齿轮架位于与第一电动机连结的太阳轮与接受第二电动机的转矩的传递的齿圈之间。因此,由于能够通过单向离合器阻止该齿轮架的逆旋转,因此若从第一电动机向太阳轮施加逆旋转方向的转矩,则从第一电动机向齿圈或与该齿圈连结的输出构件传递正旋转方向的转矩。通过在该状态下使第二电动机正旋转,能够利用第一电动机及第二电动机的转矩进行行驶。该行驶状态可以称为电动机行驶下的双驱动模式(双电动机模式)。

在双驱动模式下行驶时使发动机起动的情况下,在专利文献1所记载的装置中,以使被设置成能够通过卡合而向所述齿轮架传递正旋转方向的转矩的制动器机构卡合,并使第一电动机输出逆旋转方向的转矩的方式进行控制。该制动器机构构成为,在关于所述行星齿轮机构的列线图上位于太阳轮与齿轮架之间。因此,所述制动器机构会取代所述单向离合器而承担由第一电动机逆旋转引起的反力转矩,因此正旋转方向的转矩作用于齿轮架及与该齿轮架连结的发动机,发动机被拖动。

在先技术文献

专利文献

专利文献1:日本特开2013-56600号公报



技术实现要素:

发明要解决的课题

在专利文献1所记载的控制装置中,以双驱动模式行驶时的第一电动机的旋转方向与用于使发动机起动的第一电动机的旋转方向相同,因此由第一电动机产生的行驶用的驱动力不会暂时消失(成为零)。然而,如专利文献1的附图所示,相对于由所述单向离合器承担与第一电动机的逆旋转方向的转矩相对的反力转矩的状态下的转矩放大率,由所述制动器机构承担的状态下的转矩放大率下降,这有可能会成为主要原因而导致驱动转矩的暂时下降或产生冲击。即,转矩放大率是第一电动机的输出转矩与通过该输出转矩使作为输出要素的齿圈正旋转的转矩的比率,为了通过使制动器机构卡合而使齿轮架产生正旋转方向的转矩,制动器机构会构成为在所述列线图上位于太阳轮与齿轮架之间。因此,在所述列线图上,太阳轮与制动器机构的距离比太阳轮与齿轮架的距离短,因此在将第一电动机的输出转矩向齿圈传递的情况下将转矩放大的比例减小,由第一电动机实现的驱动转矩下降。

本发明着眼于上述的技术问题而完成,目的在于提供一种能够抑制在混合动力车辆进行电动机行驶时使发动机起动的情况下的驱动转矩的下降的控制装置。

用于解决课题的方案

为了实现上述的目的,本发明提供一种混合动力车辆的控制装置,所述混合动力车辆具有发动机、第一电动机、与所述发动机及所述第一电动机连结的动力分配机构、接受从所述动力分配机构输出的转矩的传递的输出构件和连结于所述输出构件的第二电动机,其特征在于,所述动力分配机构具备由第一行星齿轮机构及第二行星齿轮机构构成的复合行星齿轮机构,所述复合行星齿轮机构具有接受所述第一电动机的转矩的传递的反力要素、旋转受到限制的固定要素、接受所述发动机的转矩的传递的输入要素和向所述输出构件传递转矩的输出要素作为旋转要素,并且所述复合行星齿轮机构构成为,在表示所述旋转要素的转速彼此的关系的关于所述复合行星齿轮机构的列线图上,表示所述反力要素的线和表示所述固定要素的线隔着表示所述输入要素的线及表示所述输出要素的线而位于两侧,在任意的所述旋转要素彼此之间或者所述输入要素与所述发动机之间设置有离合器机构,该离合器机构通过卡合能够将所述第一电动机的转矩向所述发动机传递,且通过释放来切断从所述第一电动机向所述发动机的转矩的传递,所述控制装置具备控制所述发动机的起动的控制器,所述控制器构成为,在使所述发动机从停止状态起动时,在所述固定要素的旋转受到限制的状态下,使所述第一电动机输出使所述发动机旋转的拖动用的转矩,并使所述离合器机构的传递转矩容量增大。

在本发明中作为对象的所述混合动力车辆可以还具备选择性地限制所述固定要素的旋转的制动器机构,所述控制器在使所述发动机从停止状态起动时可以通过所述制动器机构来限制所述固定要素的旋转。

另外,在本发明中,所述混合动力车辆可以还具有收容所述复合行星齿轮机构的壳体,构成所述复合行星齿轮机构的所述第一行星齿轮机构可以具有所述反力要素、所述输出要素和所述固定要素,构成所述复合行星齿轮机构的所述第二行星齿轮机构可以具有所述输入要素、第一旋转要素和第二旋转要素,并且所述第二旋转要素连结于所述反力要素,所述固定要素连结于所述壳体从而所述旋转受到限制,所述离合器机构可以设置在所述第一旋转要素与所述固定要素之间。

在本发明中,构成所述复合行星齿轮机构的所述第一行星齿轮机构可以具有所述反力要素、所述输出要素和所述固定要素,构成所述复合行星齿轮机构的所述第二行星齿轮机构可以具有所述输入要素、第一旋转要素和第二旋转要素,并且所述第二旋转要素连结于所述反力要素,所述离合器机构可以设置在所述第一旋转要素与所述输出要素之间。

在本发明中,构成所述复合行星齿轮机构的所述第一行星齿轮机构可以具有所述反力要素、所述输入要素和第三旋转要素,构成所述复合行星齿轮机构的所述第二行星齿轮机构可以具有所述固定要素、所述输出要素和第四旋转要素,所述第一行星齿轮机构中的所述第三旋转要素连结于所述固定要素,并且所述第二行星齿轮机构中的所述第四旋转要素连结于所述输入要素,所述离合器机构可以设置在所述输入要素与所述发动机之间。

在本发明中,所述控制器可以构成为,在产生了使所述发动机起动的要求时,判断通过使所述离合器机构卡合而所述发动机的转速所能够到达的到达转速是否为预先确定的阈值以上,在所述到达转速为所述阈值以上的情况下,在通过所述制动器机构阻止了所述固定要素的旋转的状态下使所述离合器机构卡合,并利用所述第一电动机的转矩拖动所述发动机,在所述到达转速小于所述阈值的情况下,在使所述制动器机构的传递转矩容量下降而使所述固定要素向与所述反力要素相反的方向旋转了的状态下使所述离合器机构卡合,并利用所述第一电动机的转矩拖动所述发动机。

