基于铜片的花状、落叶状碱式磷酸铜复合材料及其制备方法和应用与流程

文档序号:12353386阅读:504来源:国知局
本发明属于无机光催化材料
技术领域
:,具体涉及一种基于铜片生长的花状、落叶状碱式磷酸铜复合材料及其制备方法和应用。
背景技术
::与传统的污水处理法相比,半导体光催化技术具有可将染料等有机物完全分解、反应条件温和、能耗低、高效、污染小等优点,在环境治理方面具有广阔的应用前景[1]。光催化降解有机污染废水的原理是光线(紫外光、可见光)照射到光催化剂上,光催化剂产生光生电子和空穴,进而产生氧化性较强的羟基自由基,能氧化大部分有机污染物。大部分磷酸盐由于无毒无味、无公害,良好的溃散性、耐高温性和独特的化学结构,被广泛应用于催化、食品生产等领域。作为光催化剂磷酸银的研究较为广泛与成熟[2-4],其具有间接带隙,价带位置较低,可以产生具有强氧化能力的空穴,光生电子的迁移速率远远大于光生空穴;另外,磷酸根离子也起诱导作用,使光生电子,空穴对可以有效分离,所以磷酸银在可见光照射下具有很强的氧化能力。但磷酸银催化剂目前存在许多不足,例如磷酸银具有光敏性,在光照条件下容易发生分解,稳定性较差[5],银盐材料成本较高等,并不适于实际应用。在此基础上,人们通过对磷酸盐进一步的研究,发现碱式磷酸铜可在降解有机污染物时分解出羟基自由基,在紫外-可见甚至红外区均有较好的催化活性[6-8],并且铜盐成本相对较低,所以羟基磷酸铜是一种具有良好发展前景的新型活性光催化剂。目前,现有方法制备的碱式磷酸铜光催化剂有以下缺点:(1)碱式磷酸铜颗粒在光催化实验结束后,不易从反应液中分离回收,易造成环境的二次污染,样品无法重复使用,浪费严重。目前普遍的解决方法是将光催化剂与磁性颗粒复合[9-12],实现有效的磁分离,但合成较为复杂,不易实现;(2)碱式磷酸铜合成大多采用水热法[13-15],合成复杂,能耗较高,不适合大规模产业化生产;(3)在没有过氧化氢等电子捕获剂存在时,碱式磷酸铜降解效率较低。因此开发出一种新的合成碱式磷酸铜光催化剂的方法显得尤为重要。技术实现要素:本发明的目的在于改善现存碱式磷酸铜光催化剂的缺点,提供一种降解效率高、循环性能好、成本低廉的具有三维多级结构的碱式磷酸铜复合材料及其制备方法和应用。本发明提供的碱式磷酸铜复合材料的制备方法,利用导电性较好的铜片作为基片,原位液相生长碱式磷酸铜,使光生电子容易转移至铜片,得到花状、落叶状碱式磷酸铜/铜片复合材料;不仅能促进光生电子和空穴的分离[7],进而提高光催化性能;而且易于从反应液中回收,可实现催化剂反复多次利用,避免环境二次污染,合成过程常温进行,能耗低且操作简单易行。本发明提供的花状、落叶状碱式磷酸铜/铜片复合材料的制备方法,其具体步骤为:(1)将16±1ml蒸馏水置于25ml干净烧杯中,然后加入0.53±0.01g聚乙烯吡咯烷酮K-30和0.74±0.01g二水合磷酸二氢钠,在室温下磁力搅拌10~20min,使其完全溶解;(2)铜片的清洗处理,除去铜片表面有机物和氧化层;清洗方法是:将铜片依次放入10±2ml的丙酮和10±2ml的异丙醇溶液中,反复超声清洗2~3min,将铜片表面有机物清洗干净,然后放入20±1ml浓度为0.1~0.2mol/L的稀硝酸中,反复超声2~8min,将铜片表面的氧化层反应除去;铜片的大小根据实际需要确定,例如铜片大小为0.5±0.1cm×3.0±0.2cm;(3)将清洗干净的铜片置于配好的溶液中,再逐滴滴入8±0.1ml质量分数为30%~40%的过氧化氢溶液,边滴入边振荡,使其混合均匀,然后静置12~36h,至蓝色固体产生,形成碱式磷酸铜复合材料。本发明步骤(3)中形成的碱式磷酸铜复合材料,具有花状、落叶状两种不同形貌微观结构,形貌独特新颖。其中,花状碱式磷酸铜呈纳米片自组装的花状三维微观结构,微米花直径100~110μm,纳米片厚度80~100nm;落叶状碱式磷酸铜呈纳米片叠放类似于纳米墙似的三维微观结构,纳米片厚度40~60nm。