铑铁催化剂的制作方法

文档序号:11140588阅读:700来源:国知局
铑铁催化剂的制造方法与工艺

本国际专利申请要求2014年6月6日提交的题为“铑铁催化剂”的美国临时专利申请No.62/008,674和2015年5月18日提交的题为“用于铑铁催化剂的系统和装置”的美国临时专利申请No.62/163,231的权益,其全部内容通过引用并入本文。

背景

技术领域

本发明总体上涉及用于三效催化(TWC)转化器的材料,更具体地,涉及包括铑的催化剂。



背景技术:

为了将车辆排放物转化为有害性更小的物质,目前车用催化剂主要依靠铂族金属(例如铂、钯和铑)。然而,由于世界大部分人口使用机动交通工具,随着汽车生产的增加,所述金属的供应是有限的。此外,环境问题导致全世界的国家采用更为严格的NOx、碳氢化合物和颗粒物排放规定。因此,持续需要可以提供更好的催化性能同时保持铂族金属合理使用的催化剂。



技术实现要素:

本发明描述了在三效催化剂(TWC)系统中使用的包括铑和铁的催化剂组合物。

在一些实施方案中,TWC被配置为包括基质,以及涂层、浸渍层和/或覆层中的一个或多个。在这些实施方案中,涂层沉积在基质上,浸渍层沉积在涂层上,覆层沉积在涂层/浸渍层上。

在这些实施方案中,涂层和/或覆层中的一个或多个通过使用一种浆料形成的,浆料包括储氧材料、耐火载体氧化物、铁、铑及其类似物中的一种或多种。进一步地,对于这些实施例,所述OSM可以是萤石储氧材料,其包括约10wt%至约75wt%的氧化铈、约25wt%至约90wt%的锆-铪氧化物、约0wt%至约15wt%的氧化镧、约0wt%至约15wt%的氧化钕、约0wt%至约15wt%的氧化钇和约0wt%至约15wt%的氧化镨中的一种或多种。更进一步地,对于这些实施方案,所述耐火载体氧化物可以是掺杂的氧化锆,包括镨掺杂的氧化锆。进一步对于这些实施方案,所述浆料包括铁,其以合适的负载量(例如约4wt%至约20wt%的负载量,包括大约7.36wt%的负载量)加入OSM粉末中。更进一步地,对于这些实施方案,所述浆料可以包括铑,其以合适的负载量(例如约1克每立方英尺[g/ft3]至20g/ft3以上的负载量,包括大约4.8g/ft3的负载量)加入OSM粉末中。

进一步地,对于这些实施方案,一个或多个浸渍层通过使用硝酸铑、硝酸铁和/或硝酸铈的一种或多种形成,其以期望的负载量施用到被涂覆的基质上。在这些实施方案中,合适的铑负载量包括约2.9g/ft3至约9.8g/ft3的负载量。对于这些实施方案,合适的铁负载量包括约60g/ft3至约630g/ft3的负载量。进一步地,对于这些实施方案,合适的铈负载量包括499g/ft3至约1497g/ft3的负载量。

在一些实施方案中,生产样品来进行催化性能的对比,确定改变组合物对催化性能的影响。在这些实施方案中,样品包括但不限于:用常规材料和合成方法制得的参考样品;具有用铈锆钕钇(CZNY)OSM形成的涂层的样品,其具有负载量为4.8g/ft3的铑的第一浸渍层以及1wt%、2wt%和4wt%的铁的第二浸渍层,分别称作A、B和C型;具有铈锆钕钇(CZNY)OSM形成的涂层,用负载量为4.8g/ft3的铑和负载量为60g/ft3、90g/ft3、150g/ft3、210g/ft3、315g/ft3、420g/ft3和630g/ft3的铁浸渍的样品,分别称作D、E、F、G、H、I和J型;用负载量为2.9g/ft3的铑和负载量为210g/ft3的铁浸渍,形成有涂层的样品,该涂层包括萤石相铈锆镧(CZL)OSM、铈锆钕(CZN)OSM、铈锆钇(CZY)OSM、铈锆镧镨(CZLP)OSM、铈锆(CZ)OSM和铈锆钕钇(CZNY)OSM,分别称作K、L、M、N、O和P型;具有用镨掺杂氧化锆形成的涂层,用负载量为9.8g/ft3的铑、负载量为210g/ft3的铁和负载量为499gc/ft3和0gY/ft3、998gc/ft3和0gY/ft3、1497gc/ft3和0gY/ft3、0gc/ft3和31.7gY/ft3、0gc/ft3和158gY/ft3、499gc/ft3和317gY/ft3的铈和钇浸渍的样品,分别称作Q、R、S、T、U和V型;以及具有用一种浆料形成的涂层的样品,该浆料包含用硝酸铑溶液处理的铁/OSM粉末,所述铁/OSM粉末包括7.36wt%的铁和萤石相CZNY OSM,作为W型催化剂。

在其他实施方案中,通过进行起燃测试(light-off test)来评估使用各种催化材料的TWC系统的催化性能,以确定污染物达到50%转化时的温度(T50)和90%转化时的温度(T90),污染物包括氮氧化物(NOx)、一氧化碳(CO)和碳氢化合物(HC)。在这些实施方案中,还通过进行宽脉冲微扰测试(Wide Pulse Perturbation Test WPPT)来评估TWC系统的催化性能,以确定所述催化剂的TWC性能和动力学限制的还原/氧化存储能力,表明在环外空气-燃料冲程期间催化剂的性能。进一步地,对于这些实施方案,用标准等温振荡储氧能力测试来确定催化材料的储氧能力(OSC)。进一步地,对于这些实施方案,通过提供催化剂岩心样品(例如通过使用金刚石岩心钻机)来评估与催化剂有关的T50转化、T90转化、WPPT排放物转化百分比和O2及CO延迟时间值,在受控的化学环境中使用热量用实验方法老化岩心样品,并且用台式流动反应器测试所述岩心样品来确定TWC性能。