在本发明中,所述控制器可以构成为,在通过使所述制动器机构的传递转矩容量下降而使所述制动器机构成为半卡合状态从而使所述固定要素向与所述反力要素相反的方向旋转了的情况下,通过所述第一电动机使所述反力要素的转速增大而使所述到达转速增大。

在本发明中,所述控制器可以还构成为,在所述到达转速因使所述制动器机构的传递转矩容量下降而成为预先确定的上限值以上的情况下,执行使所述制动器机构的传递转矩容量增大的控制和限制所述离合器机构的传递转矩容量的增大的控制中的至少任一方的控制。

在本发明中,所述控制器可以还构成为,使所述制动器机构的传递转矩容量增大的控制在所述制动器机构的滑动转速为预先确定的第一容许转速以上的情况下执行,限制所述离合器机构的传递转矩容量的增大的控制在所述离合器机构的滑动转速未超过第二容许转速的情况下执行。

在本发明中,所述控制器可以还构成为,在所述制动器机构的滑动转速为预先确定的第一容许转速以上且所述离合器机构的滑动转速超过了第二容许转速的情况下,使所述制动器机构及所述离合器机构的传递转矩容量均增大。

发明效果

在本发明中,通过在限制固定要素的旋转的状态下由第一电动机输出行驶用的转矩,行驶用的转矩会作用于输出要素或与之连结的输出构件。这种情况下,由于将离合器机构释放,因此不向发动机传递第一电动机的转矩,因此能够使发动机停止。若从该状态起使离合器机构的传递转矩容量增大,则会向发动机传递拖动方向的转矩,发动机转速逐渐被提升。即,拖动通过使离合器机构卡合而提升发动机的转速来进行,不会出现将第一电动机的输出转矩向输出要素传递的路径变化或者将第一电动机的输出转矩向输出要素传递的转矩的放大率变化的情况。换言之,能够不使将第一电动机输出的转矩放大的放大率下降地使发动机起动。因此,根据本发明的控制装置,能够抑制在电动机行驶期间通过第一电动机拖动发动机而使发动机起动时的驱动转矩的变化或下降。

另外,根据本发明的控制装置,判断在假设离合器机构卡合的情况下发动机转速会到达的到达转速,若该到达转速小于预先确定的阈值,则使制动器机构的传递转矩容量降低而使固定要素向与反力要素相反的方向旋转。其结果是,所述到达转速增大,因此通过使离合器机构卡合而使发动机转速增大为起动所需的转速,能够可靠地使发动机起动。

此外,在使制动器机构的传递转矩容量下降而使到达转速增大的情况下,若假设到达转速成为上限值以上,则使制动器机构的传递转矩容量增大,或者限制离合器机构的传递转矩容量的增大,因此能够防止或抑制到达转速或者由拖动实现的发动机转速过高。

另外,这种情况下,以使制动器机构或离合器机构的滑动转速不超过分别对应地预先设定的容许转速的方式使传递转矩容量增大,因此能够防止或抑制制动器机构和离合器机构的过度的滑动或者以此为起因的发热或耐久性的下降。

附图说明

图1是示意性地表示在本发明中能够作为对象的混合动力车辆的动力传动系的一例的图。

图2是关于该动力传动系中的动力分配机构(复合行星齿轮机构)的列线图。

图3是用于说明由本发明的控制装置进行的发动机起动控制的一例的流程图。

图4是示意性地表示在本发明中能够作为对象的混合动力车辆的动力传动系的另一例的图。

图5是示意性地表示在本发明中能够作为对象的混合动力车辆的动力传动系的又一例的图。

图6是关于图5所示的动力传动系中的动力分配机构(复合行星齿轮机构)的列线图。

图7是用于说明由本发明的控制装置进行的发动机起动控制的另一例的流程图。

图8是表示图7所示的流程图所包含的副例程的流程图。

图9是示意性地表示在本发明中能够作为对象的混合动力车辆的动力传动系的再一例的图。

图10是关于图9所示的动力传动系中的动力分配机构(复合行星齿轮机构)的列线图。

标号说明

1…发动机,2…第一电动机(mg1),3…动力分配机构,4…第二电动机(mg2),5、6…行星齿轮机构,s5…太阳轮,r5…齿圈,c5…齿轮架,s6…太阳轮,r6…齿圈,c6…齿轮架,7…输出构件,8…变换器,9…蓄电装置,10…壳体,bk…制动器机构,cl1…第一离合器机构,cl2…第二离合器机构,11…电子控制装置(ecu),v…混合动力车辆。

具体实施方式

接下来,参照附图说明本发明的实施方式。需要说明的是,以下的实施方式只不过示出将本发明具体化的情况下的例子,不对本发明进行限定。

首先,说明在本发明的实施方式的控制装置中作为对象的混合动力车辆。图1是表示混合动力车辆v的动力传动系的一例的骨架图,该动力传动系具备汽油发动机或柴油发动机等作为内燃机的发动机(eng)1、具有发电功能的第一电动机(mg1)2、与发动机1及第一电动机2连结的动力分配机构3、以及具有发电功能且能够向从动力分配机构3输出的转矩叠加转矩的第二电动机(mg2)4。动力分配机构3是由两组行星齿轮机构5、6构成的复合行星齿轮机构,一方的行星齿轮机构(以下,暂称为后行星齿轮机构)5是单小齿轮型的行星齿轮机构,另一方的行星齿轮机构(以下,暂称为前行星齿轮机构)6是双小齿轮型的行星齿轮机构。需要说明的是,这些行星齿轮机构5、6相当于本发明的实施方式中的第一行星齿轮机构或第二行星齿轮机构。