本发明在铜片的清洗处理步骤中,使用的不同稀硝酸浓度,会影响最终制备的碱式磷酸铜复合材料的形貌,一般使用较低浓度的稀硝酸(如浓度小于0.15mol/L)时,最终制备的碱式磷酸铜复合材料为落叶状;使用较高浓度的稀硝酸(如浓度大于0.15mol/L)时,最终制备的碱式磷酸铜复合材料为花状;例如用浓度较低的稀硝酸(如浓度为0.1~0.12mol/L),超声2~5分钟,铜片较易在空气中被氧化,取出铜片用去离子水清洗表面,使其表面PH值呈中性,放置1分钟后,待铜片部分氧化,光亮表面变暗后,放入配好的溶液中,得到的是落叶状形貌碱式磷酸铜复合材料;若用浓度较高的稀硝酸(如浓度为0.18~0.2),超声6~8分钟,铜片较难在空气中被氧化,取出铜片用去离子水清洗表面,使其表面PH值呈中性,迅速将具有光亮表面未被氧化的铜片放入配好的溶液中,得到的是花状形貌碱式磷酸铜复合材料。本发明制备的碱式磷酸铜/铜片复合材料,均具有优异的光催化性能,可作为光催化剂。材料的微观形貌对光催化性能有较大影响,分别对两种形貌的复合材料进行了罗丹明6G的光催化降解测试,结果显示落叶状微观结构复合材料性能更优,仅40min染料降解率可达96.9%,循环5次实验,染料降解效率可维持85%。图1是碱式磷酸铜/铜片复合材料的X射线衍射(XRD)分析。它反映了产物的晶相、纯度、结晶性等信息。其中,五角星标记的位于43.3°和50.4°的衍射峰分别对应铜片的(111)晶面和(200)晶面,其余三角标记的位于15.2°、30.3°、33.8°和37.8°的衍射峰分别对应于碱式磷酸铜(对应的标准卡片编号为JCPDSNo36-0404)的(110)、(002)、(130)和(202)晶面。这验证了碱式磷酸铜/铜片复合材料的成功合成。图2、图3是利用扫描电镜(SEM)分别对室温放置36h花状、落叶状合成产物微观形貌的表征。花状碱式磷酸铜呈纳米片自组装的花状三维微观结构,微米花尺寸基本一致,直径约100μm,纳米片厚度约90nm,形貌独特;落叶状碱式磷酸铜呈纳米片叠放类似于纳米墙似的三维微观结构,纳米片厚度约50nm,形貌新颖。对比图2和图3,落叶状纳米片比较薄,表面形成弯曲,与周围弯曲纳米片较紧密的组装,形成类似纳米墙的微观形貌,相比之下,组成花状的纳米片较厚,表面较为平整,花状纳米片自组装过程中,片与片之间接触不甚紧密,接触面积小,造成了光催化剂表面的活性位点数量的下降,阻碍了光生电子的有效传输,大大降低了材料的光催化性能。同时,微米花之间存在较大空隙,使得相同面积的铜片上落叶状形貌的碱式磷酸铜含量高于花状,光催化剂含量的提高也是催化效率提高的重要原因。图4是花状、落叶状碱式磷酸铜/铜片复合材料的紫外可见漫反射光谱。光谱中,碱式磷酸铜对波长600~800nm的可见光有明显吸收,说明碱式磷酸铜可作为可见光光催化剂。同时,落叶状碱式磷酸铜对波长400~600nm光的吸收明显多于花状,这说明落叶状对光的捕获能力优于花状,与落叶状光催化降解效率高于花状这一测试结果相符,见图7a和图8a。光催化降解染料过程中,第一步为吸附过程。光催化剂受光激发产生光生电子/光生空穴,光生电子/空穴由半导体内部逐步扩散到表面,与水分子等形成强氧化性物质,如羟基自由基,这些强氧化性物质基本存在于光催化剂表面。染料只有通过静电吸引、氢键等方式吸附于催化剂表面时,才可以有效地被降解。所以光催化剂对染料的吸附能力也是影响催化效率的重要因素。通常,这一过程不需要光照,通过暗室静置达到吸附平衡。图5是花状、落叶状碱式磷酸铜/铜片复合材料暗室中对罗丹明6G染料的吸附平衡。其中,落叶状对染料的吸附速率高于花状,45min后两种材料基本均达到了吸附平衡,通过紫外可见分光光度计测量溶液中染料含量,发现染料吸附率均在92%左右。图6分别是两种材料对罗丹明6G染料光催化降解率随光照时间的变化图。选取10min为时间间隔,光照一定时间后,取出片状光催化剂,测量溶液中剩余染料的吸光度,作为染料含量的定量表示。其中,落叶状材料40min全光照射降解率可达96.9%,花状材料光照1h,降解率可达92.7%,由此落叶状光催化降解效率明显高于花状,但两者均表现出较好的光催化性能。由于考虑催化剂的循环使用,分别对其进行光催化5次循环测试,结果见图7和图8,花状碱式磷酸铜片循环5次实验,染料降解效率可维持80%;落叶状碱式磷酸铜片循环5次实验,染料降解效率可维持85%。