激光焊接体的制作方法

文档序号:4428705阅读:167来源:国知局
专利名称:激光焊接体的制作方法
技术领域
本发明系有关于激光焊接体,其特征系将激光弱吸收性成型构件彼此经一次激光焊接而使其一体化。

背景技术
为将热塑性合成树脂制之成型构件彼此加以接合激光焊接法被一般所知。
此种激光焊接,例如可以进行如下。如图4所示,于一方构件上使用激光穿透性之构件11,并于另一方构件上使用激光吸收性之构件13,再使两者直接接合。在此,由激光穿透性成型构件11之一侧,朝向激光吸收性成型构件13照射激光14时,该激光穿透性成型构件11所穿透之激光14,将被吸收于激光吸收性成型构件13,而引起发热。由于该热能,激光吸收性成型构件13会以吸收激光部分为中心,发生熔融,进而使激光穿透性成型构件11产生熔融,使二者进行融合。当其冷却时,激光穿透性成型构件11与激光吸收性成型构件13,就会在焊接部位15进行接合。
激光焊接之特长可列举如下,激光发光部位无须与应焊接部位相接触,即能进行焊接;因进行局部加热所以对周边部之热影响非常微小;无机械性震动之虞;可进行针对微细部分或具有立体复杂构造构件间之焊接;其再现性高;可维持高气密性;其焊接强度即强;其焊接部分之界线很难以目视分辨;以及不会发生粉尘等。
依据此种激光焊接,不仅可以简单操作确实地进行焊接以外,与以结合用零件(螺铨,螺钉,回纹针等)进行接合之以往的树脂构件接合方法,以接着剂进行接着,振动焊接,或超音波焊接等方法相比较,可获得同等以上之焊接强度。而且,因为振动或热影响较少之故,可以实现省力化,改良生产性,并减低生产成本等。因此,激光焊接,例如在汽车产业,电子·电气产业等中,除适合用于应避免振动或热影响之功能性构件或电子构件等之接合外,同时也能对应于复杂形状树脂构件之接合。
关于激光焊接之技术,例如于日本特公昭62-49850号公报中记载有,添加能吸收激光之炭黑之激光吸收性热塑性合成树脂构件,以及激光穿透性热塑性合成树脂构件,使其相合对,然后再由激光穿透性之构件侧藉由照射激光使其进行焊接之方法。此时,必须分别地调制二种类之激光穿透性成型构件以及激光吸收性成型构件。
再者,在再公表WO2003/039843中记载有,将能吸收红外线之热塑性树脂成型构件A,热塑性树脂成型构件B,以及具有红外线穿透部之放热材料C,以C/A/B之位置关系使其接触,而由放热材料C侧照射红外线之激光焊接方法。此时,热塑性树脂A及热塑性树脂B,不须分别地调制可为同质之构件,惟在激光焊接时为调整发热必须使用特殊之放热材料C,使得作业步骤复杂化。
此外,在日本特开2004-351730号公报中记载有,将激光穿透树脂构件,与另一个吸收激光树脂构件把各自作为焊接部分之事先形成接合凸缘部相合对,由激光穿透树脂构件之接合凸缘部,照射激光,使两树脂构件彼此相焊接形成一体化之激光焊接方法。此时,必须分别地调制二种类之激光穿透树脂构件,以及激光吸收树脂构件。
发明的揭示 本发明之目的,系为解决前述课题,提供一种不须经复杂步骤,可将简便调制构件藉由一次激光焊接步骤而使其一体化,其不仅是成型构件间之焊接强度优良,且不会损及树脂特性之激光焊接体。
本发明者们,系在激光之一部分被吸收而另一部分使之穿透之情况下,使用调整成特定吸光度之单一或复数之激光弱吸收性成型构件,使该成型构件彼此相合对而照射激光,利用起由该成型构件之发热,热辐射,热传导进行激光焊接,在该焊接部分引起大且深之熔融现象的结果,则发现与将激光穿透性成型构件及吸收性成型构件进行焊接之先前技术的激光焊接法相比较,能得到更为强固接合之焊接体。
为达成前述目的所进行本发明之激光焊接体,其系藉由含有热塑性树脂及激光弱吸收剂将吸光度a控制在0.07~3.0,且至少一部分的激光可被吸收而另一部分可被穿透之激光弱吸收性成型构件,系为单一或复数者,再藉由至少将其端部之一部分保持在相合对之情况下,以激光对该处加以照射而产生发热,并进而焊接。
制造此种激光焊接体之较佳实施态样,系藉由将含有激光弱吸收剂成型构件之相合对部位以激光照射时,在其等之界面上因激光一部分被吸收而发热致引起树脂熔融,并且藉由另一部分激光被穿透而使发热部位扩散,最终则因产生很大之熔融现象,从而制得具有坚固强度之激光焊接体。
此种激光弱吸收剂,其系对于所使用之激光波长具有弱吸收性。激光弱吸收剂之吸收系数εd例如为1000~8000(ml/g·cm),其较佳为1000~6000,最佳则为3000~6000者。含有其之激光弱吸收性成型构件,不只是系具有激光穿透性之特征,同时兼具弱激光吸收性之特征。
亦可将激光弱吸收性成型构件之单一或复数(2或3以上)者,藉由激光焊接作成激光焊接体。如为单一之激光弱吸收性成型构件时,可将成型构件折弯,或是弯成圆形,将成型构件之一部分,例如作成筒状后再使其两端部相合对,或是使其端部与中央部相合对之后,将该相合对部分以激光进行焊接,即可达成。此外,如为复数之激光弱吸收性成型构件时,将彼此的成型构件之一部分,例如把各成型构件的端部与端部,或是各成型构件的端部与中央部的一部分相合对之后,将相合对部分藉由激光进行焊接,即可达成。此外,亦可将激光弱吸收性成型构件,在单一处或复数处,以激光焊接作成激光焊接体。
此外,可将单一或复数之激光弱吸收性成型构件,其厚度制成200~5000μm。
激光弱吸收性成型构件,其至少由激光弱吸收剂及热塑性树脂所构成之树脂组成物进行成型并制得。该热塑性树脂,系以聚酰胺树脂,聚碳酸酯树脂,聚苯硫醚树脂,聚对苯二甲酸丁二醇酯树脂,及聚丙烯树脂为较佳。亦即,激光弱吸收性成型构件,其系以含有一种选自前述热塑性树脂之树脂为较佳。
激光焊接体,系使用吸光度a在0.07~3.0范围内之激光弱吸收性成型构件,使该成型构件相合对后以激光焊接成型。前述吸光度a系以成型构件厚度1mm所换算之数值。
激光弱吸收性成型构件如具有某种程度之穿透性时,因能广泛选择成型构件之厚度,或激光之照射能量范围等激光焊接条件,所以能具有实用性。该吸光度a,系以0.1~2.0为较佳,并以0.1~1.8为最佳者。
此外,关于前述适合之树脂,具体地揭示其实用上吸光度a之范围。如该树脂如为聚酰胺树脂时,前述吸光度a为0.1~2.0,较佳为0.1~1.2之范围;如该树脂如为聚碳酸酯树脂时,前述吸光度a为0.1~2.0,较佳为0.2~1.8之范围;如该树脂如为聚丙烯树脂时,前述吸光度a为0.1~1.2,较佳为0.1~0.8之范围;如该树脂如为聚对苯二甲酸丁二醇酯树脂时,前述吸光度a为0.1~3.0,较佳为0.15~3.0之范围;如该树脂如为聚苯硫醚树脂时,前述吸光度a为0.1~3.0,较佳为0.2~3.0之范围。
激光弱吸收性成型构件如系使用聚酰胺树脂或聚碳酸酯树脂或聚丙烯树脂而成型时,其对于940nm激光之吸收系数εj(如为二个成型构件时,则为吸收系数εj1及吸收系数εj2)为200~8000(1/cm),较佳为1000~8000。激光吸收性成型构件如系使用聚对苯二甲酸丁二醇酯树脂或聚苯醚树脂而成型时,吸收系数εj(如为二个成型构件时,则为吸收系数εj1及吸收系数εj2)为3000~15000(1/cm),较佳则系9000~14000者。
兹将本发明之激光焊接体,如

图1所示,将激光弱吸收性成型构件1及另一激光弱吸收性成型构件2二者,进行激光焊接之情形为例加以说明。如将一方成型构件之吸光度作为a1,再将另一方成型构件之吸光度作为a2时,该吸光度a1及吸光度a2之比a1/a2,为0.8~1.3时为较佳者。当吸光度a1与吸光度a2相等,即比a1/a2为1时,其为最佳者。该比值如越接近1,激光焊接体之外观,色相,接合接缝等即越发美观。此外吸光度如相等,或约莫相等时,成型构件间无须区别,在激光焊接时其处理将更为简便。
然而,如将吸光度a1之激光弱吸收性成型构件1及另一吸光度a2之激光弱吸收性成型构件2二者,进行激光焊接,并将激光由斜面方向进行照射时,举例而言,在吸光度a1>吸光度a2之条件下,由吸光度较低侧之激光弱吸收性成型构件2侧,照射激光为较佳,依据激光焊接条件,即可选择适当所定范围之吸光度。
如使用激光弱吸收性成型构件1及另一激光弱吸收性成型构件2二者时,其中一方之成型构件之激光弱吸收剂浓度C1(重量%)与其厚度L1(cm)之乘积C1L1,以及另一方成型构件之激光弱吸收剂浓度C2(重量%)与其厚度L2(cm)之乘积C2L2,其至少将一方为0.01×10-3~4.0×10-3为较佳者。
本发明之激光焊接体,其系将具有激光透过性功能及激光吸收性功能之单一或复数激光弱吸收性成型构件加以激光焊接所成者。因为激光弱吸收性成型构件间无须区别起见,在管理成型构件上将更为简便。
再者,激光焊接体因无须进行树脂构件接着时所施加表面前处理步骤或合金步骤等繁杂之操作,从而能简便地加以制造。此外,最好系在接合面上垂直地以激光进行照射,配合接合构件之形状,可从相接触之激光弱吸收性成型构件之任一侧来照射激光而制造,并可自由地边调整激光之照射角度边进行制造,因此,可对应复杂形状构件之接合。而且,激光焊接体,因为以一次的激光照射即能制造,其生产效率很高。
激光焊接体,因其不会影响到形成其之树脂之原本特性,且其焊接强度极强。并且,不会发生如先前技术之激光穿透性成型构件及激光吸收性成型构件在激光焊接时,因所产生之能量过剩而引起熔融部分之空隙。又因为不使用接着剂或结合用零件之故,其具有优良之重复使用性。
附图的简单说明 图1系揭示将复数激光弱吸收性成型构件使其彼此相合对,而制造适用于本发明之激光焊接体之中途示意图。
图2系揭示将单一激光弱吸收性成型构件弯曲使其相合对,而制造适用于本发明之激光焊接体之中途示意图。
图3系揭示将单一之激光弱吸收性成型构件折弯使其相合对,而制造适用于本发明之激光焊接体之中途示意图。
图4系揭示将本发明制造成适用外之激光焊接体之中途示意图。
主要组件符号说明
1激光弱吸收性成型构件 2激光弱吸收性成型构件 4激光 5焊接部位 11具有激光穿透性之构件 13具有激光吸收性之构件 14穿透激光穿透性成型构件之激光 15焊接部位 实施发明的最佳方式 以下兹就本发明之激光焊接体举出一例,并参照实施例所对应之图1,详细地加以说明。
为制作本发明之激光焊接体,使用复数板状之激光弱吸收性成型构件1,2。将激光弱吸收性成型构件1,2彼此相合对进行激光焊接之情形下,与先前技术之激光穿透性成型构件与吸收性成型构件彼此重叠进行激光焊接之情形相异,其无须考虑到因激光照射面之成型构件穿透特性所导致激光之衰减。亦即,所照射之激光可以直接提供给应进行激光焊接接合面之热熔融。因此,激光在成型构件不发生烧焦或空隙之范围内,把其产生条件调整到可充分地发热,以及成型构件之熔融能足够地扩大之情况,系极为重要者。