后行星齿轮机构5是具备太阳轮s5、相对于太阳轮s5配置在同心圆上的作为内齿齿轮的齿圈r5以及将与这些太阳轮s5和齿圈r5啮合的行星小齿轮p5保持为能够自转及公转的齿轮架c5,且构成为将太阳轮s5、齿圈r5以及齿轮架c5作为旋转要素而实现差动作用的公知的机构。而且,前行星齿轮机构6是具备太阳轮s6、相对于太阳轮s6配置在同心圆上的作为内齿齿轮的齿圈r6以及将与太阳轮s6啮合的第一行星小齿轮p6-1和与第一行星小齿轮p6-1及齿圈r6啮合的第二行星小齿轮p6-2保持为能够自转及公转的齿轮架c6,且构成为将太阳轮s6、齿圈r6以及齿轮架c6作为旋转要素而实现差动作用的公知的机构。

这些后行星齿轮机构5和前行星齿轮机构6相邻地配置在同一轴线上,以各自的太阳轮s5、s6成为一体而旋转的方式连结。并且,这些太阳轮s5、s6与第一电动机2连结,因此后行星齿轮机构5中的太阳轮s5成为本发明的实施方式中的反力要素。而且,前行星齿轮机构6的齿圈r6与发动机1连结,因此前行星齿轮机构6的齿圈r6成为本发明的实施方式中的输入要素。此外,后行星齿轮机构5中的齿轮架c5与输出构件7连结。输出构件7是用于从动力分配机构3输出转矩的构件,由输出齿轮、输出轴等构成。因此,后行星齿轮机构5中的齿轮架c5成为本发明的实施方式中的输出要素。第二电动机(mg2)4以能够施加转矩的方式连结于该输出构件7。

第一电动机2及第二电动机4作为一例而是永磁体式的同步电动机,分别与变换器8连接,而且蓄电装置9与变换器8连接。因此,通过由一方的电动机2(或4)发电产生的电力来驱动另一方的电动机4(或2)。而且,通过蓄电装置9的电力来驱动各电动机2、4。此外,能够将由任一方电动机2、4或双方的电动机2、4发电产生的电力充入蓄电装置9。

设置有对上述的后行星齿轮机构5中的齿圈r5的旋转进行限制的制动器机构bk。在图1所示的例子中,制动器机构bk是摩擦式的制动器,构成为通过利用液压或电磁力等使卡合压变化而使得传递转矩容量连续变化。该制动器机构bk配置在收容各电动机2、4和动力分配机构3的壳体10与齿圈r5之间。因此,该齿圈r5成为本发明的实施方式中的固定要素。

此外,设置有将后行星齿轮机构5中的齿轮架c5与前行星齿轮机构6中的齿轮架c6选择性地连结的第一离合器机构cl1,而且设置有将后行星齿轮机构5中的齿圈r5与前行星齿轮机构6的齿轮架c6选择性地连结的第二离合器机构cl2。这些离合器机构cl1、cl2都是摩擦离合器,构成为通过利用液压或电磁力等使卡合压变化而使得传递转矩容量连续变化。若将这些离合器机构cl1、cl2都释放,则不再存在向前行星齿轮机构6中的齿轮架c6施加反力转矩的构件,齿轮架c6不受制约地旋转。而且,当使任一方离合器机构cl1、cl2卡合时,第一电动机2和发动机1以能够经由动力分配机构3相互传递转矩的方式连结。因此,这两个离合器机构cl1、cl2成为一体而相当于本发明的实施方式中的离合器机构。

上述的混合动力车辆v能够实现以发动机1为动力源的混合动力行驶(hv模式)和利用蓄电装置9的电力驱动各电动机2、4而行驶的电动机行驶(电动机模式)等行驶方式。设置有用于控制这样的各模式的设定和切换等的电子控制装置(ecu)11。ecu11以微型计算机为主体而构成,且构成为使用输入的数据和预先存储的数据以及程序进行运算,将其运算结果作为控制指令信号而输出。该输入的数据是车速、加速器开度、蓄电装置9的充电剩余量(soc)等,另外,预先存储的数据是决定了各行驶模式的映射、决定了发动机1的最佳燃料经济性运转点的映射等。并且,ecu11输出发动机1的起动和停止的指令信号、使各电动机2、4作为电动机发挥功能或者作为发电机发挥功能的指令信号、制动器机构bk和离合器机构cl1、cl2的卡合、释放或者传递转矩容量的指令信号,作为控制指令信号。

在此,通过关于由上述两个行星齿轮机构5、6构成的复合行星齿轮机构的列线图,来说明上述的hv模式下的动作状态以及使各电动机2、4作为电动机发挥功能而行驶的双电动机模式下的动作状态。列线图是用与基线正交的纵线表示复合行星齿轮机构的旋转要素,使这些线的间隔成为基于各行星齿轮机构5、6的齿轮比(太阳轮的齿数与齿圈的齿数之比)而决定的间隔,并用纵线上的距基线的尺寸来表示各旋转要素的转速的线图。图2示出关于图1所示的动力分配机构3的列线图,由于后行星齿轮机构5是单小齿轮型的行星齿轮机构,因此表示其太阳轮s5、齿轮架c5和齿圈r5的纵线按照在此列举的顺序而相互平行地排列。由于前行星齿轮机构6是双小齿轮型的行星齿轮机构,因此表示太阳轮s6的线成为与表示后行星齿轮机构5的太阳轮s5的线共用的纵线,表示齿圈r6的纵线位于表示后行星齿轮机构5的太阳轮s5的纵线与表示齿轮架c5的纵线之间。表示前行星齿轮机构6的齿轮架c6的纵线在第一离合器机构cl1卡合的情况下与表示后行星齿轮机构5的齿轮架c5的纵线一致,在第二离合器机构cl2卡合的情况下与表示后行星齿轮机构5的齿圈r6的线一致。因此,所述复合行星齿轮机构构成为,在所述复合行星齿轮机构的列线图上,表示所述输入要素的线和表示所述输出要素的线位于表示所述反力要素的线与表示所述固定要素的线之间。