由下面结合附图的具体描述,本发明许多其他的方面、特征和优势可以显而易见。

附图简要说明

通过参考以下附图,可以更好地理解本发明。附图中的组分不一定按比例,而是重点放在说明本发明的原理。附图中的附图标记指代不同视图中的相应部分。

图1为根据一个实施方案用于三效催化剂(TWC)样品的催化结构的示意图,三效催化剂样品包括基质、涂层、浸渍层和覆层。

图2为根据一个实施方案REF#1与A、B和C型催化剂的NOx、CO和HC的T50值的比较的示意图。

图3为根据一个实施方案REF#1与A、B和C型催化剂的NOx、CO和HC的WPPT转化百分比值的比较的示意图。

图4为根据一个实施方案REF#2与D、E、F、G、H、I和J型催化剂的NOx、CO和HC的T50值的比较的示意图。

图5为根据一个实施方案REF#2与D、E、F、G、H、I和J型催化剂的NOx、CO和HC的T90值的比较的示意图。

图6为根据一个实施方案REF#2与D、E、F、G、H、I和J型催化剂的NOx、CO和HC的WPPT转化百分比值的比较的示意图。

图7为根据一个实施方案REF#2与D、E、F、G、H、I和J型催化剂的由CO和O2的延迟时间作为储氧能力(OSC)值的比较的示意图。

图8为根据一个实施方案K、L、M、N、O和P型催化剂的NOx、CO和HC的T50值的比较的示意图。

图9为根据一个实施方案K、L、M、N、O和P型催化剂的NOx、CO和HC的T90值的比较的示意图。

图10为根据一个实施方案REF#2和K、L、M、N和P型催化剂的由CO和O2的延迟时间作为储氧能力(OSC)值的比较的示意图。

图11为根据一个实施方案Q、R、S、T、U和V型催化剂的NOx、CO和HC的T50值的比较的示意图。

图12为根据一个实施方案Q、R、S、T、U和V型催化剂的NOx、CO和HC的T90值的比较的示意图。

图13为根据一个实施方案Q、R、S、T、U和V型催化剂的由CO和O2的延迟时间作为储氧能力(OSC)值的比较的示意图。

图14为根据一个实施方案P型和W型催化剂的NOx、CO和HC的T50值的比较的示意图。

图15为根据一个实施方案P型和W型催化剂的NOx、CO和HC的T90值的比较的示意图。

具体实施方式

在这里参考在附图中所示的实施方案详细描述本发明,附图构成本文的一部分。可以使用其他实施方案和/或进行其他修改而不背离本发明的范围或主旨。具体实施方式中所述的示例性实施方案并不意欲限制所述主题。

定义

在这里使用的以下术语具有以下定义:

“空气/燃料比或A/F比”是指燃烧过程中存在的空气与燃料的质量比。

“煅烧”是指在空气存在下,对固体材料进行的热处理过程,以在固体材料熔点以下的温度产生热解、相变或者去除挥发性组分。

“催化剂”是指可以在一种或多种其他材料的转化过程中使用的一种或多种材料。

“催化剂系统”是指包括催化剂(例如包含基质、涂层和/或覆层的至少两个层的PGM催化剂或ZPGM催化剂)的任何系统。

“转化”是指至少一种材料化学变化为一种或多种其他材料。

“贫燃条件”是指R值小于1,氧化剂过量的废气条件。

“车载诊断”或者“OBD”是指车辆自我诊断和报告的能力,其提供各种车辆子系统的状态的评估。

“铂族元素(PGM)”是指铂、钯、钌、铱、锇和铑。

“R值”是指气体混合物(以氧的摩尔量计)总的还原势除以气体混合物(以氧的摩尔量计)总的氧化势得到的值。

“富燃条件”是指R值大于1,还原剂过量的废气条件。

“合成方法”是指由不同的前体材料发生化学反应和/或混合来形成催化剂的过程。

“T50”是指50%的物质转化的温度。

“T90”是指90%的物质转化的温度。

“三效催化剂”是指能够进行三个同步任务的催化剂,三个同步任务是氮氧化物还原为氮气、一氧化碳氧化为二氧化碳和未燃烧的碳氢化合物氧化为二氧化碳和水。

附图说明

本发明描述包括铑和铁的催化剂组合物在三效催化剂(TWC)中的使用。

催化剂结构

图1为根据一个实施方案用于三效催化剂(TWC)样品的催化剂结构示意图,其包括基质,和涂层、浸渍层和/或覆层中的一个或多个。在图1中,TWC结构100包括基质102、涂层104、浸渍层106和覆层108。在一些实施方案中,涂层104沉积在基质102上,浸渍层106沉积在涂层104的顶部和/或之中,覆层108沉积在浸渍层106上。在其他实施方案中,与图1所示的层相比,TWC结构100可以包括附加的、更少的或不同排列的组分和层。

在一些实施方案中,基质102被实施为整体陶瓷基质。在这些实施方案中,基质102具有适合于在期望用途中使用的直径、壁厚和孔密度。在一个实施例中,基质102被实施为整体堇青石基质,其具有约4.16英寸至约4.66英寸的直径。在这个实施例中,基层102被实施为具有大约3.5毫英寸的壁厚。进一步地,对于这个实施例,基质102被实施为具有约400孔每平方英寸(CPSI)至约600CPSI的孔密度。

在一些实施方案中,涂层104被实施为包括储氧材料、耐火载体氧化物、铂族金属(PGM)材料、铁及其类似物的一种或多种的层。在这些实施方案中,涂层104通过用浆料以合适的涂覆浓度涂覆基质形成。在一些实施方案中,所述浆料包括储氧材料,其包括氧化铈、氧化锆、氧化钕、氧化钇、氧化镧、氧化镨及其类似物中的一种或多种。在其他实施方案中,所述浆料包括耐火载体氧化物,例如诸如掺杂的氧化锆。在还有一些实施方案中,所述浆料包括包含氧化铁的储氧材料粉末,并且施用硝酸铑溶液。在这些实施方案中,涂覆的基质在期望的温度下煅烧。