复数板状之激光弱吸收性成型构件1,2,系由含有激光弱吸收剂之激光穿透性树脂之热塑性树脂,以热成型所作成者。激光弱吸收剂,系可将激光焊接所使用波长之激光4,其一部分或大部分被吸收而一部分使其穿透,或全部加以吸收。此种激光焊接体,系激光弱吸收性成型构件1,2之端部彼此保持相接并相合对之情形下,以激光焊接而强固成一体化者。
激光焊接体,可如下述而制作。首先,如图1所示,将激光弱吸收性成型构件1及激光弱吸收性成型构件2相合对,并将激光照射于该接合面上。成型构件之激光照射部位附近产生发热。接着在接合面附近之树脂开始熔融,藉由热辐射或热传导,树脂即朝向深处扩大熔融范围。此时,如前述成型构件可使激光穿透时,穿透之激光就会在各处引起发热之现象。亦即,可以一面考虑成型构件之厚度及激光出力大小,依据吸光度之数值,调整成型构件所产生之发热量,并能调整界面之热传导或热辐射。
最佳之实施态样,系藉由成型构件吸收大部分的激光,使之充分发热并发生树脂熔融,而朝向成型构件之接合面,扩散熔融,并在成型构件1及成型构件2之接合面上产生大而深之熔融,其结果则制得强固之激光焊接体。
如图1所示,系在成型构件彼此相合对之情形下,使用复数板状之激光弱吸收性成型构件1,2,或者如图2,3所示,使用单一激光弱吸收性成型构件1。
对于该激光焊接体以更具体之制造步骤,举出一例加以说明。其制造步骤例如可由下述(A)~(D)所构成者。
(A)将至少含有热塑性树脂及激光弱吸收性吸收剂,亦可依需要而含有添加剂之激光弱吸收性树脂组成物加以成型,得到激光弱吸收性成型构件1。该成型构件1,其对于激光(例如940nm)之吸光度a1为0.07~3.0。该吸光度a1,系以厚度1000μm之该激光弱吸收性成型构件1所进行测定者。
(B)成型与激光弱吸收性成型构件1相合对并接触之激光弱吸收性成型构件2。该成型构件2,亦可以与成型构件1为同组成或异种组合所构成之组成物而成型者。该成型构件2,其对于激光(例如940nm)之吸光度a2为0.07~3.0。该吸光度a2,系以厚度1000μm之该激光弱吸收性成型构件2所进行测定者。
(C)将激光弱吸收性成型构件1及激光弱吸收性成型构件2,使其相合对并接触。此时,为将两成型构件1,2固定起见,可使用适当之治具并加压。进而,在该激光弱吸收性成型构件侧上,亦可配置具有如反射防止膜之防反射功能之构件,亦可设置具有冷却效果之构件或气体处理装置等。
(D)对该相合对并接触之处所以调整为适当条件之激光4进行照射。激光4,将被吸收于成型构件1及2之接合面附近之照射部分,引起发热,并产生树脂熔融。另外,穿透之激光,边被吸收边引起新的发热,使其热熔融范围扩大。当该热熔融部分,冷却时会固化而焊接。其结果,此等成型构件1及2,会在其焊接部位5上强固地接合形成一体化。
如图2,3所示,为制作另一激光焊接体,亦可使用单一薄膜状之激光弱吸收性成型构件1。单一激光弱吸收性成型构件1,系与前述同样地,将含有激光弱吸收剂之激光穿透性树脂之热塑性树脂以热成型。激光弱吸收剂,系可将激光焊接所使用波长之激光4,其一部或大部分加以吸收并使其一部分穿透,或全部加以吸收。将激光弱吸收性成型构件1弯成圆形,使其两端部分至少1处以上保持相合对之情形下,进行激光焊接,即可制得强固之激光焊接体。
关于此激光焊接体之更具体制造步骤,兹举出一例更具体地加以说明。其制造步骤例如系由下述之(E)~(G)所构成。
(E)至少必须含有热塑性树脂及激光弱吸收性吸收剂,亦可依需要而含有添加剂之激光弱吸收性树脂组成物加以成型,得到激光弱吸收性成型构件1。该成型构件1,其对于激光(例如940nm)之吸光度a1系0.07~3.0。该吸光度a1,系以厚度1000μm之该激光弱吸收性成型构件1所进行测定者。
(F)将激光弱吸收性成型构件1弯曲成圆筒状,使其两端部相合对并接触。此时,为将两成型构件1固定起见,亦可使用适当之治具并加压。进而,在该激光弱吸收性成型构件侧上,配置具有如反射防止膜之防反射功能之构件,亦可设置具有冷却效果之构件或气体处理装置等。亦可使用以滚筒状或圆筒状之模具,而成型为滚筒状或圆筒状之成型构件1。
(G)对该相合对并接触之处所,照射已调整为适当条件之激光4。激光4,将被吸收于两端部相合对之接合面附近之照射部分,引起发热,并产生树脂熔融。另外,穿透之激光,边被吸收边引起新的发热,使其热熔融逐渐扩大。当该热熔融部分,冷却时会固化进行焊接。其结果,在该成型构件1之焊接部位5上强固地接合,并制得激光焊接体。
毋庸赘言,本发明并不限于此等之制造步骤。
再者,激光焊接体,其可使用前述之复数均一厚度之平坦板状,或单一薄膜状之激光弱吸收性成型构件,其亦可使用以模具成型,弯曲或屈曲成滚筒状,圆筒状,角柱状,箱状之复数或单一之激光弱吸收性成型构件。激光弱吸收性成型构件,可采取任意之形状。
激光穿透性成型构件与激光吸收性成型构件之先前技术之激光焊接,系使激光吸收性成型构件发热并熔融,以其热使激光穿透性成型构件熔融,从而热效率即不会太高,且因激光穿透性成型构件之树脂熔融小,激光吸收性成型构件之树脂熔融较大,从而焊接强度就不会太强。相对于此,本发明之激光焊接体因为树脂之熔融部位广大之故,其焊接强度为极强。
激光焊接体,于激光弱吸收性成型构件1,2彼此加以焊接之焊接部位5,在实用上有足够强度。此外,激光焊接体可配合用途或目的,而选择激光焊接条件加以制造。如此所制造之激光焊接体,按照JIS K7113-1995之拉伸试验,拉伸焊接强度至少具有50N以上之值为较佳,200N以上为最佳。
作为激光焊接所使用之激光,一般可使用比可见光较长之波长区域800~1600nm之红外光线,较佳系使用具有800~1100nm振动波长之激光。举例而言,可使用固体激光(Nd:YAG激态,半导体激光激态等),半导体激光,可调谐激光二极管,钛蓝宝石激光(Nd:YAG激态)。此外还可使用产生波长700nm以上之红外光线之卤素灯或氙气灯。再者,亦可对激光弱吸收性成型构件之面,将激光由垂直方向或由斜面方向加以照射,亦可由一个方向或复数方向(例如对接合面,由两侧照射激光)进行照射。激光之出力大小,可配合扫瞄速度,以及激光弱吸收性成型构件之吸收能力,而适当地加以调整。
当使用能产生波长700nm以上之红外线卤素灯时,其灯之形状大部分系把灯配置成带状似者。作为其照射态样,例如有灯照射部可动之扫瞄型式,焊接构件可动之防焊型式,对于焊接构件由多方面同时照射之型式等。此外,可调整到适当地红外线照射宽度,照射时间,照射能量等来进行照射。卤素灯因其能量分布系以近红外光区域为中心,所以该能量分布之短波长部分,亦即在可视区域中存有能量。在这种情况,将使构件表面上产生焊接痕,所以亦可使用截止滤光镜等遮断可视光区域之能量。
接着,关于激光弱吸收性成型构件,更具体地加以说明。
如其系使用二个激光弱吸收性成型构件1,2,在彼此相合对之情形下,藉由激光照射发热进行焊接,并成为一体化之激光焊接体时,举例而言,对于激光焊接所使用波长之激光,其一方成型构件之吸光度a1,以及另一方成型构件之吸光度a2,为0.07≤(a1及a2)≤3.0。该吸光度a1及a2,系以厚度为1000μm之该激光弱吸收性成型构件所进行测定者。此外,如激光穿透吸收性成型构件为单一时,亦为相同。
如考虑激光之穿透性,吸光度a系以0.1~2.0为较佳,并以0.1~1.8为最佳。如在此范围内时,因激光会穿透至下层之故,不仅是会产生充分发热,并容易引起广泛之熔融现象,还可同时可推知能产生温度差较少之焊接现象。其结果,可制得强固之激光焊接体。此外,当改变成型构件厚度并来制得各种形状之激光焊接体时,亦能容易应付。
此外,关于前述适宜树脂,将其实用吸光度a之范围更具体地加以说明。该树脂如系聚酰胺树脂时,前述吸光度a为0.1~2.0,较佳为0.1~1.2之范围;如系聚碳酸酯树脂时,前述吸光度a为0.1~2.0,较佳为0.2~1.8之范围;如系聚丙烯树脂时,前述吸光度a为0.1~1.2,较佳为0.1~0.8之范围;如系聚对苯二甲酸丁二醇酯树脂时,前述吸光度a为0.1~3.0,较佳为0.15~3.0之范围;如系聚苯硫醚树脂时,前述吸光度a为0.1~3.0,较佳为0.2~3.0之范围。
一方之成型构件吸光度a1,与另一方之成型构件吸光度a2,其系以能满足0.5≤a1/a2≤2.0之条件为较佳,并以满足0.8≤a1/a2≤1.3之条件为最佳。举例而言,激光弱吸收性成型构件1,2之吸光度a1,a2,有a1≥a2,a1≤a2,a1=a2的情况。
其中,又以吸光度a1及a2为同值,亦即a1=a2时为最佳。此系考虑到激光焊接体之外观,色相,接合缝隙等。此外,如吸光度系约莫相等或几乎相同时,将无须区分二种类构件,可以简单地处理。
如上所述,为将激光弱吸收性成型构件1之吸光度调整为前述之范围内,必须依据激光弱吸收性成型构件1之厚度L1(cm),来选择激光弱吸收剂之吸收系数εd,调整激光弱吸收剂之浓度C1(重量%)。对于激光弱吸收性成型构件2之厚度L2(cm),及其激光弱吸收剂之浓度C2(重量%)亦系同样地。
如此地,将激光弱吸收性成型构件1,2之吸收系数εj1及εj2调整在所期望之范围内,系非常重要地。
再者,当激光弱吸收性成型构件为单一时亦系相同地。
当使用聚酰胺树脂,聚碳酸酯树脂,聚丙烯树脂时,对于940nm之激光所得到各自之吸收系数εj1及εj2,例如可为200≤εj1(及εj2)≤8000(1/cm),较佳系2000≤εj1(及εj2)≤7500(1/cm),最佳系4000≤εj1(及εj2)≤7000(1/cm)。
如使用聚对苯二甲酸丁二醇酯树脂,聚苯硫醚树脂时,对于940nm之激光所得到各自之吸收系数εj1及εj2,例如可为3000≤εj1(及εj2)≤15000(1/cm),较佳系5000≤εj1(及εj2)≤15000(1/cm),最佳系8000≤εj1(及εj2)≤13000(1/cm)。
吸收系数如超过前述之指定条件时,激光照射时之激光弱吸收性成型构件间之发热就会变得剧烈,很难抑制其烧焦或空隙之发生,从而很难得到足够地焊接强度。此外,当吸收系数如未达指定范围之下限时,其发热将不完全,而无法制得足够地焊接强度。
此外,一方之成型构件1之激光弱吸收剂浓度C1(重量%)与其厚度L1(cm)之乘积C1L1,以及另一方之成型构件2之激光弱吸收剂浓度C2(重量%)与其厚度L2(cm)之乘积C2L2,其如在0.01×10-3≤(C1L1及C2L2)≤4.0×10-3者,可进行较良好之焊接。