图2的(a)示出hv模式下的动作状态。在hv模式下,制动器机构bk释放,第一离合器机构cl1或第二离合器机构cl2卡合,而且发动机1进行驱动,利用发动机1输出的驱动力来行驶。这种情况下,第一电动机2作为发电机发挥功能而输出逆旋转方向(负旋转方向:与发动机1的旋转方向相反的方向)的转矩。由第一电动机2发电产生的电力向第二电动机4供给,第二电动机4输出行驶用的转矩并将该转矩向输出构件7施加。图2的(a)的箭头表示转矩作用的方向,前行星齿轮机构6的齿圈r6通过从发动机1传递的转矩而正旋转,而且后行星齿轮机构5的太阳轮s5从第一电动机2接受转矩的传递而进行正旋转并产生逆旋转方向的转矩。因此,后行星齿轮机构5的齿圈r5、齿轮架c5及前行星齿轮机构6的齿轮架c6通过由发动机1和第一电动机2产生的转矩而正旋转。并且,通过第一电动机2将发动机1的转速控制成最佳燃料经济性转速等适当的转速。

需要说明的是,这种情况下,若第一离合器机构cl1卡合且第二离合器机构cl2释放,则在后行星齿轮机构5的齿圈r5上不施加转矩,因此前行星齿轮机构6的齿轮架c6的转矩经由第一离合器机构cl1向作为输出要素的后行星齿轮机构5的齿轮架c5传递,从该齿轮架c5向输出构件7输出转矩。因此,作为输出要素的后行星齿轮机构5中的齿轮架c5的转速成为与前行星齿轮机构6中的齿轮架c6的转速相同的转速。相对于此,若第二离合器机构cl2卡合且第一离合器机构cl1释放,则后行星齿轮机构5的齿圈r5与前行星齿轮机构6的齿轮架c6一起旋转,因此作为输出要素的后行星齿轮机构5的齿轮架c5以与太阳轮s5及齿圈r5的转速以及后行星齿轮机构5的齿轮比对应的转速进行旋转。并且,从该齿轮架c5向输出构件7输出转矩。这样,作为输出要素的齿轮架c5的转速(即输出转速)根据离合器机构cl1、cl2的卡合或释放的状态而不同,仅使第一离合器机构cl1卡合了的情况下的输出转速与仅使第二离合器机构cl2卡合了的情况下的输出转速相比成为高转速,成为所谓的高速模式(hi模式)。在仅使第二离合器机构cl2卡合了的情况下,成为所谓的低速模式(lo模式)。

图2的(b)示出利用蓄电装置9的电力使第一电动机2及第二电动机4作为电动机动作而行驶的双电动机模式(两电动机模式)下的动作状态。在双电动机模式下,使制动器机构bk卡合而将后行星齿轮机构5的齿圈r5固定或者限制旋转,以使第一电动机2输出的转矩作为行驶用的驱动转矩而作用于作为输出要素的后行星齿轮机构5的齿轮架c5。而且,将各离合器机构cl1、cl2释放。此外,使发动机1停止。通过将各离合器机构cl1、cl2释放,前行星齿轮机构6的齿轮架c6不受反力转矩的施加而自由旋转。其结果是,前行星齿轮机构6不进行转矩的传递,因此发动机1被从第一电动机2和作为输出要素的后行星齿轮机构5的齿轮架c5切离。

在后行星齿轮机构5中,在齿圈r5固定或者齿圈r5的旋转受到限制的状态下向太阳轮s5输入第一电动机2的转矩,因此齿轮架c5及与该齿轮架c5连结的输出构件7向与太阳轮s5(第一电动机2)相同的方向以比太阳轮s5低的速度旋转。而且,第二电动机4输出转矩并将该转矩向输出构件7施加。这样,各电动机2、4输出转矩,混合动力车辆v通过该转矩而行驶。将该动作状态在图2的(b)中用实线示出。

另一方面,在前行星齿轮机构6中,齿圈r6与发动机1一起处于停止,在该状态下,太阳轮s6通过第一电动机1而旋转,因此齿轮架c6向与太阳轮s6相反的负旋转方向旋转。将该状态在图2的(b)中用虚线示出。

双电动机模式在加速器开度小等要求驱动力小的情况下设定。该判断可以基于存储在前述的ecu11中的映射及加速器开度、车速等来进行。当在以双电动机模式行驶的状态下为了加速而踏踏了加速器踏板(未图示)时,为了产生所要求的驱动力而切换为hv模式。为此,首先使发动机1起动。将在以双电动机模式行驶的状态下使发动机1起动的控制的一例在图3中用流程图示出。该图3所示的控制由前述的ecu11执行,因此ecu11相当于本发明的实施方式中的控制器。

在图3中,首先,判断是否存在发动机1的起动要求(步骤s1)。如前所述,由于行驶模式根据车速和要求驱动力(加速器开度)而预先决定并作为映射存储,因此步骤s1的判断可以基于该映射进行。在步骤s1中做出否定判断的情况下,不特别进行控制而暂时结束图3所示的例程。与之相反,在步骤s1中做出肯定判断的情况下,判断到达转速net是否为预先确定的阈值nth以上(步骤s2)。

在此,到达转速net是在使第一离合器机构cl1和第二离合器机构cl2中的任一方卡合了的情况下发动机转速会到达的转速,在图2中,是将表示太阳轮s5、s6的转速的点和后行星齿轮机构5的齿圈r5的转速为“0”的点连结的动作线(图2的实线)与表示前行星齿轮机构6的齿圈r6的纵线的交点所示的转速。即,到达转速net是假设各齿轮架c5、c6相互连结的情况下或者假设后行星齿轮机构5的齿圈r5连结于前行星齿轮机构6的齿轮架c6的情况下的前行星齿轮机构6的齿圈r6的转速,因此到达转速net能够基于第一电动机2(后行星齿轮机构5的太阳轮s5)的转速和各行星齿轮机构5、6的齿轮比来算出。而且,到达转速net能够基于后行星齿轮机构5的齿轮架c5的转速和各行星齿轮机构5、6的齿轮比来算出。因此,步骤s2的判断在技术上与以下内容相同:设置关于第一电动机2的转速的阈值,或者设置关于车速的阈值,判断第一电动机2的转速或车速是否为各自的阈值以上。在本发明的实施方式中,到达转速是否为阈值以上的判断包含基于上述的齿圈r6的转速、第一电动机2或太阳轮s5的转速、或者齿轮架c5或输出构件7的转速、车速的判断。

