一种低温甲烷氧化偶联催化剂及其制备方法和应用与流程

文档序号:11677639阅读:222来源:国知局
一种低温甲烷氧化偶联催化剂及其制备方法和应用与流程

本发明是涉及一种低温甲烷氧化偶联催化剂及其制备方法和应用,属于催化剂技术领域。



背景技术:

甲烷和烯烃(例如乙烯)都是重要的化学原料,工业上已有通过甲烷制备烯烃的工艺,例如本森法、部分氧化法和催化热解法等合成工艺(辽宁化工,1985,1,11)。由于传统的本森法存在副产物氯代烃,对分离造成一定的困难,而催化热解法会产生大量积碳,严重影响了催化剂的稳定性和使用寿命,因此,甲烷氧化偶联法成为目前制备烯烃的主要研究方向。

目前,用于甲烷氧化偶联的催化剂主要分为三类:碱金属与碱土金属氧化物、稀土金属氧化物以及过渡金属复合氧化物,这些催化剂体系基本上是20世纪90年代的研发成果,主要的问题是在较高甲烷转化率(>30%)下时产物选择性偏低(一般不高于70%),因而难以满足经济性的要求。另外,高反应温度(>800℃)对反应器材质等的要求极为苛刻,极大地降低了生产过程的经济性。因此,研制开发低温(<700℃)高活性、高选择性甲烷氧化偶联催化剂是当前极具挑战的难点课题。

虽然中国专利申请(申请号:021195676.6)公开了一种sio2负载mn2o3、na2wo4和sno2的催化剂,在加压(0.6mpa)条件下,反应温度>700℃时,最高可获得33%的甲烷转化率和24%的c2+收率,但此反应体系需要加压和高于700℃的高温,增加了爆炸风险,存在安全隐患,因此极大地制约了其工业化应用开发。

为了解决上述问题,中国专利申请(申请号:201410001437.7)公开了通过采用分步浸渍法将硝酸锰(或氯化锰、醋酸锰、硫酸锰)、钨酸钠和钨酸氨负载于钛硅分子筛或纯硅分子筛上并经焙烧,可制备得到一种可用作甲烷氧化偶联催化剂的含钛或不含钛的锰-钠-钨-硅复合氧化物,通过x射线粉末衍射分析得知所得到的vmno2·xna2o·ywo3·ztio2·(100-v-x-y-z)sio2催化剂的衍射峰与作为载体的钛硅分子筛或纯硅分子筛完全相同,未观察到活性组分的物相峰,所负载的活性组分均是高度分散在载体分子筛的表面;虽然实验证明:所述催化剂在常压下、750~800℃时,在10000~35000ml·g-1·h-1的很宽气时空速范围内,甲烷转化率可达30%以上,c2-c3产物选择性可达72~81%,但所述催化剂仍然需要在较高温度(750~800℃)下才具有较好的活性和选择性,在低于700℃时几乎没有活性,因此仍然不能满足低温工业化生产要求。



技术实现要素:

针对现有技术存在的上述问题和需求,本发明的目的是提供一种低温甲烷氧化偶联催化剂及其制备方法和应用。

本发明所述的低温甲烷氧化偶联催化剂,是由三氧化二锰(mn2o3)、钨酸钠(na2wo4)和钛酸锰(mntio3)三种活性组分与二氧化硅(sio2)载体组成,具有如下通式:xmn2o3-yna2wo4-zmntio3/(100-x-y-z)sio2,其中:x、y和z分别表示三氧化二锰(mn2o3)、钨酸钠(na2wo4)和钛酸锰(mntio3)在所述催化剂中所占的质量分数,且0<x≤20,1≤y≤20,1≤z≤40。

作为较佳方案,其中的1.5≤x≤18,4≤y≤18,2≤z≤35。

本发明所述的低温甲烷氧化偶联催化剂的一种制备方法,包括如下具体步骤:

a)将钛酸锰与二氧化硅充分研磨,形成均匀粉状混合物;

b)室温下,将钨酸钠水溶液滴加到干燥的钛酸锰与二氧化硅的混合物中,超声分散0.5~1小时后搅拌1~3小时,得浆状粘稠物;

c)室温搅拌下,将硝酸锰水溶液滴加到步骤b)制得的浆状粘稠物中,继续搅拌1~3小时,然后在80~100℃下烘干;