激光弱吸收性成型构件1,2之各自厚度,不论何者皆以200~5000μm之范围内为较佳。厚度如未达200μm时,将难以控制激光能量,在激光焊接时,其热熔融会产生过度或不足,且因过热被破坏切断而无法得到足够地焊接强度。另一方面,如超过5000μm时,从激光弱吸收性成型构件表面至焊接部位5为止之距离会过长,而引起穿透率下降,造成无法得到足够地焊接强度。
作为激光弱吸收性成型构件1,2所含有之激光弱吸收剂,可列举出吖嗪系化合物,尼格洛辛(nigrosine),苯胺黑,酞菁,萘酞菁系列,卟啉,花菁系列化合物,苝,quaterrylene,金属错合物,偶氮染料,蒽醌,方酸(squaric acid)衍生物,iminium染料等。激光弱吸收剂之吸收系数εd,系1000~8000(ml/g·cm),其较佳为1000~6000,最佳则为3000~6000。
吸收系数(吸光系数)εd之测定方法,系精秤激光弱吸收剂0.05g,使用50ml之定量瓶,例如以溶剂N,N-二甲基甲醯胺(DMF)溶解后,取其1ml使用50ml之定量瓶以DMF稀释后,作为测定样品,再以分光光度计(岛津制作所制之商品名称UV1600PC)进行吸光度测定。
对于热塑性树脂之着色,其系为了装饰效果,分色之区别效果,提高成型品之耐旋光性,内容物之保护或隐蔽等目的而被进行。在产业界上,最重要系黑色之着色。另外如考虑到树脂分散性或相溶性,则以油溶性染料为合适。因此,可作为黑色着色剂亦可作为激光弱吸收剂,所使用之黑色油溶性染料为最适合。而在黑色油溶性染料中,又以可得到最强焊接强度等之尼格洛辛为最佳。
作为尼格洛辛,可列举如在COLOR INDEX中记载为C.I.SOLVENT BLACK5及C.I.SOLVENT BLACK 7之黑色吖嗪系缩合混合物。其中,又以C.I.SOLVENT BLACK 7为最佳。此种尼格洛辛之合成,例如可将苯胺,苯胺盐酸盐及硝基苯,在氯化铁存在下,以反应温度160至180℃藉由氧化及脱水缩合而进行。关于此种尼格洛辛,有东方化学工业股份有限公司制之商品名称NUBIBN BLACK序列被市售。
再者,激光弱吸收剂之含量,相对于激光穿透性树脂,为0.001~0.8重量%,较佳为0.01~0.5重量%。该含量如少于0.001重量%时,即使吸收激光能量其发热亦较少,温度升高不够,从而会降低激光弱吸收性成型构件间之接合部之焊接强度。此外,含量如超过0.8重量%时,其发热过高而容易发生烧焦或缝隙,从而在激光弱吸收性成型构件间将很难获得足够地焊接强度。
形成该成型构件之激光穿透性树脂,只要系可穿透激光,并含有激光弱吸收剂之树脂时,何种树脂皆可使用。
作为激光穿透性树脂,可列举有如具有激光穿透性,且作为颜料之分散剂所使用之树脂,作为色母或粒状着色载体树脂所使用习知树脂等。更具体言之,有热塑性树脂代表例之聚苯硫醚树脂(PPS),聚酰胺树脂(尼龙(注册商标),PA),聚乙烯树脂或聚丙烯树脂等聚烯烃系树脂,聚苯乙烯树脂,聚甲基戊烯树脂,甲基丙烯酸树脂,聚丙烯醯胺树脂,乙烯乙烯醇(EVOH)树脂,聚碳酸酯树脂,聚对苯二甲酸乙二醇酯(PET)树脂或聚对苯二甲酸丁二醇酯(PBT)树脂等聚酯树脂,聚甲醛树脂,聚氯乙烯树脂,聚偏二氯乙烯树脂,聚丙二醇树脂,聚丙烯酸酯树脂,聚芳砜(PASF)树脂,氟树脂,液晶聚合物等。
如此热塑性树脂亦可为由形成前述热塑性树脂单体二种以上所成的共聚树脂 此种热塑性树脂,亦可为由形成前述热塑性树脂单体二种以上所成之共聚树脂。举例而言,有AS(丙烯腈-苯乙烯)共聚树脂,BBS(丙烯腈-丁二烯-苯乙烯)共聚树脂,AES(丙烯腈-EPDM-苯乙烯)共聚树脂,PA-PBT共聚物,PET-PBT共聚树脂,PC-PBT共聚树脂,PC-PA共聚树脂等;又例如有聚苯乙烯系热塑性弹性体,聚烯烃系热塑性弹性体,聚氨酯系热塑性弹性体,聚酯系热塑性弹性体等之热塑性弹性体;以前述树脂类为主成分之合成蜡或天然蜡等。此外,此等热塑性树脂之分子量,其并无特别限制。亦可使用上述复数相异树脂。
该热塑性树脂,系以聚酰胺树脂,聚碳酸酯树脂,聚苯硫醚树脂,聚对苯二甲酸丁二醇酯树脂,及聚丙烯树脂为较佳;考虑到与尼格洛辛之相溶性,其中以聚酰胺树脂,聚碳酸酯树脂为最佳。
作为聚酰胺树脂,可列举有聚酰胺6,聚酰胺66,聚酰胺46,聚酰胺11,聚酰胺12,聚酰胺69,聚酰胺610,聚酰胺612,聚酰胺96,非晶质性聚酰胺,高融点聚酰胺,聚酰胺RIM,聚酰胺MIX6等;此等二种类以上之共聚物,亦即聚酰胺6/66共聚物,聚酰胺6/66/610共聚物,聚酰胺6/66/11/12共聚物,结晶性聚酰胺/非结晶性聚酰胺共聚物等。此外聚酰胺树脂,其亦可为聚酰胺树脂与其它合成树脂之混合聚合物。此种混合聚合物之例子,有聚酰胺/聚酯混合聚合物,聚酰胺/聚氧化二甲苯树脂,聚酰胺/聚碳酸酯混合聚合物,聚酰胺/聚烯烃混合聚合物,聚酰胺/苯乙烯/丙烯腈混合聚合物,聚酰胺/丙烯酸酯混合聚合物,聚酰胺/硅氧烷混合聚合物等。此等之聚酰胺树脂,亦可单独或混合二种类以上加以使用。
聚苯硫醚树脂,系以亦被称为PPS(-φ-S-)[φ系取代或非取代之伸苯基]所表示之硫代伸苯基所成之重复单位为主之聚合物。该树脂,系将对二氯苯与硫化碱于高温,高压下反应合成之单体进行聚合所得者。该树脂可大别为二类,仅使用聚合助剂之聚合步骤即能达成目的聚合度之直链型者,以及将低分子聚合物在氧气存在下使之进行热交联之交联型者。其中,又以直链型,基于其穿透率优良之观点为最佳。再者,有关聚苯硫醚树脂(PPS)之熔融黏度,其只要是能熔融混练者即可,并无特别之限制,惟一般系使用5~2000Pa·s之范围者,较佳则系使用100~600Pa·s之范围者。
再者,聚苯硫醚树脂,其亦可使用聚合物合金。举例而言,有PPS/聚烯烃系合金,PPS/聚酰胺合金,PPS/聚酯系合金,PPS/聚碳酸酯系合金,PPS/聚苯醚系合金,PPS/液晶聚合物系合金,PPS/聚醯亚胺系合金,PPS/聚砜系合金。再者,聚苯硫醚树脂,其具有适合于电子构件或汽车构件等用途之特性。
作为聚酯树脂,可列举如有藉由对苯二甲酸及乙二醇之缩聚反应所制得之聚对苯二甲酸乙二酯树脂,以及藉由对苯二甲酸及丁二醇之缩聚反应所制得之聚对苯二甲酸丁二醇酯树脂。其它聚酯树脂之例子,可列举有上述聚酯树脂中之对苯二甲酸成分之一部(例如15莫耳%以下[例如0.5~15莫耳%],较佳则为5莫耳%以下[例如0.5~5莫耳%])及/或乙二醇或丁二醇成分之一部(例如15莫耳%以下[例如0.5~15莫耳%],较佳则为5莫耳%以下[例如0.5~5莫耳%])进行取代之共聚物。再者,其亦可为将二种以上之聚酯树脂加以混合者。
聚烯烃树脂,并无特别之限制。列举其例有乙烯,丙烯,丁烯-1,3-甲基丁烯-1,4-甲基戊烯-1,辛烯-1等α-烯烃之单独聚合物或其等之共聚物,或是其等与其它能共聚合之不饱和单体之共聚物(共聚物,可列举如嵌段共聚物,无规共聚物,接枝共聚物)等。列举更具体之例子,有高密度聚乙烯,中密度聚乙烯,低密度聚乙烯,直链状低密度聚乙烯,乙烯-醋酸乙烯酯共聚物,乙烯-丙烯酸乙酯共聚物等之聚乙烯系树脂;丙烯单独聚合物,丙烯-乙烯嵌段共聚物,或无规共聚物,丙烯-乙烯-丁烯-1共聚物等之聚丙烯系树脂;聚丁烯-1,聚4-甲基戊烯-1等。此等之聚烯烃系树脂,其可以单独使用,亦可以将二种以上组合使用。此等之中,系以使用聚丙烯树脂及/或聚乙烯树脂为较佳。最佳者则为聚丙烯系树脂。该聚丙烯系树脂,其并无特别限制,可使用广大范围之分子量者。
此外,作为聚烯烃树脂,亦可使用如以不饱和羧酸或其衍生物所改性形成之酸改性聚烯烃或发泡聚聚丙烯等树脂本身中含有发泡剂者。此外,亦可使聚烯烃系树脂中,含有乙烯-α-烯烃系共聚物橡胶,乙烯-α-烯烃-非共轭二烯系化合物共聚物(例如EPDM等),乙烯-芳香族单乙烯化合物-共轭二烯系化合物共聚橡胶,或其等之水添加物等橡胶类者。
聚碳酸酯,系于主链上具有碳酸酯键结之热塑性树脂,其具有优良机械性质,耐热性,耐寒性,电气性质,透明性等,而为工程塑料之代表。现在,工业上所生产的芳香族聚碳酸酯,系出自双酚A。其制法有光气法及酯交换法之二种方法。其化学构造式,系由以芳香族烃之碳酸酯进行多数键结之直链状分子,在分子主链上重叠苯核及可挠性之碳酸酯所构成者。前者系可提供高热变形温度或优良之物理性及机械性性质;后者则可提供成型性及柔软性,容易以碱进行加水分解。
在形成该成型构件时,亦可在该激光穿透性树脂上,根据需要而配合各种添加剂。作为此种添加剂,可列举如着色剂,补强材料,填充材料,紫外线吸收剂或光安定剂,抗氧化剂,抗菌·抗霉菌剂,难燃剂,助色剂,分散剂,安定剂,可塑剂,改质剂,防带电剂,润滑剂,离型剂,结晶促进剂,结晶成核剂等。
作为可使用的着色剂的例子,只要系可满足成型构件前述之所期待之条件者即可 作为可使用之着色剂的例子,只要系可满足成型构件前述所期待之条件者即可,其等之构造或色相并无特别之限制,更具体言之,有甲亚胺系,蒽醌系,喹吖啶酮系,二恶嗪系,二酮吡咯并吡咯(diketopyrolopyrrole),蒽吡啶酮(anthrapyri done)系,异吲哚啉酮(Isoindolinone),阴丹酮(indanthron)系,紫环酮(perinone)系,苝系,靛蓝系,硫靛蓝系,奎酞酮系,喹啉系,三苯基甲烷系之各种染颜料等之有机染颜料。
当成型构件所使用之吸收剂如为黑色或暗色时,按照吸收剂之色相及浓度,来混合黑色着色剂,而能制得优良地黑色成型构件。作为黑色混合着色剂,举例而言,有蓝色着色剂+黄色着色剂+红色着色剂之组合,紫色着色剂+黄色着色剂之组合,绿色着色剂+红色着色剂之组合。该吸收剂如为淡色吸收剂时,藉由适当组合,即可得到种颜色之成型构件。
进而其亦可含有氧化钛,锌白,碳酸钙,铝白等白色颜料或有机白色颜料,并可由非彩色,与有机染颜料进行组合,而调整成彩色者。
作为补强材料,只要是一般使用于合成树脂补强者即可,其并无特别之限制。举例而言,可使用玻璃纤维,碳纤维,其它无机纤维,以及有机纤维(芳纶(aramid),聚苯硫醚树脂,聚酰胺,聚酯及液晶聚合物等)等,而在要求透明性之树脂补强中则以玻璃纤维为最佳。适合使用之玻璃纤维长度为2~15mm,其纤维径则为1~20μm。至于玻璃纤维之型态并无特别之限制,例如粗纱布,磨碎纤维等,任何皆可。此等玻璃纤维,其可以一种单独使用,或二种以上组合使用。其含量,系以相对于激光弱吸收性成型构件100重量份为5~120重量份者为较佳。如未达5重量份时,将很难获得足够地玻璃纤维补强效果,又如超过120重量份时,则其成型性容易降低。其较佳为10~60重量份,最佳则为20~50重量份。
