包括歧管的热交换器的制造方法_5

文档序号:9221438阅读:来源:国知局
连接部处形成的一系列环状接合部1082部分地限定,歧管排出室1086(图29示出)由沿着出口切割开口 1078与各相邻的板的连接部对应的环状接合部1082部分地限定。在堆叠体2030的各板中,如上所述,在各切割开口处的膨胀的区域与工作流体通路1055的通路1912流体连通。例如,歧管供应室1084经由突出部入口通路1072与入口通路1911流体连通。另外,歧管排出室1086经由突出部出口通路1074与出口通路1918流体连通。由于环状接合部1082的密封性,防止了板1022的内部通道1055和外部表面之间的流体连通,因而还防止了工作流体570和非工作流体570之间的流体连通。
[0184]参照图29A,在使切割开口在第一板金1060中(例如在前表面1040)比在第二板金1062中(例如在后表面1042)大的实施方式中,当堆叠板时,形成搭接接头(lap joint)Lo对于堆叠体2030中的每个板1022,前表面1040在搭接接头L处(例如,沿着入口切割开口 1076和出口切割开口 1078中的每个的整周)被接合到其上面的板的后表面1042。另夕卜,堆叠体2030中的各个板的后表面1042在搭接接头L处(例如,沿着入口切割开口 1076和出口切割开口 1078中的每个的整周)被接合到其下面的板的前表面1040。各个表面1040、1042通过例如焊接等被连续地接合以形成环状的不透液的接合部1082。
[0185]如前所述,至少在切割开口 1076、1078附近使得突出部1070中的突出部流路1072,1074的膨胀量比板1022中的工作流体流路1055的膨胀量大(例如具有更大的通路高度h)。通过这种配置,在允许形成环状接合部的同时使相邻的板1022(即板1051、1052)之间的间距得以保持。
[0186]在步骤3005中,再次参照图16,凸缘连接部2000被焊接到最外侧板1022的面向外侧的表面上形成的突出部入口开口 1076和突出部出口开口 1078,以形成堆叠体2030。
[0187]对于最上方的板1022U,凸缘连接部2000在入口切割开口 1076和出口切割开口1078这两者处被固定到前表面1040。例如,凸缘连接部2000被置于各个开口 1076、1078并且沿着各个相应的开口 1076、1078的整周被焊接到切割边缘以便提供不透液连接。另外,最上方的板1022u的后表面1042沿着入口切割开口 1076和出口切割开口 1078中的每个的整周被接合到其下方的板的前表面1040。各个表面1040、1042被连续的接合以形成环状的不透液的接合部1082。
[0188]对最下方的板10221进行类似处理。即,对于最下方的板10221,凸缘连接部2000在入口切割开口 1076和出口切割开口 1078这两者处被固定到后表面1042。例如,凸缘连接部2000被置于各开口 1076、1078并且沿着各个相应的开口 1076、1078的整周被焊接到切割边缘以便提供不透液连接。另外,最下方的板10221的前表面1040沿着入口切割开口1076和出口切割开口 1078中的每个的整周被接合到其上方的板的后表面1042。各个表面1040、1042被连续的接合以形成环状的不透液的接合部1082。
[0189]在步骤3006中,通过以下方式实现歧管1080的形成:通过以诸如环氧树脂的塑料材料来包封热交换器阵列1000的接合的突出部1070以形成在热交换器阵列1000中包围板1020的所有突出部1070的歧管箱1088。歧管箱1088由环氧树脂的外表面限定。
[0190]通过以下方式实现包封:通过将堆叠体2030的接合的突出部置于填料室(pot) 2050中,用环氧树脂填充填料室2050使得环氧树脂填充填料室2050的内部和接合的突出部1070的外表面之间的空间,允许环氧树脂固化,接下来离开填料室2050以保持为组件的一部分。
[0191]参照图30,由于突出部1070具有从各个板的侧边缘1048延伸、包括了从其外表面向外延伸的凸缘连接部2000的复杂形状,填料室2050形成为能够在突出部1070上并且环绕凸缘连接部2000进行组装的多件式结构。特别地,填料室2050由诸如聚碳酸酯的塑料形成并且具有能够被组装到一起以形成容器的第一侧壁部2052、第二侧壁部2054和第三侧壁部2056。