d)将步骤c)制得的烘干物研磨成粉末,在空气氛中于500~900℃焙烧1~2小时,即得所述的催化剂。

本发明所述的低温甲烷氧化偶联催化剂的另一种制备方法,包括如下具体步骤:

a)室温下,将钨酸钠水溶液滴加到干燥的二氧化硅中,超声分散0.5~1小时后搅拌1~3小时,得浆状粘稠物;

b)室温搅拌下,将硝酸锰水溶液滴加到步骤a)制得的浆状粘稠物中,继续搅拌1~3小时,然后在80~100℃下烘干;

c)将步骤b)制得的烘干物与钛酸锰充分研磨成均匀粉末,然后在空气氛中于500~900℃焙烧1~2小时,即得所述的催化剂。

本发明所述的低温甲烷氧化偶联催化剂可用作甲烷在620~700℃、常压下氧化偶联制烯烃的催化剂。

实验结果表明,本发明提供的甲烷氧化偶联催化剂,因活性组分中具有钛酸锰物相,因而体现出出乎意料的低温活性和选择性,使甲烷氧化偶联制烯烃反应在620~700℃的较低温度和常压下就可实现高达27%的甲烷转化率和76%的c2-c3烃类选择性,达到现有技术需要在高于750℃及加压下才能实现的效果,非常有利于工业化生产;尤其是,现有的甲烷氧化偶联催化剂在低于700℃时几乎不具有活性,更谈不上选择性。因此,本发明相对于现有技术,也取得了显著性进步。

附图说明

图1为实施例1所制备的3mn2o3-10na2wo4-10mntio3/77sio2催化剂的x射线粉末衍射图谱。

图2为实施例2所制备的5mn2o3-5na2wo4-8mntio3/82sio2催化剂的x射线粉末衍射图谱。

图3为对比例1所制备的3mn2o3-10na2wo4/87sio2催化剂和对比例2所制备的3mn2o3-10na2wo4/87sillicalite-1催化剂的x射线粉末衍射图谱,其中:a曲线为对比例1催化剂,b曲线为对比例2催化剂。

图4为实施例1所制备的3mn2o3-10na2wo4-10mntio3/77sio2催化剂和对比例1所制备的3mn2o3-10na2wo4/87sio2催化剂分别在甲烷氧化偶联反应中于不同温度下的甲烷转化率和c2-c3烃类选择性的关系曲线。

图5为实施例2所制备的5mn2o3-5na2wo4-8mntio3/82sio2催化剂和对比例2所制备的3mn2o3-10na2wo4/87sillicalite-1催化剂在甲烷氧化偶联反应中于不同温度下的甲烷转化率和c2-c3烃类选择性的关系曲线。

图6为实施例1所制备的3mn2o3-10na2wo4-10mntio3/77sio2催化剂在甲烷氧化偶联反应中于650℃时300小时的稳定性实验结果。

具体实施方式

下面结合实施例和附图对本发明做进一步详细、完整地说明。

在本申请中,甲烷转化率和产物选择性采用碳原子归一法进行计算,具体定义为:

转化率=[1-尾气中甲烷浓度/(尾气中甲烷浓度+尾气中co浓度+尾气中co2浓度+2×尾气中乙烯乙烷总浓度+3×尾气中丙烯丙烷总浓度)]×100%;

选择性=[n×尾气中含碳产物的浓度/(尾气中co浓度+尾气中co2浓度+2×尾气中乙烯乙烷总浓度+3×尾气中丙烯丙烷总浓度)]×100%,其中n为产物中含碳原子数。

实施例1

本实施例的目的是提供一种催化剂:3mn2o3-10na2wo4-10mntio3/77sio2,其制备方法具体如下:

a)分别称取1.54克干燥的sio2粉末(~200目)和0.2克钛酸锰粉末,充分研磨后移入100毫升烧杯中;再称取0.2克钨酸钠(na2wo4·2h2o)溶于5.0毫升去离子水中配成钨酸钠水溶液,然后逐滴加到干燥的钛酸锰与sio2的混合粉末中,超声分散1小时后继续搅拌3小时,得浆状粘稠物;

b)称取0.272克50%硝酸锰水溶液,加去离子水稀释至5毫升;在搅拌下将所得硝酸锰水溶液逐滴加入到步骤a)所得浆状粘稠物中,继续搅拌3小时后,于100℃烘干;