再者,作为填充材料,可添加云母,绢云母,玻璃片等板状填充材料,滑石,高岭土,黏土,硅灰石,膨润土,石棉,铝硅酸盐等硅酸盐,氧化铝,氧化硅,氧化镁,氧化锆,氧化钛等之金属氧化物,碳酸钙,碳酸镁,白云石等之碳酸盐,硫酸钙,硫酸钡等之硫酸盐,玻璃珠,陶瓷珠,氮化硼,碳化硅等之粒子状填充材料等。
作为紫外线吸收剂或光安定剂之例子,可列举有苯并三唑系化合物,二苯甲酮系化合物,水杨酸酯系化合物,氰基丙烯酸酯,苯甲酸酯系化合物,oxanilide系化合物,受阻胺系化合物及镍错盐等。
作为抗氧化剂之例子,有酚系化合物,磷系化合物,硫系化合物及硫醚系化合物等。
作为抗菌·防真菌剂之例子,有2-(4’-噻唑基)苯并咪唑,10,10’-氧基双苯氧基胂,N-(氟二氯甲基硫)苯二甲醯亚胺以及硫代嘧啶氧锌(bis-(2-Pyridinethiol-1-oxide)zinc)等。
作为难燃剂之例子,可列举有四溴双酚A衍生物,六溴二苯醚及四溴无水酞酸酐等之含卤化合物;三苯基磷酸酯,三苯基亚磷酸酯,红磷及聚磷酸铵等之含磷化合物;尿素及胍等含氮化合物;硅油,有机硅烷及硅酸铝等含硅化合物;三氧化锑及磷酸锑等之锑化合物等。
该成型构件亦可使用所望之着色热塑性树脂组成物之色母进行制造。前述色母,则可使用任一之方法制得。举例而言,可将作为色母基础之树脂粉末或粒状物及着色剂,以转鼓或超级混合机等混合机加以混合之后,再以挤压机,分批式混练机或滚筒式混练机等进行加热熔融,形成粒状化或粗粒子化来制得。
此种成型构件之成型,可以按照一般所进行之各种程序而制得。举例而言,可使用着色粒状物,再以挤压机,射出成型机,辊碎机等加工机具使之成型,此外,并可将具有透明性树脂之粒状物或粉末,粉碎着色剂,以及配合需要之各种添加物,于适当之混合机中加以混合,再将该混合物使用加工机来进行成型。再者,举例而言,也可对含有适当地聚合触媒单体中加入着色剂,藉由聚合将该混合物作成所望之树脂,再以适当地方法使之成型。成型方法,举例而言,可采用射出成型,挤压成型,压缩成型,发泡成型,吹塑成型,真空成型,射出吹气成型,旋转成型,压延成型,溶液压延等一般进行之任何成型方法。藉由此种成型,可以得到各种各样形状之成型构件。
以下,兹举出实施例更详细地说明本发明,惟毋庸赘言本发明自不仅限定于此等范围中。
使用聚酰胺66树脂或纤维强化聚酰胺6树脂,试作激光弱吸收性成型构件,接者如图1~3所示使其相合对之状态下,进行激光焊接,将试作适用于本发明之激光焊接体之例子显示于实施例1~10,将本发明适用范围外之激光焊接体之例子则示于比较例1~2。
(实施例1) (1-a)激光弱吸收性成型构件之制作 将聚酰胺66树脂(杜邦公司制之商品名称ZYTEL(注册商标)101NC)497.5g,以及尼格洛辛(东方化学工业股份有限公司制之商品名称CRAMITY(注册商标)81)2.5g,加入不锈钢制转鼓中,搅拌混合1小时。再将所得到之混合物,以射出成型机(东洋机械金属公司制之商品名称Si-50),于缸筒温度280℃,模具温度60℃下依一般方法使之成型,制作成二片纵80mm×横50mm×厚度1mm之激光弱吸收性成型构件1,2。
(1-b)激光焊接体之制造 接着,将激光弱吸收性成型构件1,2,如图1所示在相合对之情形下使其接触,再沿着相合对成型构件1,2之界面,将输出10W之激光二极管[波长940nm,连续性](FINE DEVICE CO.,LTD制)之激光束4,以扫瞄速度2mm/sec进行扫瞄20mm,经照射即可制得一体化之激光焊接体。
再者,前述尼格洛辛(东方化学工业股份有限公司制之商品名称CRAMITY(注册商标)81)在DMF中之吸收系数εd为5.9×103(ml/g·cm)。
依据下述评价,将激光弱吸收性成型构件之吸光度及吸光系数,激光焊接之结果,记载于表1中。
(实施例2) (2-a)激光弱吸收性成型构件之制作 将聚酰胺66树脂(杜邦公司制之商品名称ZYTEL(注册商标)101NC)498.5g,以及尼格洛辛(东方化学工业股份有限公司制之商品名称CRAMITY(注册商标)81)1.5g,加入不锈钢制转鼓中,搅拌混合1小时。再将所得到之混合物,以射出成型机(东洋机械金属公司制之商品名称Si-50),于缸筒温度280℃,模具温度60℃下依一般方法使之成型,制作成二片纵80mm×横50mm×厚度1mm之激光弱吸收性成型构件1,2。
(2-b)激光焊接体之制造 接着,将激光弱吸收性成型构件1,2,如图1所示在相合对之情形下使其接触,再沿着相合对成型构件1,2之界面,将输出10W之激光二极管[波长940nm,连续性](FINE DEVICE CO.,LTD制)之激光束4,以扫瞄速度2mm/sec进行扫瞄20mm,经照射即可制得一体化之激光焊接体。
依据下述评价,将激光弱吸收性成型构件之吸光度及吸光系数,激光焊接之结果,记载于表1中。
(实施例3) (3-a1)激光弱吸收性成型构件之制作 将聚酰胺66树脂(杜邦公司制之商品名称ZYTEL(注册商标)101NC)499.4g,以及尼格洛辛(东方化学工业股份有限公司制之商品名称CRAMITY(注册商标)81)0.6g,加入不锈钢制转鼓中,搅拌混合1小时。再将所得到之混合物,以射出成型机(东洋机械金属公司制之商品名称Si-50),于缸筒温度280℃,模具温度60℃下依一般方法使之成型,制作成纵80mm×横50mm×厚度1mm之激光弱吸收性成型构件1。
(3-a2)激光弱吸收性成型构件之制作 将聚酰胺66树脂(杜邦公司制之商品名称ZYTEL(注册商标)101NC)499.4g,以及尼格洛辛(东方化学工业股份有限公司制之商品名称CRAMITY(注册商标)81)0.6g,加入不锈钢制转鼓中,搅拌混合1小时。再将所得到之混合物,以射出成型机(东洋机械金属公司制之商品名称Si-50),于缸筒温度280℃,模具温度60℃下依一般方法使之成型,制作成纵80mm×横50mm×厚度2mm之激光弱吸收性成型构件2。
(3-b)激光焊接体之制造 接着,将激光弱吸收性成型构件1,2,如图1所示在相合对之情形下使其接触,再沿着相合对成型构件1,2之界面,将输出10W之激光二极管[波长940nm,连续性](FINE DEVICE CO.,LTD制)之激光束4,以扫瞄速度1mm/sec进行扫瞄20mm,经照射即可制得一体化之激光焊接体。
依据下述评价,将激光弱吸收性成型构件之吸光度及吸光系数,激光焊接之结果,记载于表1中。
(实施例4) (4-a)激光弱吸收性成型构件之制作 将聚酰胺66树脂(杜邦公司制之商品名称ZYTEL(注册商标)101NC)499.5g,以及尼格洛辛(东方化学工业股份有限公司制之商品名称CRAMITY(注册商标)81)0.5g,加入不锈钢制转鼓中,搅拌混合1小时。再将所得到之混合物,以射出成型机(东洋机械金属公司制之商品名称Si-50),于缸筒温度280℃,模具温度60℃下依一般方法使之成型,制作成二片纵80mm×横50mm×厚度1mm之激光弱吸收性成型构件1,2。
(4-b)激光焊接体之制造 接着,将激光弱吸收性成型构件1,2,如图1所示在相合对之情形下使其接触,再沿着相合对成型构件1,2之界面,将输出10W之激光二极管[波长940nm,连续性](FINE DEVICE CO.,LTD制)之激光束4,以扫瞄速度2mm/sec进行扫瞄20mm,经照射即可制得一体化之激光焊接体。
依据下述评价,将激光弱吸收性成型构件之吸光度及吸光系数,激光焊接之结果,记载于表1中。
(实施例5) (5-a)激光弱吸收性成型构件之制作 将聚酰胺66树脂(杜邦公司制之商品名称ZYTEL(注册商标)101NC)499.75g,以及尼格洛辛(东方化学工业股份有限公司制之商品名称CRAMITY(注册商标)81)0.25g,加入不锈钢制转鼓中,搅拌混合1小时。再将所得到之混合物,以射出成型机(东洋机械金属公司制之商品名称Si-50),于缸筒温度280℃,模具温度60℃下依一般方法使之成型,制作成二片纵80mm×横50mm×厚度1mm之激光弱吸收性成型构件1,2。
(5-b)激光焊接体之制造 接着,将激光弱吸收性成型构件1,2,如图1所示在相合对之情形下使其接触,再沿着相合对成型构件1,2之界面,将输出10W之激光二极管[波长940nm,连续性](FINE DEVICE CO.,LTD制)之激光束4,以扫瞄速度1mm/sec进行扫瞄20mm,经照射即可制得一体化之激光焊接体。
依据下述评价,将激光弱吸收性成型构件之吸光度及吸光系数,激光焊接之结果,记载于表1中。
(实施例6) (6-a)激光弱吸收性成型构件之制作 将聚酰胺66树脂(杜邦公司制之商品名称ZYTEL(注册商标)101NC)498.5g,尼格洛辛(东方化学工业股份有限公司制之商品名称CRAMITY(注册商标)81)0.5g,以及将C.I.溶剂绿87之蒽醌蓝色油溶性染料,C.I.溶剂红179之紫环酮(perinone)红色油溶性染料,及C.I.溶剂黄163之蒽醌黄色油溶性染料以13∶20∶7之重量比所组成之黑色配合染料1.0g,加入不锈钢制转鼓中,搅拌混合1小时。再将所得到之混合物,以射出成型机(东洋机械金属公司制之商品名称Si-50),于缸筒温度280℃,模具温度60℃下依一般方法使之成型,制作成二片纵80mm×横50mm×厚度1mm之激光弱吸收性成型构件1,2。
(6-b)激光焊接体之制造 接着,将激光弱吸收性成型构件1,2,如图1所示在相合对之情形下使其接触,再沿着相合对成型构件1,2之界面,将输出10W之激光二极管[波长940nm,连续性](FINE DEVICE CO.,LTD制)之激光束4,以扫瞄速度2mm/sec进行扫瞄20mm,经照射即可制得一体化之激光焊接体。
依据下述评价,将激光弱吸收性成型构件之吸光度及吸光系数,激光焊接之结果,记载于表1中。
(实施例7) (7-a)激光弱吸收性成型构件之制作 将聚酰胺66树脂(杜邦公司制之商品名称ZYTEL(注册商标)101NC)499.5g,以及尼格洛辛(东方化学工业股份有限公司制之商品名称CRAMITY(注册商标)81)0.5g,加入不锈钢制转鼓中,搅拌混合1小时。再将所得到之混合物,以射出成型机(东洋机械金属公司制之商品名称Si-50),于缸筒温度280℃,模具温度60℃下依一般方法使之成型,制作成纵50mm×230mm×厚度1mm(直径70mm之圆筒状)之激光弱吸收性成型构件1。
(7-b)激光焊接体之制造 接着,将激光弱吸收性成型构件1,如图2所示在相合对之情形下使其接触,再沿着相合对成型构件1两端之界面,将输出10W之激光二极管[波长940nm,连续性](FINE DEVICE CO.,LTD制)之激光束4,以扫瞄速度2mm/sec进行扫瞄20mm,经照射即可制得一体化之激光焊接体。