[0192]第一侧壁部2052包括三个侧部2052a、2052b、2052c以及底部2052d。三个侧部2052a,2052b,2052c彼此邻接,并且三个侧部2052a、2052b、2052c还与底部2052d邻接并自底部2052d向上延伸。第一侧壁部2052的上边缘2052e包括尺寸为其中能够接收凸缘连接部2000的侧壁2006的半圆切除部(cut out port1n) 2052f。第二侧壁部2054包看三个侧部2054a、2054b、2054c。三个侧部2054a、2054b、2054c彼此邻接。另外,第二侧壁部2054的下边缘2054e包括尺寸为其中能够接收凸缘连接部2000的侧壁2006的半圆切除部2052f。第三侧壁部2056包括平板形式的单个侧部,该单个侧部具有第一边缘2056a、第二边缘2056b、第三边缘2056c和第四边缘2056d。
[0193]在组装填料室2050的过程中,热交换器单元1000以接合的突出部1070延伸到由三个侧部2052a、2052b、2052c以及底部2052d限定的空间中的方式定位在第一侧壁部的上,并且凸缘2000被布置在切除部2052f中。接下来,第二侧壁部2054以第一侧壁部的第一侧部2052a与第二侧壁部的第一侧部2054a邻接、第一侧壁部的第二侧部2052b与第二侧壁部的第二侧部2054b邻接、第一侧壁部的第三侧部2052c与第二侧壁部的第三侧部2054b邻接、并且凸缘2000被第二侧壁部切除部2052f接收的方式沿着第一侧壁部的上边缘2052e载置。最后,第三侧壁部2056被载置成与第一侧壁部2052和第二侧壁部2054邻接,以使得第三侧壁部第一边缘2056a与第一侧壁部2052的第一侧部2052a和第二侧壁部2054的第一侧部2054a邻接、第三侧壁部的第二边缘2056b与第一侧壁部2052的底部2052d邻接、以及第三侧壁部的第三边缘2056c与第一侧壁部2052的第三侧部2052c与第二侧壁部2054的第三侧部2054c邻接。当填料室2052如此组装之后,接合的突出部1070由侧壁部2052、2054、2056包围。
[0194]参照图31,在组装的构造中,填料室2050包括开口的上端并且制成在使所需的注射的环氧树脂填料量最小的同时能够包围接合的突出部1070的尺寸。用环氧树脂从底部开始填充填料室2050从而设置和保持板的间距、使所有接合部关于海水密封、并增强热交换器阵列1000。另外,环氧树脂提供补充的焊接接合部支撑以及组装加强,提供通常发生的对于内部流体自焊接的接合部泄漏的补充屏障并且提供为接合的板的阵列的固体安装支撑表面。在包封过程中,各凸缘连接部2000的流体通路闭合以利用包封材料来避免歧管室1084、1086的污染。在完成包封时,这些流体流路被清理以允许各个凸缘连接部2000的适当作用,特别是允许流体在这些流体流路中流通。一旦凸缘连接部2000被清理,就完成了热交换器单元1000。
[0195]参照图11和图32,当形成包括多个热交换器阵列1000的热交换器模块524时,各单个的热交换器阵列1000的歧管1080被接合到相邻的热交换器阵列1000的歧管1080。特别地,以使歧管供应室1084与模块524的各热交换器阵列1000流体连通的方式接合相邻的热交换器阵列1000的歧管供应室1084的各凸缘连接部2000。类似地,以使歧管排出室1086与模块524的各热交换器阵列1000流体连通的方式接合相邻的热交换器阵列1000的歧管排出室1086的各凸缘连接部2000。利用夹持件2020接合相邻的热交换器阵列1000的凸缘连接部2000。在示出的实施方式中,利用共用的歧管连接十二个热交换器阵列1000并且十二个热交换器阵列1000被设置为热交换器模块524。但是,应当理解的是,能够用更多数量或更少数量的热交换器阵列1000来形成模块524,而采用的数量取决于具体应用的需求。
[0196]参照图10和图33,由共用的歧管1080连接的热交换器阵列1000被支撑在装配架1002上。热交换器阵列1000、连接的歧管1080以及装配架1002 —起形成热交换器级。在示出的实施方式中,多级热交换器系统520是允许使用混合级联OTEC循环的四级模块热交换器,并由此包括了四个热交换器模块521、522、523、524(图33中仅示出了第二级、第四级)。各模块在装配到热交换器系统520时均被接收到支撑框540并由支撑框540支撑。在一些实施方式中,各热交换器模块的装配架1002设置有轨道(未示出),该轨道与包括在支撑框540中的对应的轨道2080接合以利于将热交换器模块521、522、523、524装配到热交换器系统520中。例如,通过安装在具有连续的塑料接触表面的轨道上,装配架1002能够允许用于移除和维护单个的阵列1000的线性提取。另外,在阵列维护的过程中,可以用临时的集管连接器替换模块524中的阵列1000直到阵列1000被替换,从而能够通过能量传递仅局部减小的方式来持续热交换器的平衡的操作。