c)将步骤b)制得的样品研磨成粉末,在空气氛中于550℃下焙烧2小时,即得本实施例催化剂。

图1为本实施例所制催化剂的x射线粉末衍射(xrd)图谱;由图1可见:所述催化剂中含有mn2o3、na2wo4和mntio3三种物相。

实施例2

本实施例的目的是提供一种催化剂:5mn2o3-5na2wo4-8mntio3/82sio2,其制备方法具体如下:

a)称取1.64克干燥的sio2粉末(~200目)移入100毫升烧杯中;称取0.1克钨酸钠(na2wo4·2h2o)溶于5.0毫升去离子水中配成钨酸钠水溶液,然后逐滴加到干燥的sio2粉末中,超声分散0.6小时后继续搅拌2小时,得浆状粘稠物;

b)称取0.453克50%硝酸锰水溶液,加去离子水稀释至5毫升;在搅拌下将所得硝酸锰水溶液逐滴加入到步骤a)所得浆状粘稠物中,继续搅拌1小时后,于90℃烘干;

c)将步骤b)制得的样品与0.16克钛酸锰粉末充分研磨后,在空气氛中于650℃下焙烧2小时,即得本实施例催化剂。

图2为本实施例所制催化剂的x射线粉末衍射(xrd)图谱;由图2可见:所述催化剂中含有mn2o3、na2wo4和mntio3三种物相。

实施例3

本实施例的目的是提供一种催化剂:1.5mn2o3-8na2wo4-4mntio3/86.5sio2,其制备方法具体如下:

a)分别称取1.73克干燥的sio2粉末(~200目)和0.8克钛酸锰粉末移入100毫升烧杯中;称取0.16克钨酸钠(na2wo4·2h2o)溶于5.0毫升去离子水中配成钨酸钠水溶液,然后逐滴加到干燥的钛酸锰与sio2的混合粉末中,超声分散1小时后继续搅拌1小时,得浆状粘稠物;

b)称取0.136克50%硝酸锰水溶液,加去离子水稀释至5毫升;在搅拌下将所得硝酸锰水溶液逐滴加入到步骤a)所得浆状粘稠物中,继续搅拌2小时后,于80℃烘干;

c)将步骤b)制得的样品研磨成粉末,在空气氛中于500℃下焙烧1.5小时,即得本实施例催化剂。

经x射线粉末衍射分析得知,本实施例所制催化剂的x射线粉末衍射(xrd)图谱中也含有mn2o3、na2wo4和mntio3三种物相。

实施例4

本实施例的目的是提供一种催化剂:10mn2o3-4na2wo4-5mntio3/83sio2,其制备方法具体如下:

a)分别称取1.66克干燥的sio2粉末(~200目)和0.1克钛酸锰粉末移入100毫升烧杯中;称取0.08克钨酸钠(na2wo4·2h2o)溶于5.0毫升去离子水中配成钨酸钠水溶液,然后逐滴加到干燥的钛酸锰与sio2的混合粉末中,超声分散0.6小时后继续搅拌2.5小时,得浆状粘稠物;

b)称取0.906克50%硝酸锰水溶液,加去离子水稀释至5毫升;在搅拌下将所得硝酸锰水溶液逐滴加入到步骤a)所得浆状粘稠物中,继续搅拌3小时后,于100℃烘干;

c)将步骤b)制得的样品研磨成粉末,在空气氛中于700℃下焙烧2小时,即得本实施例催化剂。

经x射线粉末衍射分析得知,本实施例所制催化剂的x射线粉末衍射(xrd)图谱中也含有mn2o3、na2wo4和mntio3三种物相。

实施例5

本实施例的目的是提供一种催化剂:15mn2o3-12na2wo4-20mntio3/53sio2,其制备方法具体如下:

a)称取1.06克干燥的sio2粉末(~200目)移入100毫升烧杯中;称取0.24克钨酸钠(na2wo4·2h2o)溶于5.0毫升去离子水中配成钨酸钠水溶液,然后逐滴加到sio2粉末中,超声分散0.7小时后继续搅拌2小时,得浆状粘稠混合物;

b)称取1.360克50%硝酸锰水溶液,加去离子水稀释至5毫升;在搅拌下将所得硝酸锰水溶液逐滴加入到步骤a)所得浆状粘稠混合物中,继续搅拌1.5小时后,于85℃烘干;