另外,上述的阈值nth可以设定为对发动机1点火而达到稳定的燃烧的下限转速或者接近该下限转速的转速。因此,阈值nth可以是作为发动机着火转速或完爆转速而预先求出的转速。

在上述的步骤s2中做出肯定判断的情况下,在使制动器机构bk卡合而将齿圈r5固定或者限制了其旋转的状态下,使第一离合器机构cl1或第二离合器机构cl2的传递转矩容量逐渐增大而使任一方的离合器机构cl1、cl2卡合(步骤s3)。然后,暂时结束图3的例程。若使第一离合器机构cl1卡合,则如图2的(b)所示,向负旋转方向旋转着的前行星齿轮机构6的齿轮架c6的转速以与后行星齿轮机构5的齿轮架c5的转速一致的方式被向正旋转方向提升。或者,若使第二离合器机构cl2卡合,则以将向负旋转方向旋转着的前行星齿轮机构6的齿轮架c6固定的方式将其转速向正旋转方向提升。这样的动作状态的变化是在图2的(b)中从虚线所示的状态向实线所示的状态的变化,因此与前行星齿轮机构6中的齿圈r6一起处于停止的发动机1朝向上述的到达转速net而正旋转。

若将这种情况下的力(转矩)的关系模拟成杠杆作用进行说明,则在图2的(b)中,粗实线与齿圈r5的线的交点(标注了标号bk的点)为支点,与之相反一侧的太阳轮s5的线与粗实线相交的点为动力点,表示齿圈r6的线或表示齿轮架c6的线与粗实线交叉的点成为阻力点。为了使发动机1起动而使第一电动机(mg1)的正旋转方向的转矩增大了的情况下的从动力点至支点的长度(作为杠杆的臂的长度)及从动力点至各阻力点的长度(作为杠杆的臂的长度)在发动机1的起动前后不会变化。因此,即使为了使发动机1起动而使第一电动机2的转矩增大,使转矩作为力矩发挥作用的臂的长度也不变化,因此驱动转矩的变化少,能防止或抑制由加速度的下降引起的拉入感(日文:引き込み感)和非意图的加速等。

需要说明的是,为了发动机1的起动而应该卡合的离合器机构cl1、cl2只要基于该时刻的车速和要求驱动力等进行选择即可。例如,在正以预先确定的判断基准车速以下的低车速行驶的状态下,结果会设定lo模式,因此使第一离合器机构cl1卡合而进行发动机1的起动控制,与之相反,在正以超过判断基准车速的高车速行驶的状态下,结果会设定hi模式,因此使第二离合器机构cl2卡合而进行发动机1的起动控制。这样的话,能够降低在发动机1起动后对离合器机构cl1、cl2的卡合或释放的状态进行切换的频度。而且,另一方面,在将发动机1提升为所述到达转速net时施加于离合器机构cl1、cl2的转矩中,第二离合器机构cl2的转矩更小。因此,从耐久性和液压控制的容易性等观点出发,优选使第二离合器机构cl2卡合。

这样,发动机1由第一电动机2拖动,在其转速到达上述的到达转速net或者成为接近到达转速net的转速的时刻向发动机1供给燃料并点火,从而发动机1向完爆状态转移。即,起动完成。在这样通过第一电动机2来拖动发动机1的情况下,由制动器机构bk承受与拖动相伴的反力转矩。因此,为了拖动发动机1而从第一电动机2输出的转矩在阻碍作为输出要素的后行星齿轮机构5的齿轮架c5的旋转的方向上不会发挥作用,因此能防止或抑制混合动力车辆v的驱动转矩下降或者产生冲击。需要说明的是,由于会向第一电动机2施加行驶用的驱动转矩和用于拖动发动机1的转矩,因此优选使第一电动机2的输出转矩增大拖动所需的转矩量。

另一方面,在上述的步骤s2中做出否定判断的情况下,通过第一电动机2使到达转速net与发动机起动所需的转速同步,在该状态下使第一离合器机构cl1卡合(步骤s4)。具体而言,在使制动器机构bk的传递转矩容量下降而成为了所谓的半卡合状态的状态下限制齿圈r5的旋转,并使第一电动机2的转速向正旋转方向增大。通过使制动器机构bk的传递转矩容量下降,后行星齿轮机构5的齿圈r5会以被限制为负旋转方向的状态进行旋转,但是由第一电动机2的输出转矩增大引起的反力转矩由与输出构件7连结的后行星齿轮机构5的齿轮架c5承担。因此,图2的(b)中实线所示的动作线以与表示后行星齿轮机构5的齿轮架c5的纵线交叉的点为中心,倾斜角度以太阳轮s5、s6侧的端部升高的方式增大。

将该状态在图2的(b)中用单点划线示出。其结果是,该单点划线与表示前行星齿轮机构6的齿圈r6的纵线的交点即到达转速net增大。该到达转速net通过调整第一电动机2的转速而与使发动机1起动所需的预先确定的转速同步。通过在该状态下使第一离合器机构cl1的传递转矩容量逐渐增大,前行星齿轮机构6中的齿轮架c6的转速逐渐被提升为后行星齿轮机构5的齿轮架c5的转速,伴随于此,前行星齿轮机构6的齿圈r6及与该齿圈r6连结的发动机1的转速被提升为到达转速net。即,发动机1被拖动。由于到达转速net如上述那样通过使制动器机构bk的传递转矩容量下降并使第一电动机2的转速增大而被提升为预先确定的转速,因此即使在正以双电动机模式低速行驶的情况下,也能够可靠地使发动机1起动。

需要说明的是,通过使制动器机构bk的传递转矩容量下降,会由作为输出要素的后行星齿轮机构5的齿轮架c5来承担与第一电动机2的输出转矩相对的反力转矩。通过由第二电动机4输出与该反力转矩相当的转矩,能够避免或抑制驱动转矩的下降。