在一个实施例中,通过用浆料涂覆基质102形成涂层104,涂覆浓度为约58克每升(g/L)至约90g/L。在一些实施方案中,所述浆料包括铈锆-铪钕钇(CZNY)储氧材料。在这些实施方案中CZNY OSM为萤石相OSM,其包括31wt%氧化铈、58.3wt%锆-铪氧化物、5.5wt%氧化钕和5.2wt%氧化钇。在其他实施方案中,铑溶液(例如硝酸铑)用合适的方法(例如诸如控制pH的表面吸附)以期望的材料负载量加入到所述CZNY OSM中。在这些实施方案中,用所述浆料涂覆基质102后,基质102在550℃煅烧4小时。

在另一个实施例中,通过用浆料涂覆基质102形成涂层104,涂覆浓度为约87g/L至约100g/L。在一些实施方案中,所述浆料包括铈锆镧(CZL)OSM、铈锆钕(CZN)OSM、铈锆钇(CZY)OSM、铈锆(CZ)OSM、铈锆镧镨(CZLP)OSM及其类似物中的一种或多种。在这些实施方案中,所述OSM是萤石相OSM,其包括约10wt%至约75wt%的氧化铈、约25wt%至约90wt%的锆-铪氧化物、约0wt%至约15wt%的氧化镧、约0wt%至约15wt%的氧化钕、约0wt%至约15wt%的氧化钇和约0wt%至约15wt%的氧化镨。对于这些实施方案,用所述浆料涂覆基质102后,基质102在550℃煅烧4小时。

在另一实施例中,通过用浆料涂覆基质102形成涂层104,涂覆浓度大为约60g/L。在一些实施方案中,所述浆料包括掺杂的氧化锆载体氧化物。在这些实施方案中,所述掺杂的氧化锆包括90wt%锆-铪氧化物和10wt%氧化镨。进一步地,对于这些实施方案,用所述浆料涂覆基质102后,基质102在550℃煅烧4小时。在另一实施例中,通过用浆料涂覆基质102形成涂层104,涂覆浓度为100g/L。在一些实施方案中,所述浆料包括用铑浸渍的铁/OSM粉末,控制所述浆料的pH使得铑良好地分散到所述OSM粉末的表面上。对于这些实施方案,所述铁/OSM粉末包括约4wt%至约20wt%负载量(包括大为约7.36wt%的负载量)的铁。进一步地,对于这些实施方案,所述铑可以以约1g/ft3至20g/ft3以上的负载量(包括大约4.8g/ft3的负载量)被加入。进一步地,对于这些实施方案,用所述浆料涂覆基质102后,基质102在550℃煅烧4小时。在其他实施方案中,涂层104被实施为用常规技术形成的常规涂层。

在一些实施方案中,浸渍层106被实施为包括一种或多种催化剂组合物的层,所述层在涂层104上形成。在这些实施方案中,所述催化剂组合物包括PGM和/或非贵金属中的一种或多种。在一个实施例中,具有涂层104的基质102用包括硝酸铑的水基溶液浸渍,随后在大约550℃煅烧。在这个实施例中,施用的溶液中的硝酸铑的浓度是这样的,即在最终部分的铑材料的负载量为约2.9g/ft3至约9.8g/ft3。在另一个实施例中,具有涂层104的基质102用包括硝酸铑,和硝酸铁和/或硝酸铈的一种或多种的水基溶液浸渍,随后在大约550℃煅烧。在这个实施例中,施用的溶液中的硝酸铁的浓度是这样的,即在最终部分的铁含量为约60g/ft3至约630g/ft3。进一步地,对于这个实施例,施用的溶液中的硝酸铈的浓度是这样的,即在最终部分的铈含量为约499g/ft3至约1497g/ft3

在一些实施方案中,涂层104用包括硝酸钯的水基溶液浸渍,随后在大约550℃煅烧,来产生浸渍层106。在其他实施方案中,浸渍层106包括一种或多种催化剂或基本上不含PGM的催化剂前驱体,例如二元Cu-Mn尖晶石、三元Cu-Mn尖晶石及其类似物。

在一些实施方案中,覆层108被实施为形成在涂覆有涂层104和/或浸渍层106中的一种或多种的基质上的层。在一些实施方案中,覆层108被实施为基本上类似于涂层104的层。在这些实施方案中,所述基质用浆料以期望的涂覆浓度涂覆,所述浆料包括储氧材料、耐火载体氧化物、被铑浸渍的铁/OSM粉末及其类似物中的一种或多种。在这些实施方案中,涂覆的基质随后在期望的温度煅烧。在其他实施方案中,覆层108被实施为包括OSM和耐火载体氧化物中的一种或多种的层,其通过将包括所述OSM和/或所述耐火载体氧化物的浆料施用到所述基质上形成,随后在期望的温度煅烧。在这些实施方案中,第二浸渍层(未示出)可以施用到覆层108上。在一个实施例中,所述第二浸渍层被实施为基本上类似于浸渍层106的浸渍层。在另一个实施例中,通过将硝酸钯溶液施用到覆层108上形成所述第二浸渍层。在这个实施例中,钯的负载量为5g/ft3至约50g/ft3

在其他实施方案中,与图1所示的层相比,TWC结构100包括附加的、更少的或不同排列的层。在一个实施例中,TWC结构100包括基质102和涂层104。在这个实施例中,涂层104被实施为包括用铑浸渍的铁/OSM粉末的层。在另一个实施例中,TWC结构100包括基质102、涂层104和覆层108。在这个实施例中,涂层104被实施为包括OSM和稳定的氧化铝的层,其以期望的负载量用钯浸渍。进一步地,对于这个实施例,覆层108被实施为包括OSM,以期望的材料负载量用铑并以期望的材料负载量用铁浸渍的层。