c)将步骤b)制得的样品与0.4克钛酸锰粉末充分研磨,在空气氛中于800℃下焙烧1小时,即得本实施例催化剂。

经x射线粉末衍射分析得知,本实施例所制催化剂的x射线粉末衍射(xrd)图谱中也含有mn2o3、na2wo4和mntio3三种物相。

实施例6

本实施例的目的是提供一种催化剂:18mn2o3-15na2wo4-15mntio3/52sio2,其制备方法具体如下:

a)称取1.04克干燥的sio2粉末(~200目)移入100毫升烧杯中;称取0.3克钨酸钠(na2wo4·2h2o)溶于5.0毫升去离子水中配成钨酸钠水溶液,然后逐滴加到sio2粉末中,超声分散0.9小时后继续搅拌2.5小时,得浆状粘稠物;

b)称取1.632克50%硝酸锰水溶液,加去离子水稀释至5毫升;在搅拌下将所得硝酸锰水溶液逐滴加入到步骤a)所得浆状粘稠混合物中,继续搅拌1小时后,于100℃烘干;

c)将步骤b)制得的样品与0.3克钛酸锰粉末充分研磨,在空气氛中于800℃下焙烧2.5小时,即得本实施例催化剂。

经x射线粉末衍射分析得知,本实施例所制催化剂的x射线粉末衍射(xrd)图谱中也含有mn2o3、na2wo4和mntio3三种物相。

实施例7

本实施例的目的是提供一种催化剂:2mn2o3-18na2wo4-7mntio3/73sio2,其制备方法具体如下:

a)分别称取1.46克干燥的sio2粉末(~200目)和0.14克钛酸锰粉末,充分研磨后移入100毫升烧杯中;称取0.36克钨酸钠(na2wo4·2h2o)溶于5.0毫升去离子水中配成钨酸钠水溶液,然后逐滴加到干燥的钛酸锰与sio2的混合粉末中,超声分散0.8小时后继续搅拌3小时,得浆状粘稠物;

b)称取0.181克50%硝酸锰水溶液,加去离子水稀释至5毫升;在搅拌下将所得硝酸锰水溶液逐滴加入到步骤a)所得浆状粘稠物中,继续搅拌1.5小时后,于90℃烘干;

c)将步骤b)制得的样品研磨成粉末,在空气氛中于650℃下焙烧2小时,即得本实施例催化剂。

经x射线粉末衍射分析得知,本实施例所制催化剂的x射线粉末衍射(xrd)图谱中也含有mn2o3、na2wo4和mntio3三种物相。

实施例8

本实施例的目的是提供一种催化剂:12mn2o3-10na2wo4-2mntio3/76sio2,其制备方法具体如下:

a)称取1.52克干燥的sio2粉末(~200目)移入100毫升烧杯中;称取0.2克钨酸钠(na2wo4·2h2o)溶于5.0毫升去离子水中配成钨酸钠水溶液,然后逐滴加到sio2粉末中,超声分散0.9小时后继续搅拌1.5小时,得浆状粘稠物;

b)称取1.088克50%硝酸锰水溶液,加去离子水稀释至5毫升;在搅拌下将所得硝酸锰水溶液逐滴加入到步骤a)所得浆状粘稠物中,继续搅拌2.5小时后,于85℃烘干;

c)将步骤b)制得的样品与0.04克钛酸锰粉末充分研磨,在空气氛中于900℃下焙烧2小时,即得本实施例催化剂。

经x射线粉末衍射分析得知,本实施例所制催化剂的x射线粉末衍射(xrd)图谱中也含有mn2o3、na2wo4和mntio3三种物相。

实施例9

本实施例的目的是提供一种催化剂:8mn2o3-12na2wo4-28mntio3/52sio2,其制备方法具体如下:

a)分别称取1.24克干燥的sio2粉末(~200目)和0.56克钛酸锰粉末,充分研磨后移入100毫升烧杯中;称取0.24克钨酸钠(na2wo4·2h2o)溶于5.0毫升去离子水中配成钨酸钠水溶液,然后逐滴加到干燥的钛酸锰与sio2的混合粉末中,超声分散0.5小时后继续搅拌1.5小时,得浆状粘稠物;

b)称取0.725克50%硝酸锰水溶液,加去离子水稀释至5毫升;在搅拌下将所得硝酸锰水溶液逐滴加入到步骤a)所得浆状粘稠物中,继续搅拌2小时后,于100℃烘干;