依据下述评价,将激光弱吸收性成型构件之吸光度及吸光系数,激光焊接之结果,记载于表1中。
(实施例8) (8-a)激光弱吸收性成型构件之制作 将聚酰胺66树脂(杜邦公司制之商品名称ZYTEL(注册商标)101NC)499.4g,以及尼格洛辛(东方化学工业股份有限公司制之商品名称CRAMITY(注册商标)81)0.6g,加入不锈钢制转鼓中,搅拌混合1小时。再将所得到之混合物,以射出成型机(东洋机械金属公司制之商品名称Si-50),于缸筒温度280℃,模具温度60℃下依一般方法使之成型,制作成纵50mm×160mm×厚度1mm之薄片。将其长边方向依20mm-40mm-40mm-40mm-20mm之顺序向内侧弯曲,制作成在两端正好相合对之略四角柱形之激光弱吸收性成型构件1。
(8-b)激光焊接体之制造 接着,将激光弱吸收性成型构件1之两端,如图3所示在相合对之情形下使其接触,再沿着相合对成型构件两端之界面,将输出10W之激光二极管[波长940nm,连续性](FINE DEVICE CO.,LTD制)之激光束4,以扫瞄速度2mm/sec进行扫瞄20mm,经照射即可制得一体化之激光焊接体。
依据下述评价,将激光弱吸收性成型构件之吸光度及吸光系数,激光焊接之结果,记载于表1中。
(实施例9) (9-a)激光弱吸收性成型构件之制作 将纤维强化聚酰胺6树脂(东丽公司制之商品名称Amilan(注册商标)CM1016)499.75g,以及尼格洛辛(东方化学工业股份有限公司制之商品名称CRAMITY(注册商标)81)0.25g,加入不锈钢制转鼓中,搅拌混合1小时。再将所得到之混合物,以射出成型机(东洋机械金属公司制之商品名称Si-50),于缸筒温度280℃,模具温度80℃下依一般方法使之成型,制作成二片纵80mm×横50mm×厚度2mm之激光弱吸收性成型构件1,2。
(9-b)激光焊接体之制造 接着,将激光弱吸收性成型构件1,2,如图1所示在相合对之情形下使其接触,再沿着相合对成型构件1及2之界面,将输出30W之激光二极管[波长940nm,连续性](FINE DEVICE CO.,LTD制)之激光束4,以扫瞄速度0.7mm/sec进行扫瞄20mm,经照射即可制得一体化之激光焊接体。
依据下述评价,将激光弱吸收性成型构件之吸光度及吸光系数,激光焊接之结果,记载于表1中。
(实施例10) (10-a)激光弱吸收性成型构件之制作 将纤维强化聚酰胺6树脂(东丽公司制之商品名称Amilan(注册商标)CM1016)499.75g,以及尼格洛辛(东方化学工业股份有限公司制之商品名称CRAMITY(注册商标)81)0.25g,加入不锈钢制转鼓中,搅拌混合1小时。再将所得到之混合物,以射出成型机(东洋机械金属公司制之商品名称Si-50),于缸筒温度280℃,模具温度80℃下依一般方法使之成型,制作成二片纵80mm×横50mm×厚度2mm之激光弱吸收性成型构件1,2。
(10-b)激光焊接体之制造 接着,将激光弱吸收性成型构件1,2,如图1所示在相合对之情形下使其接触,再沿着相合对成型构件1及2之界面,将输出30W之激光二极管[波长940nm,连续性](FINE DEVICE CO.,LTD制)之激光束4,以扫瞄速度0.7mm/sec进行扫瞄20mm来做照射;并且对反面之相合对成型构件1及2之界面,再次将激光束4,以扫瞄速度0.7mm/sec进行照射,即可制得一体化之激光焊接体。
依据下述评价,将激光弱吸收性成型构件之吸光度及吸光系数,激光焊接之结果,记载于表1中。
(比较例1) (1-A)比较成型构件之制作 将聚酰胺66树脂(杜邦公司制之商品名称ZYTEL(注册商标)101NC)495g,以及尼格洛辛(东方化学工业股份有限公司制之商品名称CRAMITY(注册商标)81)5g,使用射出成型机(东洋机械金属公司制之商品名称Si-50),于缸筒温度280℃,模具温度60℃下依一般方法使之成型,制作成二片纵80mm×横50mm×厚度2mm之比较成型构件。
(1-B)激光焊接体之制造 接着,将激光弱吸收性成型构件1,2,如图1所示在相合对之情形下使其接触,再沿着相合对成型构件1及2之界面,将输出10W之激光二极管[波长940nm,连续性](FINE DEVICE CO.,LTD制)之激光束4,以扫瞄速度1mm/sec进行扫瞄20mm,经照射却无法制得一体化之激光焊接体。
依据下述评价,将激光弱吸收性成型构件之吸光度及吸光系数,激光焊接之结果,记载于表1中。
(比较例2) (2-A)比较成型构件1,2之制作 将聚酰胺66树脂(杜邦公司制之商品名称ZYTEL(注册商标)101NC)499.999g,以及尼格洛辛(东方化学工业股份有限公司制之商品名称CRAMITY(注册商标)81)0.001g,加入不锈钢制转鼓中,搅拌混合1小时。再将所得到之混合物,以射出成型机(东洋机械金属公司制之商品名称Si-50),于缸筒温度270℃,模具温度60℃下依一般方法使之成型,制作成二片纵80mm×横50mm×厚度1mm之比较成型构件。
(2-B)激光焊接体之制造 接着,将激光弱吸收性成型构件1,2,如图1所示在相合对之情形下使其接触,再沿着相合对成型构件1及2之界面,将输出10W之激光二极管[波长940nm,连续性](FINE DEVICE CO.,LTD制)之激光束4,以扫瞄速度1mm/sec进行扫瞄20mm,经照射却无法制得一体化之激光焊接体。
依据下述评价,将激光弱吸收性成型构件之吸光度及吸光系数,激光焊接之结果,记载于表1中。
其次,使用聚碳酸酯树脂,试作激光弱吸收性成型构件,如图1或图3所示之相合对状态下使其进行激光焊接,并将适用于本发明之激光焊接体之试作例表示于实施例11~17,本发明适用外之激光焊接体之例子则表示于比较例3,4。
(实施例11) (11-a)激光弱吸收性成型构件之制作 将聚碳酸酯树脂(帝人公司制之商品名称Panlite L1225Y)497.5g,以及尼格洛辛(东方化学工业股份有限公司制之商品名称NUBIAN(注册商标)BLACK PC0850)2.5g,加入不锈钢制转鼓中,搅拌混合1小时。再将所得到之混合物,以射出成型机(东洋机械金属公司制之商品名称Si-50),于缸筒温度280℃,模具温度70℃下依一般方法使之成型,制作成二片纵80mm×横50mm×厚度1mm之激光弱吸收性成型构件1,2。
(11-b)激光焊接体之制造 接着,将激光弱吸收性成型构件1,2,如图1所示在相合对之情形下使其接触,再沿着相合对成型构件1及2之界面,将输出10W之激光二极管[波长940nm,连续性](FINE DEVICE CO.,LTD制)之激光束4,以扫瞄速度1mm/sec进行扫瞄20mm,经照射即可制得一体化之激光焊接体。
再者,前述尼格洛辛之NUBIAN(注册商标)BLACK PC0850在DMF中,对于940nm光之吸收系数ε为4.8×103(ml/g·cm)。
依据下述评价,将激光弱吸收性成型构件之吸光度及吸光系数,激光焊接之结果,记载于表2中。
(实施例12) (12-a)激光弱吸收性成型构件之制作 将聚碳酸酯树脂(帝人公司制之商品名称Panlite L1225Y)498.5g,以及尼格洛辛(东方化学工业股份有限公司制之商品名称NUBIAN(注册商标)BLACK PC0850)1.5g,加入不锈钢制转鼓中,搅拌混合1小时。再将所得到之混合物,以射出成型机(东洋机械金属公司制之商品名称Si-50),于缸筒温度280℃,模具温度70℃下依一般方法使之成型,制作成二片纵80mm×横50mm×厚度1mm之激光弱吸收性成型构件1,2。
(12-b)激光焊接体之制造 接着,将激光弱吸收性成型构件1,2,如图1所示在相合对之情形下使其接触,再沿着相合对成型构件1及2之界面,将输出10W之激光二极管[波长940nm,连续性](FINE DEVICE CO.,LTD制)之激光束4,以扫瞄速度1mm/sec进行扫瞄20mm,经照射即可制得一体化之激光焊接体。
依据下述评价,将激光弱吸收性成型构件之吸光度及吸光系数,激光焊接之结果,记载于表2中。
(实施例13) (13-a)激光弱吸收性成型构件之制作 将聚碳酸酯树脂(帝人公司制之商品名称Panlite L1225Y)499g,以及尼格洛辛(东方化学工业股份有限公司制之商品名称NUBIAN(注册商标)BLACK PC0850)1.0g,加入不锈钢制转鼓中,搅拌混合1小时。再将所得到之混合物,以射出成型机(东洋机械金属公司制之商品名称Si-50),于缸筒温度280℃,模具温度70℃下依一般方法使之成型,制作成二片纵80mm×横50mm×厚度1mm之激光弱吸收性成型构件1,2。
(13-b)激光焊接体之制造 接着,将激光弱吸收性成型构件1,2,如图1所示在相合对之情形下使其接触,再沿着相合对成型构件1及2之界面,将输出10W之激光二极管[波长940nm,连续性](FINE DEVICE CO.,LTD制)之激光束4,以扫瞄速度2mm/sec进行扫瞄20mm,经照射即可制得一体化之激光焊接体。
依据下述评价,将激光弱吸收性成型构件之吸光度及吸光系数,激光焊接之结果,记载于表2中。
(实施例14) (14-a)激光弱吸收性成型构件之制作 将聚碳酸酯树脂(帝人公司制之商品名称Panlite L1225Y)499.75g,以及尼格洛辛(东方化学工业股份有限公司制之商品名称NUBIAN(注册商标)BLACK PC0850)0.25g,加入不锈钢制转鼓中,搅拌混合1小时。再将所得到之混合物,以射出成型机(东洋机械金属公司制之商品名称Si-50),于缸筒温度280℃,模具温度70℃下依一般方法使之成型,制作成二片纵80mm×横50mm×厚度1mm之激光弱吸收性成型构件1,2。
(14-b)激光焊接体之制造 接着,将激光弱吸收性成型构件1,2,如图1所示在相合对之情形下使其接触,再沿着相合对之成型构件1及2之界面,将输出10W之激光二极管[波长940nm,连续性](FINE DEVICE CO.,LTD制)之激光束4,以扫瞄速度1mm/sec进行扫瞄20mm,经照射即可制得一体化之激光焊接体。
依据下述评价,将激光弱吸收性成型构件之吸光度及吸光系数,激光焊接之结果,记载于表2中。