由于花状组装体中纳米片之间的接触有限,整体力学结构不如落叶状稳定,光催化剂在循环过程中,结构有些溃散,铜片上碱式磷酸铜含量减少相对落叶状较多,而落叶状微观结构类似于纳米墙,片与片接触较为紧密,整体结构稳定性较好,碱式磷酸铜循环过程中损失相对较少,故性能维持优于花状。本发明的复合材料制备方法,常温进行,操作简便,成本较低,原料污染小,并且基于铜片生长,进行光催化性能等测试时,回收极为简便,可循环使用,避免造成环境污染,使用方便,易于工业产业化,以解决实际应用问题。作为一类新型光催化复合材料,其具有较为广阔的发展前景。附图说明图1为碱式磷酸铜/铜片复合材料的X射线衍射谱。图2为花状碱式磷酸铜/铜片复合材料的扫描电镜SEM图及局部放大图。其中,a为低倍扫描电镜图,b为局部放大图。图3为落叶状碱式磷酸铜/铜片复合材料的扫描电镜SEM图及局部放大图。其中,a为低倍扫描电镜图,b为局部放大图。图4为花状、落叶状碱式磷酸铜/铜片复合材料的紫外可见漫反射光谱。图5为花状、落叶状碱式磷酸铜/铜片复合材料暗室中对罗丹明6G染料的吸附平衡。图6为花状、落叶状碱式磷酸铜/铜片复合材料对罗丹明6G染料的光催化降解测试图。图7为花状碱式磷酸铜/铜片复合材料对罗丹明6G染料的单次光催化降解测试图及5次循环染料降解率统计图。其中,a为单次光催化降解测试图,b为5次光催化循环染料降解率统计图。图8为落叶状碱式磷酸铜/铜片复合材料对罗丹明6G染料的单次光催化降解测试图及5次循环染料降解率统计图。其中,a为单次光催化降解测试图,b为5次光催化循环染料降解率统计图。具体实施方式下面通过具体实施例进一步描述本发明。实施例1:将16±1ml蒸馏水置于25ml干净烧杯中,然后加入0.532g聚乙烯吡咯烷酮K-30和0.748g二水合磷酸二氢钠,在室温下磁力搅拌15min,使其完全溶解;准备0.5cm×3cm大小的铜片,然后将其依次放入10ml的丙酮和10ml异丙醇溶液中,反复超声清洗2min,将铜片表面有机物清洗干净,然后放入20ml浓度为0.18mol/L的稀硝酸中,反复超声8min,将铜片表面的氧化层充分反应除去;迅速将清洗干净表面光亮、未被氧化的铜片置于配好的溶液中,再逐滴滴入8ml质量分数为30%的过氧化氢溶液,边滴入边振荡,使其混合均匀,然后静置24h,蓝色固体产生。合成物质花状为碱式磷酸铜,微米花平均直径105μm,纳米片平均厚度90nm,光照1h,染料降解率92.7%,循环5次实验,染料降解效率可维持82%。实施例2:将16±1ml蒸馏水置于25ml干净烧杯中,然后加入0.538g聚乙烯吡咯烷酮K-30和0.735g二水合磷酸二氢钠,在室温下磁力搅拌18min,使其完全溶解;准备0.5cm×3cm大小的铜片,然后将其依次放入10ml的丙酮和10ml异丙醇溶液中,反复超声清洗3min,将铜片表面有机物清洗干净,然后放入20ml浓度为0.2mol/L的稀硝酸中,反复超声7min,将铜片表面的氧化层充分反应除去;迅速将清洗干净表面光亮、未被氧化的铜片置于(1)配好的溶液中,再逐滴滴入8ml质量分数为35%的过氧化氢溶液,边滴入边振荡,使其混合均匀,然后静置36h,蓝色固体产生。合成物质为花状碱式磷酸铜,微米花平均直径101μm,纳米片平均厚度92nm,光照1h,染料降解率91.6%,循环5次实验,染料降解效率可维持80%。实施例3:将16ml蒸馏水置于25ml干净烧杯中,然后加入0.535g聚乙烯吡咯烷酮K-30和0.736g二水合磷酸二氢钠,在室温下磁力搅拌15min,使其完全溶解;准备0.5cm×3cm大小的铜片,然后将其依次放入10ml的丙酮和10ml异丙醇溶液中,反复超声清洗2min,将铜片表面有机物清洗干净,然后放入20ml浓度为0.12mol/L的稀硝酸中,反复超声3min,将铜片表面的氧化层反应除去;放置1分钟,待铜片部分氧化,光亮表面变暗后,放入配好的溶液中,再逐滴滴入8ml质量分数为30%的过氧化氢溶液,边滴入边振荡,使其混合均匀,然后静置36h,蓝色固体产生。合成物质为落叶状碱式磷酸铜,落叶状纳米片平均厚度52nm,光照40min,染料降解率96.9%,循环5次实验,染料降解效率可维持85%。