[0197]在示出的实施方式中,柱筒310的蒸发器部344包括中央支柱550以及被支撑在支柱550的相反侧552、554中的每一侧的支撑框540。在冷凝器部320中设置类似的配置。
[0198]对凸缘连接器2000被焊接到岐管1080进行说明,凸缘连接器2000包括位于岐管室中的台阶部2014,从而提供了对准以及提高了焊接接合部的强度。但是,凸缘连接器2000并不限于通过焊接被固定到岐管1080。例如,凸缘连接器2000能够通过粘性结合被固定到岐管1080。参照图34A和图34B,在使用粘性结合的一些实施方式中,能够以使得结合表面具有更大面积的方式改进连接器第二端2010。特别地,改进后的凸缘连接部2000’可以包括具有径向向外伸出的唇缘(Iip) 2018’的连接器第二端2010’并且改进后的凸缘连接部2000’设置了大的结合表面积。
[0199]参照图35,入口凸缘连接器2000”被连接到冷凝器的岐管供应室1084,出口凸缘连接器2000”’被连接到对应的岐管排出室1086。入口凸缘连接器2000”具有比出口凸缘连接器2000”’小的直径,但在其他方面类似。为此,将仅说明入口凸缘连接器2000”。与图15B中示出的之前说明的凸缘连接部2000类似的,入口凸缘连接器2000”包括第一台阶部2014,第一台阶部2014具有与对应的岐管供应室1084或岐管排出室1086的内径对应的外径尺寸。另外,入口凸缘连接器2000”包括第二台阶部2015,第二台阶部2015被布置成与连接器第二端2010的端面2012相邻,以使得端面2012将台阶限定在第一台阶部2014和第二台阶部2015之间。第二台阶部2015具有比连接器第一端2002小并且比第一台阶部2014大的外径。在制造阵列的过程中,第一台阶部2014被插入并且焊接到突出部入口(或出口)开口。在该过程中,第二台阶部2015用于平衡热交换板1022的突出部1070和入口凸缘连接部2000 ”之间的冷源。
[0200]参照图36-图38,被构造为用在蒸发器中的可选的热交换板3022与之前参照图14说明的热交换板1022类似。鉴于这种类似性,将用同样的附图标记表示同样的特征。热交换板3022包括工作流动通路3055,工作流动通路3055包括多个平行的、具有可选的蛇形图案的微型通路1912。为了适应工作流体的相性改变(例如,从液相变成气相),每次通过的平行流路的数量沿着工作流体的流路从通路入口到通路出口增加。例如,图36中的热交换板3022具有四个入口通道1911,该四个入口通道1911分别流入与底边缘1046相邻的对应的微型通路1912。微型通路1912从底边缘1046到顶边缘1045沿着板以蛇形图案延伸。这里,“顶部”或“底部”是指热交换板在常规操作位置上的取向。在图38中,以顶边缘1045位于底边缘1046的上方的操作位置示出蒸发器热交换板3022。来自四个微型通路的流动在第一转换点3914处流入六个微型通路。来自六个微型通路的流动在第二转换点3916处流入八个微型通路。来自八个微型通路的流动在第三转换点3920处流入十个微型通路,来自十个微型通路的流动在第四转换点3922处流入十二个微型通路。得到的十二个微型通路通过流体出口 1918排出。
[0201]通过岐管供应室1084经由突出部入口通路1072对四个入口通路1911供应液体状态的工作流体580,十二个出口通路1918经由突出部出口通路1074将气体状态的工作流体排出到岐管排出室1086。
[0202]尽管岐管供应室1084和岐管排出室1086在结构上类似,岐管供应室1084与对应的岐管排出室1086具有不同的尺寸。例如,对于被构造为用作蒸发器中的阵列1000的一部分的热交换器板3022(图36-38),岐管供应室1084比对应的岐管排出室1086小。这通过形成直径比突出部出口开口 1078小的突出部入口开口 1076来实现。该尺寸差反映了如下事实:工作流体580以液体形式在入口处进入蒸发器,因而与在出口处以气体形式离开蒸发器的相同流体相比所需的整个通道容积小。因此,对于被构造为用作冷凝器中的阵列1000的一部分的热交换器板4022(图39-图41),岐管供应室1084比对应的岐管排出室1086 大。