(实施例15) (15-a)激光弱吸收性成型构件之制作 将聚碳酸酯树脂(帝人公司制之商品名称Panlite L1225Y)498.5g,尼格洛辛(东方化学工业股份有限公司制之商品名称NUBIAN(注册商标)BLACK PC0850)0.5g,以及由C.I.溶剂绿87之蒽醌蓝色油溶性染料,C.I.溶剂红179之紫环酮红色油溶性染料,及C.I.溶剂黄163之蒽醌黄色油溶性染料以13∶20∶7之重量比所组成之黑色配合染料1.0g,加入不锈钢制转鼓中,搅拌混合1小时。再将所得到之混合物,以射出成型机(东洋机械金属公司制之商品名称Si-50),于缸筒温度280℃,模具温度70℃下依一般方法使之成型,制作成二片纵80mm×横50mm×厚度1mm之激光弱吸收性成型构件1,2。
(15-b)激光焊接体之制造 接着,将激光弱吸收性成型构件1,2,如图1所示在相合对之情形下使其接触,再沿着相合对成型构件1及2之界面,将输出10W之激光二极管[波长940nm,连续性](FINE DEVICE CO.,LTD制)之激光束4,以扫瞄速度2mm/sec进行扫瞄20mm,经照射即可制得一体化之激光焊接体。
依据下述评价,将激光弱吸收性成型构件之吸光度及吸光系数,激光焊接之结果,记载于表2中。
(实施例16) (16-a)激光弱吸收性成型构件之制作 将聚碳酸酯树脂(帝人公司制之商品名称Panlite L1225Y)499g,以及尼格洛辛(东方化学工业股份有限公司制之商品名称NUBIAN(注册商标)BLACK PC0850)1.0g,加入不锈钢制转鼓中,搅拌混合1小时。再将所得到之混合物,以射出成型机(东洋机械金属公司制之商品名称Si-50),于缸筒温度280℃,模具温度70℃下依一般方法使之成型,而制作成纵50mm×160mm×厚度1mm之薄片。将其在长边方向上依20mm-40mm-40mm-40mm-20mm之顺序向内侧弯曲,而制作成在两端正好相合对之略四角柱形之激光弱吸收性成型构件1。
(16-b)激光焊接体之制造 接着,将激光弱吸收性成型构件1之两端,如图3所示在相合对之情形下使其接触,再沿着相合对成型构件两端之界面,将输出10W之激光二极管[波长940nm,连续性](FINE DEVICE CO.,LTD制)之激光束4,以扫瞄速度2mm/sec进行扫瞄20mm,经照射即可制得一体化之激光焊接体。
依据下述评价,将激光弱吸收性成型构件之吸光度及吸光系数,激光焊接之结果,记载于表2中。
(实施例17) (17-a1)激光弱吸收性成型构件之制作 将聚碳酸酯树脂(帝人公司制之商品名称Panlite L1225Y)498.5g,尼格洛辛(东方化学工业股份有限公司制之商品名称NUBIAN(注册商标)BLACK PC0850)0.5g,以及将C.I.溶剂绿87之蒽醌蓝色油溶性染料,C.I.溶剂红179之紫环酮红色油溶性染料,及C.I.溶剂黄163之蒽醌黄色油溶性染料以13∶20∶7之重量比所组成之黑色配合染料1.0g,加入不锈钢制转鼓中,搅拌混合1小时。再将所得到之混合物,以射出成型机(东洋机械金属公司制之商品名称Si-50),于缸筒温度280℃,模具温度70℃下依一般方法使之成型,制作成纵80mm×横50mm×厚度1mm之激光弱吸收性成型构件1。
(17-a2)激光弱吸收性成型构件之制作 将聚碳酸酯树脂(帝人公司制之商品名称Panlite L1225Y)499.25g,以及尼格洛辛(东方化学工业股份有限公司制之商品名称NUBIAN(注册商标)BLACK PC0850)0.75g,加入不锈钢制转鼓中,搅拌混合1小时。再将所得到之混合物,以射出成型机(东洋机械金属公司制之商品名称Si-50),于缸筒温度280℃,模具温度70℃下依一般方法使之成型,制作成纵80mm×横50mm×厚度2mm之激光弱吸收性成型构件2。
(17-b)激光焊接体之制造 接着,将激光弱吸收性成型构件1,2,如图1所示在相合对之情形下使其接触,再沿着相合对成型构件1及2之界面,将输出10W之激光二极管[波长940nm,连续性](FINE DEVICE CO.,LTD制)之激光束4,以扫瞄速度2mm/sec进行扫瞄20mm,经照射即可制得一体化之激光焊接体。
依据下述评价,将激光弱吸收性成型构件之吸光度及吸光系数,激光焊接之结果,记载于表2中。
(比较例3) (3-A)先前之激光穿透性成型构件之制作 将聚碳酸酯树脂(帝人公司制之商品名称Panlite L1225Y)500g,加入不锈钢制转鼓中,搅拌混合1小时。再将其以射出成型机(东洋机械金属公司制之商品名称Si-50),于缸筒温度280℃,模具温度70℃下依一般方法使之成型,制作成二片纵60mm×横12mm×厚度1mm之激光穿透性成型构件。
(3-B)激光焊接体之制造 接着,将激光弱吸收性成型构件1,2,如图1所示在相合对之情形下使其接触,再沿着相合对成型构件1及2之界面,将输出10W之激光二极管[波长940nm,连续性](FINE DEVICE CO.,LTD制)之激光束4,以扫瞄速度1mm/sec进行扫瞄20mm,经照射而制得一体化之激光焊接体。
(比较例4) (4-A)先前之激光穿透性成型构件之制作 将聚碳酸酯树脂(帝人公司制之商品名称Panlite L1225Y)499g,以及炭黑(三菱化学工业公司制之商品名称#32)1.0g,加入不锈钢制转鼓中,搅拌混合1小时。再将其以射出成型机(东洋机械金属公司制之商品名称Si-50),于缸筒温度280℃,模具温度70℃下依一般方法使之成型,制作成二片纵60mm×横12mm×厚度1mm之激光穿透性成型构件。
(4-B)激光焊接体之制造 接着,将激光弱吸收性成型构件1,2,如图1所示在相合对之情形下使其接触,再沿着相合对成型构件1及2之界面,将输出10W之激光二极管[波长940nm,连续性](FINE DEVICE CO.,LTD制)之激光束4,以扫瞄速度1mm/sec进行扫瞄20mm,经照射而制得一体化之激光焊接体。
其次,使用聚对苯二甲酸丁二醇酯树脂,试作激光弱吸收性成型构件,如图1所示相合对状态下使其进行激光焊接,并将适用于本发明之激光焊接体之试作例表示于实施例18~23,本发明适用外之激光焊接体之例子则表示于比较例5。
(实施例18) (18-a)激光弱吸收性成型构件之制作 将聚对苯二甲酸丁二醇酯树脂(三菱工程塑料公司制之商品名称NOVADURAN(注册商标)MY5008)499.95g,以及尼格洛辛(东方化学工业股份有限公司制之商品名称NUBIAN(注册商标)BLACK PA9803)0.05g,加入不锈钢制转鼓中,搅拌混合1小时。再将所得到之混合物,以射出成型机(东洋机械金属公司制之商品名称Si-50),于缸筒温度260℃,模具温度60℃下依一般方法使之成型,制作成二片纵80mm×横50mm×厚度1.5mm之激光弱吸收性成型构件1,2。
(18-b)激光焊接体之制造 接着,将激光弱吸收性成型构件1,2,如图1所示在相合对之情形下使其接触,再沿着相合对成型构件1及2之界面,将输出30W之激光二极管[波长940nm,连续性](FINE DEVICE CO.,LTD制)之激光束4,以扫瞄速度2.5mm/sec进行扫瞄20mm,经照射即可制得一体化之激光焊接体。
再者,前述尼格洛辛之NUBIAN(注册商标)BLACK PA9803在DMF中,对于940nm光之吸收系数ε为6.4×103(ml/g·cm)。
依据下述评价,将激光弱吸收性成型构件之吸光度及吸光系数,激光焊接之结果,记载于表3中。
(实施例19) (19-a1)激光弱吸收性成型构件之制作 将聚对苯二甲酸丁二醇酯树脂(三菱工程塑料公司制之商品名称NOVADURAN(注册商标)MY5008)499.975g,尼格洛辛(东方化学工业股份有限公司制之商品名称NUBIAN(注册商标)BLACK PA9803)0.025g,加入不锈钢制转鼓中,搅拌混合1小时。再将所得到之混合物,以射出成型机(东洋机械金属公司制之商品名称Si-50),于缸筒温度260℃,模具温度60℃下依一般方法使之成型,而制作成纵80mm×横50mm×厚度1.5mm之激光弱吸收性成型构件1。
(19-a2)激光弱吸收性成型构件之制作 将聚对苯二甲酸丁二醇酯树脂(三菱工程塑料公司制之商品名称NOVADURAN(注册商标)MY5008)499.975g,以及尼格洛辛(东方化学工业股份有限公司制之商品名称NUBIAN(注册商标)BLACK PA9803)0.025g,加入不锈钢制转鼓中,搅拌混合1小时。再将所得到之混合物,以射出成型机(东洋机械金属公司制之商品名称Si-50),于缸筒温度260℃,模具温度60℃下依一般方法使之成型,而制作成纵80mm×横50mm×厚度1mm之激光弱吸收性成型构件2。
(19-b)激光焊接体之制造 接着,将激光弱吸收性成型构件1,2,如图1所示在相合对之情形下使其接触,再沿着相合对成型构件1及2之界面,将输出30W之激光二极管[波长940nm,连续性](FINE DEVICE CO.,LTD制)之激光束4,以扫瞄速度1.5mm/sec进行扫瞄20mm,经照射即可制得一体化之激光焊接体。
依据下述评价,将激光弱吸收性成型构件之吸光度及吸光系数,激光焊接之结果,记载于表3中。
(实施例20) (20-a)激光弱吸收性成型构件之制作 将聚对苯二甲酸丁二醇酯树脂(三菱工程塑料公司制之商品名称NOVADURAN(注册商标)MY5008)499.5g,以及尼格洛辛(东方化学工业股份有限公司制之商品名称NUBIAN(注册商标)BLACK PA9803)0.5g,加入不锈钢制转鼓中,搅拌混合1小时。再将所得到之混合物,以射出成型机(东洋机械金属公司制之商品名称Si-50),于缸筒温度260℃,模具温度60℃下依一般方法使之成型,制作成二片纵80mm×横50mm×厚度1mm之激光弱吸收性成型构件1,2。
(20-b)激光焊接体之制造 接着,将激光弱吸收性成型构件1,2,如图1所示在相合对之情形下使其接触,再沿着相合对成型构件1及2之界面,将输出10W之激光二极管[波长940nm,连续性](FINE DEVICE CO.,LTD制)之激光束4,以扫瞄速度2mm/sec进行扫瞄20mm,经照射即可制得一体化之激光焊接体。
依据下述评价,将激光弱吸收性成型构件之吸光度及吸光系数,激光焊接之结果,记载于表3中。
(实施例21) (21-a)激光弱吸收性成型构件之制作 将聚对苯二甲酸丁二醇酯树脂(三菱工程塑料公司制之商品名称NOVADURAN(注册商标)MY5008)499.75g,以及尼格洛辛(东方化学工业股份有限公司制之商品名称NUBIAN(注册商标)BLACK PA9803)0.25g,加入不锈钢制转鼓中,搅拌混合1小时。再将所得到之混合物,以射出成型机(东洋机械金属公司制之商品名称Si-50),于缸筒温度260℃,模具温度60℃下依一般方法使之成型,制作成二片纵80mm×横50mm×厚度1mm之激光弱吸收性成型构件1,2。