催化剂测试方法

在一些实施方案中,催化剂的性能可以通过进行起燃测试来评估,以确定氮氧化物(NOx)、一氧化碳(CO)和碳氢化合物(HC)转化50%时的温度(T50)。在其他实施方案中,催化剂的效率还可以通过进行起燃测试来评估,以确定NOx、CO和HC转化90%时的温度(T90)。

在一些实施方案中,与催化剂有关的T50和T90的值通过从催化剂取得岩心样品(例如通过使用金刚石岩心钻机)来评估。在这些实施方案中,随后在受控的化学环境中使用热量用实验方法老化岩心样品,来模拟与驾驶车辆期望的英里数有关的催化剂的老化。在一个实施例中,在化学环境中具有2英寸长度的1英寸直径的岩心在1000℃老化,所述化学环境包括10摩尔百分比(mol%)的水蒸气、10mol%二氧化碳、余量的氮气,和变化量的一氧化碳和氧气。在这个实施例中,老化实验过程模拟与驾驶车辆约50,000英里至约120,000英里有关的热老化。对于这个实施例,老化实验过程包括模拟使用高氧含量的燃料切断类的事件(例如,贫燃条件/事件)和低于13空气/燃料(A/F)单位的富燃事件。在这个实施例中,随后在所述化学环境中将岩心冷却到约200℃至约300℃的温度,并从老化实验系统中取出。

在另外的实施方案中,在能够至少测试TWC性能的台式流动反应器上测试所述岩心样品。在这些实施方案中,岩心在所述台式反应器中于600℃在轻度富燃气流(例如定义中包括的R值1.05)中用频率为1Hz的几乎对称的贫气和富气微扰来时效至少10分钟。在一个实施例中,用起燃测试来确定催化性能。在这个实施例中,用于测试的气流包括8000ppm一氧化碳、2000ppm氢气、400ppm(C3)丙烯、100ppm(C3)丙烷、1000ppm一氧化氮、100,000ppm水、100,000ppm二氧化碳和余量的氮气。进一步地,对于这个实施例,气流中的氧气量作为方波以0.5Hz频率从4232ppm至8671ppm变化。进一步地,对于这个实施例,气流的平均R值为1.05,氧气中的方波变化给出约0.4A/F单位的空燃比。在这个实施例中,空速在21.1℃、1标准大气压的标准条件下为约90,000h-1,以被岩心表面封闭的总体积作为计算空速的体积。在另一个实施例中,温度在100℃稳定2分钟,气体温度40℃每分钟攀升直到500℃。在这个实施例中,用于加热岩心夹持器的气体层以同样的设定点温度攀升。进一步地,对于这个实施例,然后确定各气体种类的转化,记录转化50%和90%时的温度点。

在其他实施方案中,可以通过进行宽脉冲微扰测试(WPPT)来评估催化剂的性能,以确定所述催化剂的TWC性能和动力学限制的还原/氧化存储能力。在这些实施方案中,WPPT显示的是环外A/F冲程期间催化剂性能,因此与常规起燃测试相比,WPPT更接近实际驾驶周期。在这个实施例中,当提供的气流的平均R值为1.05,并且结合在氧气中的方波变化具有约8秒的周期时,结果是空燃比为约0.8A/F单位。进一步地,对于这个实施例,在2分钟的停留时间后,每秒测量NOx、HC和CO排放物,并且每隔5分钟取一次平均值。在这个实施例中,计算每种污染物的净转化,并且当催化转化器施用到车辆或固定式发动机时,高转化与来自催化转化器中的较低排放物有关。

在其他实施方案中,在约525℃的温度下,在催化剂样品上进行标准等温储氧能力(OSC)测试,供应稀释在惰性氮气(N2)中的浓度为约4000ppm的O2模拟贫燃循环,或者供应稀释在惰性N2中的浓度为约8,000ppm的CO模拟富燃循环。在这些实施方案中,等温振荡OSC测试在石英反应器中进行,使用的空速(SV)为60,000hr-1,在干燥的N2环境中从室温升到约525℃的温度。进一步地,对于这些实施方案,当达到约525℃的温度时,通过使O2流过反应器内的催化剂样品而开始等温OSC测试。在约240秒后,供应的气流切换为CO,也使CO流过反应器内的催化剂样品240秒。在一些实施方案中,OSC测试允许在气流的不同时间在CO和O2气流之间的振荡条件,从而允许收集与气流内的CO和O2量有关的数据。在这些实施方案中,允许O2和CO通过空的测试反应器(在OCS测试之前或之后)来建立测试反应器基准。

在一些实施方案中,通过在标准等温振荡条件下使用CO和O2脉冲来确定催化剂样品的OSC稳定性。在这些实施方案中,OSC测试有助于确定扩展数量的富燃循环和贫燃循环的O2和CO的延迟时间,来验证催化剂样品的OSC稳定性。进一步地,对于这些事实方案,O2和CO的延迟时间为在反馈信号内分别达到50%的O2和CO浓度所需的时间。O2和CO的延迟时间作为确定催化剂样品的有效储氧能力的参数。

催化剂测试

在一些实施方案中,为了催化活性的对比和确定本文公开的材料的催化转化效率生产参考样品。在这些实施方案中,用常规材料和合成方法生产第一参考催化剂(REF#1)和第二参考催化剂(REF#2)。进一步地,对于这些实施方案,对于REF#1,将1L具有4.16英寸直径、400CPSI孔密度和3.5毫英寸壁厚的堇青石基质用浆料以58g/L的涂覆浓度涂覆。进一步地,对于这些实施方案,所述浆料包括专用的铈、锆、钕、钇氧化物、萤石相(CZNY)OSM。在一个实施例中,所述专用的CZNY OSM为萤石相OSM,其包括31wt%氧化铈、58.3wt%锆-铪氧化物、5.5wt%氧化钕和5.2wt%氧化钇。在这些实施方案中,通过pH控制的表面吸附以4.8g/ft3的负载浓度将铑加入浆料中的氧化物中。进一步地,对于这些实施方案,随后煅烧样品以实现陶瓷层在堇青石基质表面上的涂覆附着,从而形成涂层。进一步地,对于这些实施方案,从所述堇青石基质提取2英寸岩心并且在富氮环境中煅烧,温度从约室温上升到约1000℃。