实施例4:将16ml蒸馏水置于25ml干净烧杯中,然后加入0.562g聚乙烯吡咯烷酮K-30和0.766g二水合磷酸二氢钠,在室温下磁力搅拌15min,使其完全溶解;准备3cm×3cm大小的铜片,然后将其依次放入10ml的丙酮和10ml异丙醇溶液中,反复超声清洗2min,将铜片表面有机物清洗干净,然后放入20ml浓度为0.1mol/L的稀硝酸中,反复超声5min,将铜片表面的氧化层反应除去;放置1分钟,待铜片部分氧化,光亮表面变暗后,放入配好的溶液中,再逐滴滴入8ml质量分数为40%的过氧化氢溶液,边滴入边振荡,使其混合均匀,然后静置30h,蓝色固体产生。合成物质为落叶状碱式磷酸铜,落叶状纳米片平均厚度55nm,光照40min,染料降解率95.6%,循环5次实验,染料降解效率可维持86%。花状、落叶状碱式磷酸铜的形貌和尺寸是通过扫描电子显微镜(SEM,HitachiFE-SEMS-4800operatedat1kV)来表征的,直接将铜片粘在导电胶上来制作的。X射线衍射光谱是在BrukerD8X-raydiffractometer(Germany)withNi-filtereCuKRradiationoperatedat40kVand40mA上测得。它反映了产物的晶相、纯度、结晶性等信息。碱式磷酸铜/铜片复合材料的紫外可见漫反射光谱和罗丹明6G光催化降解实验及循环测试均由紫外可见分光光度计测得。罗丹明6G染料光催化降解实验步骤为:将碱式磷酸铜/铜片复合材料浸入事先配制浓度约为10-5mol/L的罗丹明6G溶液中,暗室下放置约30min,使光催化剂与染料实现吸附平衡。采用型号CEL-HXF300,功率300W的氙灯,在紫外-可见光(320~800nm)下,离反应液约10cm处照射,经过一定时间间隔取样,取出光催化剂后,在526nm处测出染料溶液中剩余罗丹明6G的吸光度,从而得到各个时间段罗丹明6G的降解率,将结果作成相应图表。参考文献[1]Wang,G.;Huang,B.;Li,Z.;Wang,Z.OnStructuralFeaturesNecessaryforNear-IR-LightPhotocatalysts.Chemistry-aEuropeanJournal.2015,21,13583–13587.[2]Zhang,H.;Huang,H.;Ming,H.;Li,H.Zhang,L.;Liu,Y.;Kang,Z.Carbonquantumdots/Ag3PO4complexphotocatalystswithenhancedphotocatalyticactivityandstabilityundervisiblelight.JournalofMaterialsChemistry.2012,22,10501–10506.[3]Wang,P.;Huang,B.B.;Qin,X.Y.;Zhang,X.Y.;Dai,Y.;Wei,J.Y.;Whangbo,M.H.Ag@AgCl:AHighlyEfficientandStablePhotocatalystActiveunderVisibleLight.AngewandteChemieInternationalEdition.2008,47,7931−7933.[4]Wang,H.;Bai,Y.S.;Yang,J.T.;Lang,X.F.;Li,J.H.;Guo,L.AfacilewaytorejuvenateAg3PO4asarecyclablehighlyefficientphotocatalyst.Chemistry-aEuropeanJournal.2012,18,5524–5529.[5]Patil,S.S.;Tamboli,M.S.;Deonikar,V.G.;Umarji,G.G.MagneticallyseparableAg3PO4/NiFe2O4compositeswithenhancedphotocatalyticactivity.DaltonTrans.2015,44,20426–20434.[6]Wang,G.;Ma,X.;Wang,Z.;Qin,X.;Zhang,X.;Dai,Y.Cu2(OH)PO4,anear-infrared-activatedphotocatalyst.AngewandteChemieInternationalEdition.2013,52,4810-4813.