(21-b)激光焊接体之制造 接着,将激光弱吸收性成型构件1,2,如图1所示在相合对之情形下使其接触,再沿着相合对成型构件1及2之界面,将输出10W之激光二极管[波长940nm,连续性](FINE DEVICE CO.,LTD制)之激光束4,以扫瞄速度1mm/sec进行扫瞄20mm,经照射即可制得一体化之激光焊接体。
依据下述评价,将激光弱吸收性成型构件之吸光度及吸光系数,激光焊接之结果,记载于表3中。
(实施例22) (22-a1)激光弱吸收性成型构件之制作 将聚对苯二甲酸丁二醇酯树脂(三菱工程塑料公司制之商品名称NOVADURAN(注册商标)MY5008)499.99g,尼格洛辛(东方化学工业股份有限公司制之商品名称NUBIAN(注册商标)BLACK PA9803)0.01g,加入不锈钢制转鼓中,搅拌混合1小时。再将所得到之混合物,以射出成型机(东洋机械金属公司制之商品名称Si-50),于缸筒温度260℃,模具温度60℃下依一般方法使之成型,制作成纵80mm×横50mm×厚度1.5mm之激光弱吸收性成型构件1。
(22-a2)激光弱吸收性成型构件之制作 将聚对苯二甲酸丁二醇酯树脂(三菱工程塑料公司制之商品名称NOVADURAN(注册商标)MY5008)499.975g,以及尼格洛辛(东方化学工业股份有限公司制之商品名称NUBIAN(注册商标)BLACK PA9803)0.025g,加入不锈钢制转鼓中,搅拌混合1小时。再将所得到之混合物,以射出成型机(东洋机械金属公司制之商品名称Si-50),于缸筒温度260℃,模具温度60℃下依一般方法使之成型,制作成纵80mm×横50mm×厚度1.5mm之激光弱吸收性成型构件2。
(22-b)激光焊接体之制造 接着,将激光弱吸收性成型构件1,2,如图1所示在相合对之情形下使其接触,再沿着相合对成型构件1及2之界面,将输出30W之激光二极管[波长940nm,连续性](FINE DEVICE CO.,LTD制)之激光束4,以扫瞄速度0.4mm/sec进行扫瞄20mm,经照射即可制得一体化之激光焊接体。
依据下述评价,将激光弱吸收性成型构件之吸光度及吸光系数,激光焊接之结果,记载于表3中。
(实施例23) (23-a)激光弱吸收性成型构件之制作 将聚对苯二甲酸丁二醇酯树脂(三菱工程塑料公司制之商品名称NOVADURAN(注册商标)MY5008)499g,以及尼格洛辛(东方化学工业股份有限公司制之商品名称NUBIAN(注册商标)BLACK PA9803)1.0g,加入不锈钢制转鼓中,搅拌混合1小时。再将所得到之混合物,以射出成型机(东洋机械金属公司制之商品名称Si-50),于缸筒温度260℃,模具温度60℃下依一般方法使之成型,制作成二片纵80mm×横50mm×厚度1mm之激光弱吸收性成型构件1,2。
(23-b)激光焊接体之制造 接着,将激光弱吸收性成型构件1,2,如图1所示在相合对之情形下使其接触,再沿着相合对成型构件1及2之界面,将输出10W之激光二极管[波长940nm,连续性](FINE DEVICE CO.,LTD制)之激光束4,以扫瞄速度2mm/sec进行扫瞄20mm,经照射即可制得一体化之激光焊接体。
依据下述评价,将激光弱吸收性成型构件之吸光度及吸光系数,激光焊接之结果,记载于表3中。
(比较例5) (5-A)激光弱吸收性成型构件之制作 将聚对苯二甲酸丁二醇酯树脂(三菱工程塑料公司制之商品名称NOVADURAN(注册商标)MY5008)500g,以射出成型机(东洋机械金属公司制之商品名称Si-50),于缸筒温度260℃,模具温度60℃下依一般方法使之成型,制作成二片纵80mm×横50mm×厚度1mm之激光弱吸收性成型构件1,2。
(5-B)激光焊接体之制造 接着,将激光弱吸收性成型构件1,2,如图1所示在相合对之情形下使其接触,再沿着相合对成型构件1及2之界面,将输出10W之激光二极管[波长940nm,连续性](FINE DEVICE CO.,LTD制)之激光束4,以扫瞄速度1mm/sec进行扫瞄20mm,经照射即可制得一体化之激光焊接体。
依据下述评价,将激光弱吸收性成型构件之吸光度及吸光系数,激光焊接之结果,记载于表3中。
使用聚苯硫醚树脂,试作激光弱吸收性成型构件,如以下图1所示使其相合对之状态下,进行激光焊接,而试作适用于本发明之激光焊接体之例子系示于实施例24~27,在本发明适用范围外之激光焊接体之例子则示于比较例6中。
(实施例24) (24-a)激光弱吸收性成型构件之制作 将聚苯硫醚树脂(宝理塑料公司制之商品名称FORTRON(注册商标)0220A9)499.95g,以及尼格洛辛(东方化学工业股份有限公司制之商品名称NUBIAN(注册商标)BLACK PA9803)0.05g,加入不锈钢制转鼓中,搅拌混合1小时。再将所得到之混合物,以射出成型机(东洋机械金属公司制之商品名称Si-50),于缸筒温度310℃,模具温度150℃下依一般方法使之成型,制作成二片纵80mm×横50mm×厚度1.5mm之激光弱吸收性成型构件1,2。
(24-b)激光焊接体之制造 接着,将激光弱吸收性成型构件1,2,如图1所示在相合对之情形下使其接触,再沿着相合对成型构件1及2之界面,将输出30W之激光二极管[波长940nm,连续性](FINE DEVICE CO.,LTD制)之激光束4,以扫瞄速度2.5mm/sec进行扫瞄20mm,经照射即可制得一体化之激光焊接体。
依据下述评价,将激光弱吸收性成型构件之吸光度及吸光系数,激光焊接之结果,记载于表4中。
(实施例25) (25-a)激光弱吸收性成型构件之制作 将聚苯硫醚树脂(宝理塑料公司制之商品名称FORTRON(注册商标)0220A9)499.975g,以及尼格洛辛(东方化学工业股份有限公司制之商品名称NUBIAN(注册商标)BLACK PA9803)0.025g,依据表4所示之组成比,加入不锈钢制转鼓中,搅拌混合1小时。再将所得到之混合物,以射出成型机(东洋机械金属公司制之商品名称Si-50),于缸筒温度310℃,模具温度150℃下依一般方法使之成型,制作成二片纵80mm×横50mm×厚度1.5mm之激光弱吸收性成型构件1,2。
(25-b)激光焊接体之制造 接着,将激光弱吸收性成型构件1,2,如图1所示在相合对之情形下使其接触,再沿着相合对成型构件1及2之界面,将输出30W之激光二极管[波长940nm,连续性](FINE DEVICE CO.,LTD制)之激光束4,以扫瞄速度1mm/sec进行扫瞄20mm,经照射即可制得一体化之激光焊接体。
依据下述评价,将激光弱吸收性成型构件之吸光度及吸光系数,激光焊接之结果,记载于表4中。
(实施例26) (26-a)激光弱吸收性成型构件之制作 将聚苯硫醚树脂(宝理塑料公司制之商品名称FORTRON(注册商标)0220A9)499.75g,以及尼格洛辛(东方化学工业股份有限公司制之商品名称NUBIAN(注册商标)BLACK PA9803)0.25g,加入不锈钢制转鼓中,搅拌混合1小时。再将所得到之混合物,以射出成型机(东洋机械金属公司制之商品名称Si-50),于缸筒温度310℃,模具温度150℃下依一般方法使之成型,制作成二片纵80mm×横50mm×厚度1mm之激光弱吸收性成型构件1,2。
(26-b)激光焊接体之制造 接着,将激光弱吸收性成型构件1,2,如图1所示在相合对之情形下使其接触,再沿着相合对成型构件1及2之界面,将输出10W之激光二极管[波长940nm,连续性](FINE DEVICE CO.,LTD制)之激光束4,以扫瞄速度1mm/sec进行扫瞄20mm,经照射即可制得一体化之激光焊接体。
依据下述评价,将激光弱吸收性成型构件之吸光度及吸光系数,激光焊接之结果,记载于表4中。
(实施例27) (27-a)激光弱吸收性成型构件之制作 将聚苯硫醚树脂(宝理塑料公司制之商品名称FORTRON(注册商标)0220A9)499.99g,以及尼格洛辛(东方化学工业股份有限公司制之商品名称NUBIAN(注册商标)BLACK PA9803)0.01g,加入不锈钢制转鼓中,搅拌混合1小时。再将所得到之混合物,以射出成型机(东洋机械金属公司制之商品名称Si-50),于缸筒温度310℃,模具温度150℃下依一般方法使之成型,制作成二片纵80mm×横50mm×厚度1.5mm之激光弱吸收性成型构件1,2。
(27-b)激光焊接体之制造 接着,将激光弱吸收性成型构件1,2,如图1所示在相合对之情形下使其接触,再沿着相合对成型构件1及2之界面,将输出30W之激光二极管[波长940nm,连续性](FINE DEVICE CO.,LTD制)之激光束4,以扫瞄速度0.5mm/sec进行扫瞄20mm,经照射即可制得一体化之激光焊接体。
依据下述评价,将激光弱吸收性成型构件之吸光度及吸光系数,激光焊接之结果,记载于表4中。
(比较例6) (6-A)激光弱吸收性成型构件之制作 将聚苯硫醚树脂(宝理塑料公司制之商品名称FORTRON(注册商标)0220A9)500g,以射出成型机(东洋机械金属公司制之商品名称Si-50),于缸筒温度310℃,模具温度150℃下依一般方法使之成型,制作成二片纵80mm×横50mm×厚度1mm之激光弱吸收性成型构件1,2。它们的吸光度在7以上。
(6-B)激光焊接体之制造 接着,将激光弱吸收性成型构件1,2,如图1所示在相合对之情形下使其接触,再沿着相合对成型构件1及2之界面,将输出10W之激光二极管[波长940nm,连续性](FINE DEVICE CO.,LTD制)之激光束4,以扫瞄速度1mm/sec进行扫瞄20mm,经照射即可制得一体化之激光焊接体。
依据下述评价,将激光弱吸收性成型构件之吸光度及吸光系数,激光焊接之结果,记载于表4中。
使用聚丙烯树脂,试作激光弱吸收性成型构件,如以下图1所示在使其相合对之状态下,进行激光焊接,而试作适用于本发明之激光焊接体之例子系示于实施例28~31,在本发明适用范围外之激光焊接体之例子则示于比较例7中。
(实施例28) (28-a)激光弱吸收性成型构件之制作 将聚丙烯树脂(Japan Polypropylene corporation制之商品名称NOVATEC(注册商标)BC05B)497.5g,以及尼格洛辛(东方化学工业股份有限公司制之商品名称NUBIAN(注册商标)BLACK PC0850)2.5g,加入不锈钢制转鼓中,搅拌混合1小时。再将所得到之混合物,以射出成型机(东洋机械金属公司制之商品名称Si-50),于缸筒温度200℃,模具温度40℃下依一般方法使之成型,制作成二片纵80mm×横50mm×厚度1mm之激光弱吸收性成型构件1,2。