在其他实施方案中,对于REF#2,将1L具有4.16英寸直径、400CPSI孔密度和3.5毫英寸壁厚的堇青石基质用浆料以90g/L的涂覆浓度涂覆。在这些实施方案中,所述浆料包括专用的铈、锆、钕、钇氧化物、萤石相(CZNY)OSM。在一个实施例中,所述专用的CZNY OSM为萤石相OSM,其包括31wt%氧化铈、58.3wt%锆-铪氧化物、5.5wt%氧化钕和5.2wt%氧化钇。在这些实施方案中,通过pH控制的表面吸附以9.8g/ft3的负载浓度将铑加入浆料中的氧化物中。对于这些实施方案,随后煅烧样品以实现陶瓷层在堇青石基质表面上的涂覆附着,从而形成涂层。

表1.REF#1和REF#2催化剂的T50值、T90值、550℃时WWPT排放物转化百分比值、400℃时WWPT排放物转化百分比值和525℃时的延迟时间。

在一些实施方案中,生产包括OSM并用铑浸渍的一组样品,其用于催化性能的比较并确定将不同量的铁浸渍到铑催化剂中的影响。在这些实施方案中,用基本上类似于图1中描述的方法,生产第一催化剂(A型)、第二催化剂(B型)和第三催化剂(C型)。进一步地,对于这些实施方案,将1L具有4.16英寸直径、400CPSI孔密度和3.5毫英寸壁厚的堇青石基质用浆料涂覆,浆料包括负载量为58g/L的CZNY OSM,其中通过pH控制的表面吸附以4.8g/ft3的负载量将铑加入所述CZNY OSM的表面。在这些实施方案中,所述CZNY OSM为萤石相OSM,其包括31wt%氧化铈、58.3wt%锆-铪氧化物、5.5wt%氧化钕和5.2wt%氧化钇。进一步地,对于这些实施方案,煅烧涂覆的基质并提取直径为2英寸的岩心。在这些实施方案中,岩心样品以这样的方式用硝酸铁浸渍,即岩心中的铁含量为A型催化剂的涂覆物质的1%、B型催化剂的涂覆物质的2%、C型催化剂的涂覆物质的4%。进一步地,对于这些实施方案,在富氮环境中煅烧岩心,温度从约室温上升到约1000℃。

表2.A型、B型和C型催化剂的T50值和在550℃时的WPPT排放物转化百分比值。

在其他实施方案中,生产包括CZNY OSM并用铑和铁浸渍的另一组样品,其用于催化性能的比较和确定将不同量的铁浸渍到铑催化剂中的影响。在这些实施方案中,用基本上类似于图1的方法生产第一催化剂(D型)、第二催化剂(E型)、第三催化剂(F型)、第四催化剂(G型)、第五催化剂(H型)、第六催化剂(I型)和第七催化剂(J型)。进一步地,对于这些实施方案,将1L具有4.16英寸直径、400CPSI孔密度和3.5毫英寸壁厚的的堇青石基质用浆料涂覆,浆料包括负载量为90g/L的CZNY OSM。在这些实施方案中,所述CZNY OSM为萤石相OSM,其包括31wt%氧化铈、58.3wt%锆-铪氧化物、5.5wt%氧化钕和5.2wt%氧化钇。进一步对低地,对于这些实施方案,煅烧涂覆的基质以实现陶瓷涂覆层在堇青石上的附着,从而形成涂层。在这些实施方案中,涂覆的基质随后用硝酸铑和硝酸铁浸渍,硝酸铑的负载浓度为9.8g/ft3,硝酸铁的负载浓度对于D型催化剂为60g/ft3、对于E型催化剂为90g/ft3、对于F型催化剂为150g/ft3、对于G型催化剂为210g/ft3、对于H型催化剂为105g/ft3、对于I型和J型催化剂为210g/ft3。进一步地,对于这些实施方案,随后煅烧基质。进一步地,对于这些实施方案,对于H、I和J型催化剂,涂覆的基质第二次浸渍硝酸铁,负载浓度为210g/ft3。进一步地,对于这些实施方案,煅烧基质。进一步地,对于这些实施方案,对于J型催化剂,使涂覆的基质第三次浸渍硝酸铁,负载浓度为210g/ft3。对于这些实施方案,随后煅烧基质并从所述基质提取2英寸的岩心。

表3:D型、E型、F型、G型、H型、I型和J型催化剂的T50值、T90值、550℃时的WWPT排放物转化百分比值和525℃时的延迟时间。

在其他实施方案中,生产包括期望的OSM并用铑和铁浸渍的另一组样品,其用于催化性能的对比和确定不同OSM对铑铁催化剂催化性能的影响。在这些实施方案中,用基本上类似于图1描述的方法生产第一催化剂(K型)、第二催化剂(L型)、第三催化剂(M型)、第四催化剂(N型)、第五催化剂(O型)和第六催化剂(P型)。进一步地,对于这些实施方案,将1L具有4.16英寸直径、400CPSI孔密度和3.5毫英寸壁厚的堇青石基质用浆料涂覆,浆料包括萤石相OSM,其负载量对于K型催化剂为87g/L、对于L型催化剂为88g/L、对于M型催化剂为90g/L、对于N型催化剂为89g/L、对于O型催化剂为86g/L、对于P型催化剂为90g/L。进一步地,对于这些实施方案,所述OSM对于K型催化剂为CZL OSM、对于L型催化剂为CZN OSM、对于M型催化剂为CZY OSM、对于N型催化剂为CZLP OSM、对于O型催化剂为CZ OSM、对于P型催化剂为CZNY OSM。在这些实施方案中,所述CZL OSM包括30wt%氧化铈、60wt%锆-铪氧化物、10wt%氧化镧;所述CZN OSM包括30wt%氧化铈、60wt%锆-铪氧化物、10wt%氧化钕;所述CZY OSM包括30wt%氧化铈、60wt%锆-铪氧化物、10wt%氧化钇;所述CZLP OSM包括30wt%氧化铈、60wt%锆-铪氧化物、5wt%氧化镧和5wt%氧化镨;所述CZ OSM包括75wt%氧化铈、30wt%锆-铪氧化物;所述CZNY OSM包括31wt%铈、58.3wt%锆-铪、5.5wt%钕和5.2wt%氧化钇。进一步地,对于这些实施方案,煅烧涂覆的基质以实现陶瓷涂覆层在堇青石基质上的附着,从而形成涂层。在这些实施方案中,涂覆的基质随后用硝酸铑以负载浓度2.9g/ft3和硝酸铁以负载浓度210g/ft3进行浸渍。对于这些实施方案,随后煅烧基质并从所述堇青石基质中提取2英寸的岩心。