在上述的控制例中,在到达转速net比阈值nth低的情况下,将制动器机构bk控制成所谓的半卡合状态而限制齿圈r5的旋转,并使第一电动机2的转速增大而使所述到达转速net增大。然而,若通过第一电动机2能够输出足够大的转矩,则能够不使制动器机构bk释放或者不使传递转矩容量下降地使到达转速net增大。因此,本发明不限于上述的实施方式,也可以在存在发动机1的起动要求的情况下,不进行到达转速net与阈值nth的比较而以通过第一电动机2将到达转速net设定为发动机起动所需的转速的方式进行控制。

接下来,说明本发明的另一实施方式。图4示意性地示出在本发明的实施方式中能够作为对象的混合动力车辆的动力传动系的另一例。需要说明的是,在图4中,前述的变换器8、蓄电装置9及ecu11省略。该图4所示的动力传动系是从前述的图1所示的结构的动力传动系中去除了第二离合器机构cl2的结构,因此,对图4所示的结构中与图1所示的结构相同的部分标注与图1同样的符号而省略其说明。

在图4所示的结构中,由于不具备前述的第二离合器机构cl2,因此无法设定前述的lo模式,但是通过使第一离合器机构cl1卡合,能够设定与前述的hi模式同样的驱动方式的hv模式。表示其动作状态的列线图与上述的图2的(a)所示的列线图是同样的。

另外,在双电动机模式下,在使制动器机构bk卡合并将第一离合器机构cl1释放的状态下,利用蓄电装置9的电力使各电动机2、4作为电动机进行驱动,这与上述的图1所示的例子是同样的。这种情况下,由于制动器机构bk卡合,且第一电动机2输出转矩并向正旋转方向旋转,因此后行星齿轮机构5的动作状态成为上述的图2的(b)的列线图中实线所示的动作状态。相对于此,在前行星齿轮机构6中,在齿轮架c6上未作用反力而齿轮架c6自由旋转,因此其动作状态成为图2的(b)的列线图中虚线所示的动作状态。

在从该双电动机模式使发动机1起动的情况下,使第一离合器机构cl1的传递转矩容量逐渐增大,将前行星齿轮机构6中的齿轮架c6的转速提升至后行星齿轮机构5中的齿轮架c5的转速。由此,前行星齿轮机构6的齿圈r6的转速即发动机1的转速被提升。即,发动机1被拖动。这种情况下的动作状态的变化是在上述的图2的(b)中从虚线所示的状态向实线所示的状态的变化,发动机1的转速与前行星齿轮机构6的齿圈r6的转速一起被设定为到达转速net。

这样,发动机1由第一电动机2拖动,在其转速到达上述的到达转速net或者成为接近到达转速net的转速的时刻向发动机1供给燃料并进行点火,从而发动机1向完爆状态转移。这种情况下,能防止或抑制混合动力车辆v的驱动转矩下降或者产生冲击,优选使第一电动机2的输出转矩增大拖动所需的转矩量,这些与上述的实施方式是同样的。而且,即使在以具有图4所示的动力传动系的混合动力车辆为对象的情况下,若进行图3所示的步骤s2和/或其判断结果为否定的情况下的步骤s4的控制,则与前述的实施方式的情况同样,即使由于以双电动机模式行驶时的车速为低车速等而到达转速net为低转速,也能够将其提升而可靠地使发动机1起动。

对在本发明的实施方式中能够作为对象的混合动力车辆的动力传动系的又一例进行说明。图5是将与后行星齿轮机构5一起构成复合行星齿轮机构的第二行星齿轮机构6设为单小齿轮型的行星齿轮机构的例子。这些行星齿轮机构5、6配置在同一轴线上,后行星齿轮机构5的太阳轮s5为反力要素且与第一电动机2连结。而且,齿轮架c5为输入要素且经由输入离合器机构cl0与发动机1连结。此外,齿圈r5为固定要素,由制动器机构bk选择性地限制旋转。前行星齿轮机构6的齿轮架c6为输出要素且与输出构件7连结,第二电动机4构成为能够向该输出构件7施加转矩。前行星齿轮机构6的齿圈r6连结于作为输入要素的后行星齿轮机构5的齿轮架c5,而且太阳轮s6与作为固定要素的后行星齿轮机构5的齿圈r5一起连结于制动器机构bk。其他结构与上述的图1所示的结构是同样的。而且,在图5中,前述的变换器8、蓄电装置9及ecu11省略。需要说明的是,在图5所示的结构中,后行星齿轮机构5中的齿圈r5相当于本发明的实施方式中的第三旋转要素,前行星齿轮机构6中的齿圈r6相当于本发明的实施方式中的第四旋转要素。

将关于图5所示的由后行星齿轮机构5及前行星齿轮机构6构成的复合行星齿轮机构(动力分配机构3)的列线图在图6中示出。图6的(a)是示出hv模式下的动作状态的列线图,输入离合器机构cl0卡合而发动机1连结于后行星齿轮机构5的齿轮架c5,第一离合器机构cl1及制动器机构bk释放。此外,发动机1进行驱动,利用发动机1输出的驱动力来行驶。图6的(a)的列线图与图2的(a)所示的列线图相比在成为输入要素、反力要素、输出要素及固定要素的旋转要素的名称上不同,但是排列相同,因此hv模式下的动作状态与图2的(a)所示的动作状态是同样的。

即,第一电动机2作为发电机发挥功能而输出逆旋转方向(负旋转方向:与发动机1的旋转方向相反的方向)的转矩。由第一电动机2发电产生的电力向第二电动机4供给,第二电动机4输出行驶用的转矩并将该转矩向输出构件7施加。图6的(a)的箭头表示转矩作用的方向,后行星齿轮机构5的齿轮架c5及与该齿轮架c5连结的前行星齿轮机构6的齿圈r6通过从发动机1传递的转矩而进行正旋转,而且后行星齿轮机构5的太阳轮s5从第一电动机2接受传递的转矩而进行正向旋转并产生逆旋转方向的转矩。因此,后行星齿轮机构5的齿圈r5、齿轮架c5及前行星齿轮机构6的齿轮架c6通过由发动机1和第一电动机2产生的转矩而正旋转。并且,通过第一电动机2将发动机1的转速控制成最佳燃料经济性转速等适当的转速。