(28-b)激光焊接体之制造 接着,将激光弱吸收性成型构件1,2,如图1所示在相合对之情形下使其接触,再沿着相合对成型构件1及2之界面,将输出10W之激光二极管[波长940nm,连续性](FINE DEVICE CO.,LTD制)之激光束4,以扫瞄速度2mm/sec进行扫瞄20mm,经照射即可制得一体化之激光焊接体。
依据下述评价,将激光弱吸收性成型构件之吸光度及吸光系数,激光焊接之结果,记载于表5中。
(实施例29) (29-a)激光弱吸收性成型构件之制作 将聚丙烯树脂(Japan Polypropylene corporation制之商品名称NOVATEC(注册商标)BC05B)498.5g,以及尼格洛辛(东方化学工业股份有限公司制之商品名称NUBIAN(注册商标)BLACK PC0850)1.5g,加入不锈钢制转鼓中,搅拌混合1小时。再将所得到之混合物,以射出成型机(东洋机械金属公司制之商品名称Si-50),于缸筒温度200℃,模具温度40℃下依一般方法使之成型,制作成二片纵80mm×横50mm×厚度1mm之激光弱吸收性成型构件1,2。
(29-b)激光焊接体之制造 接着,将激光弱吸收性成型构件1,2,如图1所示在相合对之情形下使其接触,再沿着相合对成型构件1及2之界面,将输出10W之激光二极管[波长940nm,连续性](FINE DEVICE CO.,LTD制)之激光束4,以扫瞄速度2mm/sec进行扫瞄20mm,经照射即可制得一体化之激光焊接体。
依据下述评价,将激光弱吸收性成型构件之吸光度及吸光系数,激光焊接之结果,记载于表5中。
(实施例30) (30-a)激光弱吸收性成型构件之制作 将聚丙烯树脂(Japan Polypropylene corporation制之商品名称NOVATEC(注册商标)BC05B)499.95g,以及萘酞菁(山本化成公司制之商品名称YKR-5010)0.05g,加入不锈钢制转鼓中,搅拌混合1小时。再将所得到之混合物,以射出成型机(东洋机械金属公司制之商品名称Si-50),于缸筒温度200℃,模具温度40℃下依一般方法使之成型,制作成二片纵80mm×横50mm×厚度1.5mm之激光弱吸收性成型构件1,2。
(30-b)激光焊接体之制造 接着,将激光弱吸收性成型构件1,2,如图1所示在相合对之情形下使其接触,再沿着相合对成型构件1及2之界面,将输出30W之激光二极管[波长940nm,连续性](FINE DEVICE CO.,LTD制)之激光束4,以扫瞄速度0.7mm/sec进行扫瞄20mm,经照射即可制得一体化之激光焊接体。
依据下述评价,将激光弱吸收性成型构件之吸光度及吸光系数,激光焊接之结果,记载于表5中。
(实施例31) (31-a1)激光弱吸收性成型构件之制作 将聚丙烯树脂(Japan Polypropylene corporation制之商品名称NOVATEC(注册商标)BC05B)499.975g,以及萘酞菁(山本化成公司制之商品名称YKR-5010)0.025g,加入不锈钢制转鼓中,搅拌混合1小时。再将所得到之混合物,以射出成型机(东洋机械金属公司制之商品名称Si-50),于缸筒温度200℃,模具温度40℃下依一般方法使之成型,制作成纵80mm×横50mm×厚度1.5mm之激光弱吸收性成型构件1。
(31-a2)激光弱吸收性成型构件之制作 将聚丙烯树脂(Japan Polypropylene corporation制之商品名称NOVATEC(注册商标)BC05B)499.975g,以及萘酞菁(山本化成公司制之商品名称YKR-5010)0.025g,加入不锈钢制转鼓中,搅拌混合1小时。再将所得到之混合物,以射出成型机(东洋机械金属公司制之商品名称Si-50),于缸筒温度200℃,模具温度40℃下依一般方法使之成型,而制作成纵80mm×横50mm×厚度1.0mm之激光弱吸收性成型构件2。
(31-b)激光焊接体之制造 接着,将激光弱吸收性成型构件1,2,如图1所示在相合对之情形下使其接触,再沿着相合对成型构件1及2之界面,将输出30W之激光二极管[波长940nm,连续性](FINE DEVICE CO.,LTD制)之激光束4,以扫瞄速度0.5mm/sec进行扫瞄20mm,经照射即可制得一体化之激光焊接体。
依据下述评价,将激光弱吸收性成型构件之吸光度及吸光系数,激光焊接之结果,记载于表5中。
(比较例7) (7-a)激光弱吸收性成型构件之制作 将聚丙烯树脂(Japan Polypropylene corporation制之商品名称NOVATEC(注册商标)BC05B)500g,加入不锈钢制转鼓中,搅拌混合1小时。再将所得到之混合物,以射出成型机(东洋机械金属公司制之商品名称Si-50),于缸筒温度200℃,模具温度40℃下依一般方法使之成型,制作成二片纵80mm×横50mm×厚度1mm之激光弱吸收性成型构件1,2。
(7-b)激光焊接体之制造 接着,将激光弱吸收性成型构件1,2,如图1所示在相合对之情形下使其接触,再沿着相合对成型构件1及2之界面,将输出10W之激光二极管[波长940nm,连续性](FINE DEVICE CO.,LTD制)之激光束4,以扫瞄速度2mm/sec进行扫瞄20mm,经照射而制得一体化之激光焊接体。
依据下述评价,将激光弱吸收性成型构件之吸光度及吸光系数,激光焊接之结果,记载于表5中。
(物性评价) 将由实施例,比较例所得到之成型构件,及其激光焊接体,依据下述方法进行物性评价。
(1)吸光度及吸收系数之(εj)计算 吸收系数之计算方法,系如以下所示。使用分光光度计(日本分光公司制之商品名称V-570), 对于激光弱吸收性成型构件1,2,依据其在940nm下之Lambert-Beer公式(1), 吸光度A=-Log T=-Log{IT/(I0-IR)}····(1) (式(1)中,(I0)入射光强度,(IT)穿透光强度,(IR)反射光强度),来求出吸光度A。
进而表示该成型构件之1mm厚度所换算之吸光度a1。
再者,作成检量线, 吸光度A=ε1C1L1····(2) 藉由该检量线之斜率,求出吸收系数εj1(1/cm)。此外,对于尼格洛辛以外之着色剂亦系相同地。
又,吸光度a2,εj2亦系相同地。
(2)拉伸强度试验 将由前述实施例,比较例所得到之激光焊接体,按照JIS K7113-1995,利用拉伸试验机(岛津制作所公司制之商品名称AG-50kNE),在焊接体之长边方向(拉离焊接部之方向)上以试验速度10mm/min进行拉伸试验,测定其拉伸焊接强度。
(3)外观之目视观察 将由前述实施例,比较例所得到之激光焊接体之焊接部外观,以目视加以判定。
在上述实施例,比较例所得到之激光焊接体,其物性评价之结果系汇集于表1~表5中。
表1
表2
表3
表4
表5
如表1~表5所明白揭示者,本发明之激光焊接体,其激光弱吸收性成型构件间,紧密地焊接,且具有强大之拉伸强度及良好之激光焊接外观性。
〔产业上可利用性〕 本发明之激光焊接体,可使用于汽车构件,例如内装之控制面板,引擎室内之共鸣器(消音器);医疗器具,例如注入输液等内容物之点滴等所使用之医疗用导管;食品包装材料,例如含有流质食物或饮料组成物之带嘴包装袋,饮料用保特瓶之卷标;以及家电制品等外壳上。
权利要求
1.一种激光焊接体,其特征在于,藉由含有热塑性树脂及激光弱吸收剂而将吸光度a控制在0.07~3.0,且可吸收激光的至少一部分而使另一部分透过的激光弱吸收性成形构件为单个或多个;在至少使其端部的一部分保持对接的状态下,通过对该处所照射的激光产生的发热被焊接。
2.如权利要求1所述的激光焊接体,其特征在于,所述激光弱吸收性成形构件为所述的单个,以其两端部分彼此对接焊接。
3.如权利要求1所述的激光焊接体,其特征在于,所述激光弱吸收性成形构件为所述的多个,以它们的端部彼此对接焊接。
4.如权利要求1所述的激光焊接体,其特征在于,所述热塑性树脂是选自选自聚酰胺树脂、聚碳酸酯树脂、聚苯硫醚树脂、聚对苯二甲酸丁二醇酯树脂及聚丙烯树脂的至少一种。
5.如权利要求1所述的激光焊接体,其特征在于,所述吸光度a为0.1~2.0。
6.如权利要求1所述的激光焊接体,其特征在于,所述激光弱吸收性成形构件含有选自聚酰胺树脂、聚碳酸酯树脂及聚丙烯树脂的至少一种的所述热塑性树脂,且对于940nm的激光的吸收系数εj为200~8000(1/cm)。
7.如权利要求1所述的激光焊接体,其特征在于,所述激光弱吸收性成形构件含有选自聚对苯二甲酸丁二醇酯树脂及聚苯硫醚树脂的至少一种的所述热塑性树脂,且对于940nm的激光的吸收系数εj为3000~15000(1/cm)。
8.如权利要求1所述的激光焊接体,其特征在于,激光弱吸收性成形构件为多个,其中一方的所述成形构件的吸光度a1与另一方的成形构件的吸光度a2的比a1/a2为0.8~1.3。
9.如权利要求8所述的激光焊接体,其特征在于,所述比a1/a2为1。
10.如权利要求1所述的激光焊接体,其特征在于,激光弱吸收性成形构件为多个,其中一方的所述成形构件的激光弱吸收剂的浓度C1(重量%)与其厚度L1(cm)的乘积C1L1以及另一方的所述成形构件的激光弱吸收性吸收剂的浓度C2(重量%)与其厚度L2(cm)的乘积C2L2中的至少一方为0.01×10-3~4.0×10-3。
11.如权利要求1所述的激光焊接体,其特征在于,所述激光弱吸收性成形构件为单个或多个,其厚度为200~5000μm。
12.如权利要求1所述的激光焊接体,其特征在于,所述激光弱吸收性吸收剂是与所述热塑性树脂相溶的黑色油溶性染料。
13.如权利要求1所述的激光焊接体,其特征在于,所述激光弱吸收性吸收剂是尼格洛辛染料。
全文摘要
本发明系提供不须经复杂步骤,可将简便地调制构件藉由一次激光焊接步骤而使其一体化,其不仅是成形构件间之焊接强度优良,且不会损及树脂特性之激光焊接体。本发明之激光焊接体,其特征为其系藉由含热塑性树脂及激光弱吸收剂能将吸光度a控制在0.07~3.0,且至少一部分的激光可边被吸收而另一部分可边被穿透之激光弱吸收性成形构件,系单一或复数者;再藉由至少将其端部之一部分保持在相合对之情形下,以激光对该处加以照射而产生发热,并进而焊接。
文档编号B29C65/16GK101267933SQ20068003428
公开日2008年9月17日 申请日期2006年9月20日 优先权日2005年9月21日
发明者木原哲二, 山本聪 申请人:东方化学工业株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1