表4:K型、L型、M型、N型、O型和P型催化剂的T50值、T90值、525℃时的延迟时间和OSM组成。

在其他实施方案中,生产包括掺杂的氧化锆并用铑、铁,和铈和/或钇中的一种或多种浸渍的另一组样品,其用于催化性能的对比和确定浸渍不同量的铈和钇对铑铁催化剂的影响。在这些实施方案中,用基本上类似于图1描述的方法生产第一催化剂(Q型)、第二催化剂(R型)、第三催化剂(S型)、第四催化剂(T型)、第五催化剂(U型)和第六催化剂(V型)。进一步地,对于这些实施方案,将1L具有4.66英寸直径、600CPSI孔密度和3.5毫英寸壁厚的堇青石基质用浆料涂覆,浆料包括负载量为90g/L的耐火载体氧化物。在这些实施方案中,所述耐火载体氧化物为掺杂的氧化锆,其包括90wt%锆-铪氧化物和10wt%氧化镨。进一步地,对于这些实施方案,煅烧涂覆的基质以实现陶瓷涂覆层在堇青石基质上的附着,从而形成涂层。在这些实施方案中,涂覆的基质随后用硝酸铑以负载浓度9.8g/ft3和硝酸铁以负载浓度210g/ft3进行浸渍。进一步地,对于这些实施方案,基质另外用硝酸铈浸渍,其负载浓度对于Q和T型催化剂为499g/ft3、对于R型催化剂为998g/ft3、对于S型催化剂为1497g/ft3、对于T型和U型催化剂为0g/ft3,并用硝酸钇浸渍,其负载浓度对于T型催化剂为31.7g/ft3、对于U型催化剂为158g/ft3、对于V型催化剂为317g/ft3。进一步地,对于这些实施方案,随后煅烧基质以在多孔涂层内形成氧化物并从所述堇青石基质中提取2英寸的岩心。

表5:Q型、R型、S型、T型、U型和V型催化剂的T50值、T90值、525℃时的延迟时间、铈负载浓度、钇负载浓度。

在其他实施方案中,制备包括用铑浸渍的涂覆有铁/OSM粉末的基质的另一个样品,以确定通过用大量粉末涂层涂覆堇青石基质形成铑铁催化剂的可行性。在这些实施方案中,用基本上类似于图1的方法生产W型催化剂。进一步地,对于这些实施方案,将2千克包括31wt%铈、58.3wt%锆-铪、5.5wt%钕和5.2wt%氧化钇的萤石相CZNY OSM粉末用硝酸铁溶液浸渍,硝酸铁溶液总的液体体积小于OSM孔隙体积,以此形成湿粉末。得到的湿粉末首先在大约120℃的温度干燥直到溶液中的全部溶剂基本上蒸发,然后在750℃灼烧约2小时。在这些实施方案中,形成的粉末包括7.36wt%的铁。进一步地,对于这些实施方案,用所述粉末和硝酸铑溶液制备浆料,调节浆料的pH使得铑附加在CZNY OSM表面上。用所述浆料以100g/L的负载量涂覆具有4.66英寸直径、600CPSI孔密度和3.5毫英寸壁厚的堇青石基质。随后煅烧基质以实现涂覆的陶瓷层在堇青石基质上的附着,从而形成涂层,然后从所述堇青石基质中提取2英寸的岩心。

表6:W型催化剂的T50值和T90值。

图2为根据一个实施方案REF#1(参见表1)与A、B和C型催化剂(参见表2)的NOx、CO和HC的T50值的比较的示意图。在图2中,T50的图表200说明了与A型催化剂202、B型催化剂204、C型催化剂206和REF#1催化剂208的每种催化剂有关的NOx 220、CO 222和HC 224转化50%的温度。

在一些实施方案中,随着铁负载浓度从A型202中的1wt%增加到C型206中的4wt%,观察到转化50%的温度值降低的趋势。在这些实施方案中,可以观察到与REF#1 208相比,A型202、B型204和C型206有利,从而显示了与催化剂中包含铁有关的显著的改善。

图3为根据一个实施方案REF#1(参见表1)与A、B和C型催化剂(参见表2)的NOx、CO和HC的排放物转化百分比值的比较的示意图。图3中,转化图表300说明与在500℃进行WPPT的A型催化剂302、B型催化剂304、C型催化剂306和REF#1催化剂308的每种催化剂有关的NOx 320、CO 322和HC 324的排放物转化百分比值。

在一些实施方案中,随着铁负载浓度从A型202的1wt%增加到C型206的4wt%,观察到排放物转化百分比值增加的趋势。在这些实施方案中,观察到与REF#1 208相比,A型202、B型204和C型206有利,从而显示了与催化剂中包含铁有关的改善。

图4为根据一个实施方案REF#2(参见表1)与D、E、F、G、H、I和J型催化剂(参见表3)的NOx、CO和HC的T50值的比较的示意图。在图4中,T50图表400说明了与D型402、E型404、F型406、G型408、H型410、I型412、J型414和REF#2 416的每种催化剂有关的NOx 420、CO 422和HC 424转化50%的温度。