[0203]参照图39-图41,被构造为用于冷凝器中的热交换板4022与上述参照图36-图38说明的蒸发器热交换板3022类似。鉴于这种类似性,将用同样的附图标记表示同样的特征。热交换板4022包括工作流动通路4055,工作流动通路4055包括多个平行的具有可选的蛇形图案的微型通路1912。与平行于非工作流体的流动方向的轴线对齐的工作流体入口通路1911在冷凝器热交换板4022中的数量比在蒸发器热交换板3022中多,以便适应在冷凝器中的入口处的流体(例如气体)与在蒸发器中的入口处的流体(例如液体)相比的相对大的体积。为了适应工作流体的相性改变(例如,从气相变成液相),每次通过的平行流路的数量沿着工作流体的流路从通路入口到通路出口减小。例如,图39中的热交换板4022具有八个入口通道1911,该八个入口通道1911均流入与顶边缘1045相邻的十二个对应的微型通路1912。微型通路1912从顶边缘1045到底边缘1046沿着板以蛇形图案延伸。在图41中,以相对于底边缘1046位于顶边缘1045上方的操作位置上下颠倒地示出冷凝器热交换板4022。来自十二个微型通路的流动在第一转换点4914处流入十个微型通路。来自十个微型通路的流动在第二转换点4916处流入八个微型通路。来自八个微型通路的流动在第三转换点4920处流入六个微型通路,来自六个微型通路的流动在第四转换点4922处流入四个微型通路。得到的四个微型通路通过流体出口 1918排出。
[0204]通过岐管供应室1084经由突出部入口通道1072对八个入口通路1911供应气体状态的工作流体580,四个出口通路1918经由突出部出口通路1074将液体状态的工作流体排出到岐管排出室1086。
[0205]在冷凝器热交换板4022和蒸发器热交换板3022这两者中,微型通路1912从顶边缘1045到底边缘1046以蛇形图案沿着板延伸。微型通路1912包括直线区域1912a、弯折区域1912b和支流通道1912c。直线区域1912a平行于顶边缘1045地延伸。弯折区域1912b连接相邻的直线区域1912a并且与板的右边缘1047或左边缘1048相邻。支流通道1912c是在相应的弯折区域1912b处从微型通道分支的通道。支流通道1912c经由朝向板3022、4022的岐管端开口的支流流体入口 1912d与相应的弯折区域1912b流体连通。特别地,各个支流通道1912c与微型通路1912在单个位置(即支流流体入口 1912d)连通,各支流通道1912被布置在由相邻的弯折区域1912b和对应的板边缘1047或1048限定的大致三角形区域。各个支流通道1912c被分支以提供被构造为基本填充了大致三角形的区域的微型支流通道。将注意到的是,在其他实施方式中,支流通道被置于板3022、4022的没有被工作流体流路覆盖的区域,例如在蛇形微型通路1912和板边缘1045、1046、1047、1048之间的空间。通过将支流通道置于这些区域,为工作流体提供了较大的热交换表面积。另外,通过将支流通路置于这些区域中,基本上整个前表面被微型通路1912覆盖,由此防止了非工作流体未使用区域的集中(pool)并且减小了损失。
[0206]冷凝器热交换板4022和蒸发器热交换板3022均设置有形成在板右边缘1047中的切除部3066、4066。切除部3066、4066在与突出部1070相邻的位置处在板右边缘1047开口,并且当朝向前表面1040看时为大致V形。在制造阵列的过程中,填料室2050被接收到切除部3066、4066。通过提供切除部3066、4066,在制造热交换阵列1000的填料步骤中,与板1022没有形成V形切除部的阵列相比,填料室2050能够环绕各突出部1070的更大的部分,以使得环氧树脂环绕各突出部1070的更大部分载置。
[0207]如前所述,板1022包括多个区域,各个区域对应于微型通道1912被允许膨胀到特定高度的区域。蒸发器热交换板3022和冷凝器热交换板4022均设置有三个区域。例如,参照图38、图42-图46,蒸发器热交换板3022包括布置在突出部1070中的第一区Zl (例如岐管区域,参见图38、图42、图45和图46),在突出部1070和底边缘1046之间沿着第一边缘1047延伸的第二区Z2(例如入口通道区域,参见图38、图43和图46),以及在第一区Z1、第二区Z2和第二边缘1048之间延伸的第三区Z3 (例如活跃区域,参见图38、图44和图46)。在这三个区域中,第一区Zl中的微型通道1912具有最大的高度。第二区Z2中的微型通道1912具有比第一区Z2中的微型通道的高度小、比第三区Z3中的微型通道1912的高度大的高度。
[0208]冷凝器热交换板4022也包括三个区域。参照图41-图46,类似于蒸发器热交换板3022,冷凝器热交换板包括布置在突出部1070中的第一区Zl (例如岐管区域,参见图41、图42、图45),在突出部1
当前第5页1 2 3 4 5 6 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1