图6的(b)示出利用蓄电装置9的电力使第一电动机2及第二电动机4作为电动机动作而行驶的双电动机模式(两电动机模式)下的动作状态。在双电动机模式下,使制动器机构bk卡合而将后行星齿轮机构5的齿圈r5及前行星齿轮机构6的太阳轮s6固定,以使第一电动机2输出的转矩作为行驶用的驱动转矩而作用于作为输出要素的前行星齿轮机构6的齿轮架c6。而且,将各离合器机构cl0、cl1释放。此外,使发动机1停止。通过将第一离合器机构cl1释放,前行星齿轮机构6作为差动机构发挥功能。而且,通过输入离合器机构cl0释放,发动机1被从第一电动机2和作为输入要素的后行星齿轮机构5的齿轮架c5切离。

在后行星齿轮机构5中,在齿圈r5固定的状态下向太阳轮s5输入第一电动机2的转矩,因此从齿轮架c5向前行星齿轮机构6的齿圈r6传递转矩。而且,在前行星齿轮机构6中,齿圈r6在太阳轮s6固定的状态下向正方向旋转,因此作为输出要素的齿轮架c6及与该齿轮架c6连结的输出构件7向与太阳轮s5(第一电动机2)相同的方向以比太阳轮s5低的速度旋转。而且,第二电动机4输出转矩并将该转矩向输出构件7施加。这样,各电动机2、4输出转矩,混合动力车辆v通过该转矩而行驶。将该动作状态在图2的(b)中用实线示出。

在以该双电动机模式行驶的状态下,输入离合器机构cl0释放,发动机1被从由上述的复合行星齿轮机构构成的动力分配机构3切离而停止。在该状态下,在由于要求驱动力的增大等而使发动机1起动的情况下,作为输入要素的后行星齿轮机构5的齿轮架c5向正旋转方向旋转,因此能够通过使输入离合器机构cl0的传递转矩容量增大而拖动发动机1从而使其起动。该拖动用的控制可以是与前述的图3所示的控制例同样的控制。

接下来,说明本发明的实施方式中的另一控制例。在以具备上述的图1、图4以及图5所示的结构的动力传动系的混合动力车辆v为对象的情况下,若由于正以双电动机模式行驶的车速为低车速等而所述到达转速net为比阈值nth低的转速,则使制动器机构bk的传递转矩容量下降,并使第一电动机2的转速增大而使到达转速net增大。这种情况下,将到达转速net设定为预先确定的上限转速左右的转速的控制也可以不是仅通过由第一电动机2实现的转速控制来进行,而是还通过控制制动器机构bk和离合器机构cl0、cl1的传递转矩容量来进行。在图7及图8中用流程图示出其控制例。

图7所示的控制与前述的图3所示的控制同样,在混合动力车辆v正以双电动机模式行驶的情况下执行。在存在发动机1的起动要求的情况下(在步骤s1中做出肯定判断的情况下),判断前述的到达转速net是否为预先确定的阈值nth以上(步骤s2),若到达转速net为阈值nth以上,则在将制动器机构bk卡合的状态下使离合器机构的转矩容量逐渐增大(步骤s3)。该离合器机构是前述的第一离合器机构cl1、第二离合器机构cl2或输入离合器机构cl0等能够通过卡合将第一电动机2的转矩向发动机1传递的离合器机构,在关于图7及图8的说明中,将该离合器机构记为“离合器机构cl”。上述步骤s1至步骤s3的控制与前述的图2所示的控制例是同样的。

另一方面,在由于到达转速net小于阈值nth而在步骤s2中做出否定判断的情况下,使制动器机构bk的传递转矩容量下降而将制动器机构bk控制成所谓的半卡合状态(差动状态),并使离合器机构cl的传递转矩容量增大而使其逐渐卡合(步骤s4-1)。该步骤s4-1的控制与前述的图3所示的控制例中的步骤s4的控制同样,是用于使前述的到达转速net增大的控制,因此与制动器机构bk及离合器机构cl的传递转矩容量的变更一并地使第一电动机2的转速增大。

由于到达转速net通过执行步骤s4-1的控制而增大,因此为了避免伴随着该到达转速net的增大而将发动机转速过度提升,执行对制动器机构bk及离合器机构cl的传递转矩容量进行控制的副例程(步骤s5)。图8示出该副例程的一例,判断通过进行将制动器机构bk控制成半卡合状态并进行使离合器机构cl的传递转矩容量增大的控制而变化后的到达转速net是否为预先确定的上限值nmax以上(步骤s51)。该上限值nmax是在通过第一电动机2拖动发动机1时用于避免发动机转速过高的值,可以在设计上适当决定。

在步骤s51中做出否定判断的情况下,认为发动机1的转速不会过高,因此不特别进行控制而结束图8的副例程,继续以前的控制状态。相对于此,在步骤s51中做出肯定判断的情况下,执行对制动器机构bk或离合器机构cl的传递转矩容量进行变更的控制。首先,判断制动器机构bk的差转速δnbk是否为基准值α以上(步骤s52)。在此,差转速δnbk是制动器机构bk中的驱动侧的构件与从动侧的构件的相对转速,或者是制动器机构bk中的相互摩擦接触的构件彼此的相对转速,因此是可称为所谓的滑动转速的转速。而且,基准值α相当于本发明的实施方式中的第一容许转速,是考虑到制动器机构bk的耐久性或发热量等而在设计上预先确定的差转速的上限值。

在步骤s52中做出肯定判断的情况下,认为在制动器机构bk产生过度的滑动而固定要素的负旋转方向的转速增大,到达转速net随之成为了阈值nth以上。因此,在步骤s52中做出肯定判断的情况下,使制动器机构bk的传递转矩容量变更(增大)(步骤s53)。然后,暂时结束图8的副例程。

与之相反,在步骤s52中做出否定判断的情况下,即在制动器机构bk的差转速δnbk小于基准值α的情况下,判断离合器机构cl的差转速δncl是否为基准值β以上(步骤s54)。该差转速δncl与前述的制动器机构bk的差转速δnbk同样,是离合器机构cl中的驱动侧的构件与从动侧的构件的相对转速,或者是离合器机构cl中的相互摩擦接触的构件彼此的相对转速,因此是可称为所谓的滑动转速的转速。而且,基准值β相当于本发明的实施方式中的第二容许转速,是考虑到离合器机构cl的耐久性或发热量等而在设计上预先确定的差转速的上限值。