在一些实施方案中,随着铁负载量从D型402的60g/ft3增加到I型412的420g/ft3,通常可以观察到转化50%的温度值降低的趋势,负载浓度为630g/ft3的J型414与I型412相比,显示了T50值的增加。在这些实施方案中,观察到与REF#2 416相比,D型402、E型404、F型406、G型408、H型410、I型412和J型414有利,从而显示了与催化剂中含最高至临界值(例如I型412)的铁有关的改善。进一步地,对于这些实施方案,还观察到当与G型催化剂408相比时,I型催化剂412有利,G型催化剂408可能需要更低的铁负载量,其也可能需要更少的浸渍步骤。

图5为根据一个实施方案REF#2(参见表1)与D、E、F、G、H、I和J型催化剂(参见表3)的NOx、CO和HC的T90值的比较的示意图。在图5中,T90图表500说明了与D型502、E型504、F型506、G型508、H型510、I型512、J型514和REF#2 516的每种催化剂有关的NOx 520、CO 522和HC 524转化90%的温度。

在一些实施方案中,随着铁负载量从D型502的60g/ft3增加到I型412的420g/ft3,通常可以观察到转化90%的温度值降低的趋势,负载浓度为630g/ft3的J型414与I型412相比,显示了T90值的增加。在这些实施方案中,可以观察到与REF#2 516相比,D型502、E型504、F型506、G型508、H型510、I型512和J型514有利,从而显示了与催化剂中含最高至临界值(例如I型512)的铁有关的改善。进一步地,对于这些实施方案,还观察到当与G型催化剂508相比时,I型催化剂512有利,G型催化剂508可能需要更低的铁负载量,其也可能需要更少的浸渍步骤。

图6为根据一个实施方案REF#2(参见表1)与D、E、F、G、H、I和J型催化剂(参见表3)的NOx、CO和HC的排放物转化百分比值的比较的示意图。图6中,转化图表600说明与400℃进行WPPT的D型602、E型604、F型606、G型608、H型610、I型612、J型614和REF#2616的每种催化剂有关的NOx 620、CO 622和HC 624的排放物转化百分比值。

在这些实施方案中,观察到与REF#2 616相比,D型602和E型604的NOx 620的排放物转化百分比值不利,CO 622和HC 624的排放物转化百分比值有利。进一步地,对于这些实施方案,与REF#2 616相比,F型606、G型608、H型610、I型612和J型614的NOx 620、CO 622和HC 624的排放物转化百分比值有利。进一步地,对于这些实施方案,比较表明了与包含高于临界值(例如F型606)和达到平台(例如I型612和J型614)的铁有关的在NOx 620和CO 622的转化方面催化性能的总体改善情况。

图7为根据一个实施方案REF#2(参见表1)与D、E、F、G、H、I和J型催化剂(参见表3)的储氧能力(OSC)的比较的示意图。在图7中,延迟时间图表700说明了与D型702、E型704、F型706、G型708、H型710、I型712、J型714和REF#2 716催化剂有关的,在反馈信号中达到CO 720和O2 722浓度的50%需要的延迟时间。

在这些实施方案中,随着铁浓度从D型702的约60g/ft3增加到J型714的约630g/ft3,观察到延迟时间增加的趋势,显示了随着铑铁催化剂中铁浓度的增加,储氧能力(OSC)增加。进一步地,对于这些实施方案,观察到与REF#2 716相比,D型702、E型704、F型706、G型708、H型710、I型712和J型714有利,从而显示了与催化剂中含铁有关的改善。进一步地,对于这些实施方案,还观察到当与D型702、E型704、F型706和G型708相比时,H型710、I型712、J型714有利,D型702、E型704、F型706和G型708可能需要更低的铁负载量来配合OSC和车载诊断(OBD)需要。另外,对比延迟图表700中OSC的趋势和T50图表400中T50值趋势,观察到OSC改善和T50性能改善仅有部分的关系。

图8为根据一个实施方案K、L、M、N、O和P型催化剂(参见表4)的NOx、CO和HC的T50值的比较的示意图。在图8中,T50图表800说明了与K型802、L型804、M型806、N型808、O型810和P型812的每种催化剂有关的NOx 820、CO 822和HC 824转化50%的温度值。

在一些实施方案中,L型804催化剂显示出最低的T50温度值,并且因此显示出最佳的T50性能。在这些实施方案中,当与L型804催化剂相比时,N型808催化剂显示出相似但较为不利的T50值。进一步地,对于这些实施方案,K型802、M型806、P型812催化剂显示出相似的T50性能,O型810显示出最不利的性能。进一步地,对于这些实施方案,K型802、L型804、M型806、N型808、O型810和P型812催化剂显示出适于在催化剂系统中使用的T50值。

图9为根据一个实施方案K、L、M、N、O和P型催化剂(参见表4)的NOx、CO和HC的T90值的比较的示意图。在图9中,T90图表900说明了与K型902、L型904、M型906、N型908、O型910和P型912的每种催化剂有关的NOx 920、CO 922和HC 924转化90%的温度值。

在一些实施方案中,L型904催化剂显示出最低的T90温度值,并且因此显示出最佳的T90性能。在这些实施方案中,当与L型904催化剂相比时,K型902催化剂显示出相似但较为不利的T90值,尤其是对于与HC 924有关的T90值。进一步地,对于这些实施方案,K型902、M型906、P型912催化剂显示出增加的T90性能,并且O型910显示出最不利的性能。进一步地,对于这些实施方案,K型902、L型904、M型906、N型908、O型910和P型912催化剂显示出适于在催化剂系统中使用的T90值。进一步地,对于这些实施方案,从T90图表900中观察到对于HC 924的转化,镧与较低的催化性能有关。

图10为根据一个实施方案REF#2和K、L、M、N和P型催化剂(参见表4)的储氧能力(OSC)的比较的示意图。在图10中,延迟时间图表1000说明了与K型1022、L型1004、M型1006、N型1008和P型1010催化剂有关的在反馈信号中达到CO 1020和O2 1022浓度的50%需要的延迟时间。