[7]Cho,S.I.;Kim,D.W.;Lee,S.;Kwak,C.H.;Bae,S.T.;Noh,J.H.;Yoon,S.H.;Jung,H.S.;Kim,D.W.;Hong,K.S.SynthesisofCu2PO4OHhierarchicalsuperstructureswithphotocatalyticactivityinvisiblelight.AdvancedFunctionalMaterials.2008,18,2154–2162.[8]Xu,J.;Xue,D.Fabricationofcopperhydroxyphosphatewithcomplexarchitectures.JournalofPhysicalChemistryB.2006,110,7750–7756.[9]Mousavi,M.;Habibi-Yangjeh,A.Ternaryg-C3N4/Fe3O4/Ag3VO4nanocomposites:novelmagneticallyseparablevisible-light-drivenphotocatalystsforefficientlydegradationofdyepollutants.materialschemistryandphysics.2015,163,421–430.[10]Wei,W.;JiangC.Recentprogressinmagneticironoxide-semiconductorcompositenanomaterialsaspromisingphotocatalysts.Nanoscale.2015,7,38-58.[11]Zhang,W.;Wen,X.;Yang,S.Controlledreactionsonacoppersurface:synthesisandcharacterizationofnanostructuredcoppercompoundfilms.InorganicChemistry.2003,42,5005–5014.[12]Meng,X.;Lin,K.;Yang,X.;Sun,Z.;Jiang,D.;Xiao,F.-S.CatalyticoxidationofolefinsandalcoholsbymolecularoxygenunderairpressureoverCu2(OH)PO4andCu4O(PO4)2catalysts.JournalofCatalysis.2003,218,460–464.[13]Xiao,F.;Sun,J.;Meng,X.;Yu,R.;Yuan,H.;Xu,J.;Song,T.;Jiang,D.;Xu,R.SynthesisandstructureofcopperhydroxyphosphateanditshighcatalyticactivityinhydroxylationofphenolbyH2O2.JournalofCatalysis.2001,199,273–281.[14]Li,M.;Cheng,Q.;Wittman,R.M.;Peng,X.;Chan,C.K.Electrochemicalandphotoelectrochemicalpropertiesofthecopperhydroxyphosphateminerallibethenite.Chem.Electro.Chem.2014,1,663–672.[15]Zhang,P.;Sui,Y.;Xiao,G.;Wang,Y.;Wang,C.;Liu,B.;Zou,G.;Zou,B.Facilefabricationoffacetedcoppernanocrystalswithhighcatalyticactivityforp-nitrophenolreduction,JournalofMaterialsChemistry..2013,1,1632–1638.。当前第1页1 2 3 当前第1页1 2 3 
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1