在步骤s54中做出否定判断的情况下,变更离合器机构cl的传递转矩容量(步骤s55)。即,在离合器机构cl的差转速δncl(滑动转速)未超过第二容许转速的情况下,执行对离合器机构cl的传递转矩容量的增大进行限制的控制。然后,暂时结束图8的副例程。如前所述,发动机转速通过第一或第二离合器机构cl1、cl2、输入离合器机构cl0等离合器机构cl卡合而被提升,因此若该离合器机构cl的传递转矩容量(或卡合转矩)小,则提升发动机转速的作用或拖动转矩减小。因此,在步骤s55中进行抑制离合器机构cl的传递转矩容量的增大或者使增大中止,或者使传递转矩容量下降等变更,由此来抑制发动机转速的增大。因此,即使到达转速net为阈值nth以上,也会在发动机转速成为到达转速之前对发动机1执行燃料的供给和点火,发动机1成为完爆状态。其结果是,能防止或抑制通过第一电动机2过度地拖动发动机1或者过度地提升发动机转速。

相对于此,在步骤s54中做出肯定判断的情况下,在制动器机构bk的差转速δnbk小于基准值α且离合器机构cl的差转速δncl为基准值β以上的状态下,到达转速net成为了阈值nth以上。因此,这种情况下,并行地执行制动器机构bk的传递转矩容量的变更(下降)和离合器机构cl的传递转矩容量的变更(增大)(步骤s56)。然后,暂时结束图8的副例程。由此,与通过离合器机构cl提升发动机转速相伴的反力以降低到达转速net的方式发挥作用,通过使制动器机构bk的传递转矩容量下降能够促进该作用,而且通过使离合器机构cl的传递转矩容量下降能抑制提升发动机转速的作用。其结果是,能防止或抑制离合器机构cl的过度的滑动,并能防止或抑制通过第一电动机2过度地拖动发动机1或者过度地提升发动机转速。

本发明的实施方式中的控制装置构成为,在双电动机模式下使发动机1起动的情况下,为了拖动而从第一电动机2输出的转矩的反力由固定要素承受,该固定要素在列线图上隔着输出要素和输入要素而位于与第一电动机2或连结于第一电动机2的太阳轮s5、s6相反的一侧。即,在列线图上,反力要素和固定要素隔着输出要素及输入要素而位于两侧。因此,在拖动时向输出要素施加的转矩不会以削减驱动转矩的方式发挥作用,因此能够防止或抑制与拖动相伴的驱动转矩的暂时下降、或者伴随于此的所谓的拉入感。这样的作用能够通过限制固定要素的旋转而产生,产生限制该旋转的功能的单元并不局限于前述的制动器机构bk。也可以取代制动器机构bk而设为将固定要素直接固定的结构。将其例子在图9中示出。

在此所示的例子是在前述的图1所示的结构中去除第一离合器机构cl1及制动器机构bk,并将作为固定要素的后行星齿轮机构5的齿圈r5连结于壳体10而将该齿圈r5直接固定的例子。其他结构与图1所示的结构是同样的。而且,在图9中,前述的变换器8、蓄电装置9及ecu11省略。需要说明的是,在图9所示的结构中,前行星齿轮机构6的太阳轮s6相当于本发明的实施方式中的第二旋转要素,齿轮架c6相当于本发明的实施方式中的第一旋转要素,齿圈r6相当于本发明的实施方式中的输入要素。

将关于图9所示的动力传动系中的动力分配机构3(复合行星齿轮机构)的列线图在图10中示出。图10的实线示出将第二离合器机构cl2卡合的动作状态,虚线示出将第二离合器机构cl2释放且使发动机1停止的动作状态。在使第二离合器机构cl2卡合了的状态下,若发动机1及各电动机2、4中的任一方输出正旋转方向的转矩,则能够使作为输出要素的后行星齿轮机构5的齿轮架c5正旋转从而前进行驶。在驱动发动机1的状态下通过驱动任一方的电动机2、4而成为所谓的混合动力行驶的状态,在驱动发动机1的状态下使任一方的电动机2(或4)作为发电机发挥功能,将其电力向另一电动机4(或2)供给而使该另一电动机4(或2)作为电动机发挥功能并输出转矩,也会成为混合动力行驶的状态。

另一方面,在将第二离合器机构cl2释放的状态下,在前行星齿轮机构6的齿轮架c6上不施加反力转矩而齿轮架c6自由旋转,因此发动机1成为相对于第一电动机2被切离的状态,而且前行星齿轮机构6不实现差动作用。因此,后行星齿轮机构5作为减速器发挥功能,第一电动机2输出的转矩由后行星齿轮机构5放大而从作为输出要素的齿轮架c5向输出构件7输出。并且,向该输出构件7施加第二电动机4的转矩。这样,能设定通过两个电动机2、4输出的驱动力进行行驶的双电动机模式。

该双电动机模式下的前行星齿轮机构6的动作状态在图10中如虚线所示,太阳轮s6与第一电动机2一起向正旋转方向旋转,且连结发动机1的齿圈r6停止,而且没有施加反力转矩的齿轮架c6向负旋转方向旋转。在使发动机1起动的情况下,使第二离合器机构cl2的传递转矩容量增大而使第二离合器机构cl2卡合。由此,在图10中由虚线表示的动作状态向由实线表示的动作状态逐渐变化,前行星齿轮机构6的齿圈r6及与该齿圈r6连结的发动机1的转速朝向前述的到达转速net逐渐增大。即,发动机1被拖动。即使在这种情况下,也是第一电动机2输出与第二离合器机构cl2的传递转矩容量增大相伴的拖动用的转矩,该拖动时的反力转矩由与作为固定要素的齿圈r5连结的壳体10承受。因此,与拖动相伴的反力转矩不作用于作为输出要素的后行星齿轮机构5的齿轮架c5,因此能够防止或抑制驱动转矩的下降和与之相伴的冲击。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1