在一些实施方案中,L型1004和M型1006催化剂显示出了最长的CO 1020和O2 1022延迟时间,并且因此显示出最佳的OSC。在这些实施方案中,当与L型1004和M型1006催化剂相比时,P型1010催化剂显示出相似但较为不利的OSC。进一步地,对于这些实施方案,K型1002和N型1008催化剂显示出较短的延迟时间,表明最不利的OSC。进一步地,对于这些实施方案,K型1022、L型1004、M型1006、N型1008和P型1010催化剂显示出适于在催化剂系统中使用的OSC。进一步地,对于这些实施方案,从延迟图表1000中观察到镧与较短的CO和O2延迟时间有关。

图11为根据一个实施方案Q、R、S、T、U和V型催化剂(参见表5)的NOx、CO和HC的T50值的比较的示意图。在图11中,T50图表1100说明了与Q型1102、R型1104、S型1106、T型1108、U型1110和V型1112的每种催化剂有关的NOx 1120、CO 1122和HC 1124转化50%的温度值。

在一些实施方案中,在Q型1102、R型1104和S型1106催化剂中,观察到铈负载量与NOx 1120、CO 1122和HC 1124转化50%的温度值之间的非线性关系。在这些实施方案中,T型1108和U型1110催化剂的NOx 1120、CO 1122和HC 1124的T50值相似,表明不包括铈的催化剂显示出机能性的T50值。进一步地,对于这些实施方案,包括铈和钇的V型1112催化剂与Q型催化剂(其中只包括铈)相比显示出总体更有利的性能。

图12为根据一个实施方案Q、R、S、T、U和V型催化剂(参见表5)的NOx、CO和HC的T90值的比较的示意图。在图12中,T90图表1200说明了与Q型1202、R型1204、S型1206、T型1208、U型1210和V型1212的每种催化剂有关的NOx 1220、CO 1222和HC 1224转化90%的温度值。

在一些实施方案中,当与T型1208和U型1210催化剂相比时,在Q型1202、R型1204和S型1206催化剂中观察到铈负载量和NOx 1220、CO 1122和HC 1224转化90%的温度值之间的非线性的有益的关系。在这些实施方案中,当与R型1204和S型1206相比时,观察到Q型1202的HC 1224的T90值明显较高。在这些实施方案中,T型1208和U型1210催化剂的NOx 1220、CO 1222和HC 1224的T90值是不相似的,因为与U型1210相比,T型1208的NOx 1220和HC 1224的T90值明显更高。进一步地,对于这些实施方案,与T型1208有关的NOx 1220和HC 1224的T90值较高可能是与T型1208催化剂有关的OSC较低的缘故。进一步地,对于这些实施方案,与U型1210相比,T型1208的CO 1222和HC 1224的T90值稍高,表明不包括铈的催化剂可以显示出CO 1222和HC 1224的机能性的T90值。进一步地,对于这些实施方案,当与Q型1202、R型1204、S型1206、T型1208和U型1210催化剂相比时,包括铈和钇的V型1212催化剂显示出通体更有利的性能。

图13为根据一个实施方案Q、R、S、T、U和V型催化剂(参见表5)的储氧能力(OSC)的比较的示意图。在图13中,延迟时间图表1300说明了与Q型1302、R型1304、S型1306、T型1308、U型1310和V型1312催化剂有关的在反馈信号中达到CO 1320和O2 1322浓度的50%需要的延迟时间。

在一些实施方案中,R型1304和S型1306催化剂显示出最长的CO 1020和O2 1022延迟时间,并且因此显示出最佳OSC。在这些实施方案中,当与R型1304和S型1306催化剂相比时,Q型1302催化剂显示出较不利的OSC。进一步地,对于这些实施方案,T型1308和U型1310催化剂显示出较短的延迟时间,表明最不利的OSC。进一步地,对于这些实施方案,当与R型1304和S型1306相比时,V型1312显示出相似但较不利的OSC。在这些实施方案中,当与T型1308和U型1310催化剂相比时,在Q型1302、R型1304、S型1306和V型1312催化剂中,随着铈的添加OSC改善。进一步地,对于这些实施方案,随着钇的添加OSC改善,正如对比V型1312催化剂和Q型1302催化剂以及U型1310催化剂和U型催化剂1310所观察到的。

在这些实施方案中,Q型1302、R型1304、S型1306、T型1308、U型1310和V型1312催化剂显示出适于在催化剂系统中使用的OSC。

图14为根据一个实施方案P型(参见表4)和W型(参见表5)催化剂的NOx、CO和HC的T50值的比较的示意图。在图14中,T50图表1400说明了与P型1402和W型1404的每种催化剂有关的NOx 1420、CO 1422和HC 1424转化50%的温度值。

在一些实施方案中,W型1404催化剂显示出最低的T50温度值,并且因此显示出最佳的T50性能。在这些实施方案中,当与W型1404催化剂相比时,P型1402催化剂显示出相似但较不利的T50值。进一步地,对于这些实施方案,P型1402和W型1404催化剂显示出适于在催化剂系统中使用的T50值。

图15为根据一个实施方案P型(参见表4)和W型(参见表5)催化剂的NOx、CO和HC的T90值的比较的示意图。在图14中,T90图表1500说明了与P型1502和W型1504的每种催化剂有关的NOx 1520、CO 1522和HC 1524转化90%的温度值。

在一些实施方案中,W型1504催化剂总体显示出最低的T90温度值,并且因此显示出最佳的T90性能。在这些实施方案中,当与W型1504催化剂相比时,P型1502催化剂通常显示出相似但较不利的T90值。进一步地,对于这些实施方案,P型1502和W型1504催化剂显示出适于在催化剂系统中使用的T50值。

虽然已经公开了多个方面和实施方案,但是也可以考虑其他方面和实施方案。公开的多个方面和实施方案是用于说明的目的,而不是为了限制,真正的范围和主旨通过下面的权利要求表明。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1