c)将步骤b)制得的样品研磨成粉末,在空气氛中于750℃下焙烧2小时,即得本实施例催化剂。

经x射线粉末衍射分析得知,本实施例所制催化剂的x射线粉末衍射(xrd)图谱中也含有mn2o3、na2wo4和mntio3三种物相。

实施例10

本实施例的目的是提供一种催化剂:18mn2o3-18na2wo4-35mntio3/29sio2,其制备方法具体如下:

a)称取0.58克干燥的sio2粉末(~200目)移入100毫升烧杯中;称取0.36克钨酸钠(na2wo4·2h2o)溶于5.0毫升去离子水中配成钨酸钠水溶液,然后逐滴加到sio2粉末中,超声分散0.6小时后继续搅拌2.5小时,得浆状粘稠物;

b)称取1.632克50%硝酸锰水溶液,加去离子水稀释至5毫升;在搅拌下将所得硝酸锰水溶液逐滴加入到步骤a)所得浆状粘稠物中,继续搅拌2小时后,于95℃烘干;

c)将步骤b)制得的样品与0.7克钛酸锰粉末充分研磨,在空气氛中于850℃下焙烧2小时,即得本实施例催化剂。

经x射线粉末衍射分析得知,本实施例所制催化剂的x射线粉末衍射(xrd)图谱中也含有mn2o3、na2wo4和mntio3三种物相。

对比例1

本对比例的目的是提供一种催化剂:3mn2o3-10na2wo4/87sio2,其制备方法具体如下:

a)称取1.74克干燥的无定形sio2(~200目)移入100毫升烧杯中;称取0.2克钨酸钠(na2wo4·2h2o)溶于5.0毫升去离子水中配成钨酸钠水溶液,然后逐滴加到无定形sio2中,超声分散1小时后继续搅拌3小时,得浆状粘稠物;

b)称取0.272克50%硝酸锰水溶液,加去离子水稀释至2毫升;在搅拌下将所得硝酸锰水溶液逐滴加入到步骤a)所得浆状粘稠物中,继续搅拌3小时后,于100℃烘干;

c)将步骤b)制得的样品研磨成粉末,在空气氛中于550℃下焙烧2小时,即得本对比例催化剂。

对比例2

本对比例的目的是提供一种催化剂:3mn2o3-10na2wo4/87sillicalite-1,其制备方法具体如下:

a)称取1.74克干燥的mfi型全硅分子筛sillicalite-1移入100毫升烧杯中;称取0.2克钨酸钠(na2wo4·2h2o)溶于5.0毫升去离子水中配成钨酸钠水溶液,然后逐滴加到干燥的mfi型全硅分子筛sillicalite-1中,超声分散0.6小时后继续搅拌2小时,得浆状粘稠物;

b)称取0.272克50%硝酸锰水溶液,加去离子水稀释至2毫升;在搅拌下将所得硝酸锰水溶液逐滴加入到步骤a)所得浆状粘稠物中,继续搅拌1小时后,于90℃烘干;

c)将步骤b)制得的样品研磨成粉末,在空气氛中于650℃下焙烧2小时,即得本对比例催化剂。

图3为对比例1和对比例2所制催化剂的x射线粉末衍射(xrd)图谱,由图3可见:对比例1和对比例2所制催化剂的x射线粉末衍射(xrd)图谱中均只有mn2o3和na2wo4物相,均没有mntio3物相。

对比例3

参照中国专利申请(申请号201410001437.7)的实施例2制备一种催化剂:4.2mno2·1.5na2o·5.5wo3·2.9tio2·85.9sio2。

经x射线粉末衍射分析得知,本对比例所制催化剂的x射线粉末衍射(xrd)图谱具有与ti-mww分子筛相同的衍射峰,未观察到其他物相峰。

应用例1

催化剂反应评价在连续流固定床微反装置上进行。采用石英管反应器,内径16毫米、长400毫米。催化剂床层高度10毫米。催化剂无需前处理,直接加热到设定反应温度后切入反应混合气进行反应。反应尾气经冷冻的乙醇-水浴(30%乙醇)对可凝产物进行冷凝分离后,采用在线气相色谱仪进行定量检测。n2、o2、co、co2、ch4、c2-c3采用5a毛细管柱和pq填充柱(dikma)并联和tcd检测器进行定量分析。

本应用例的目的是考察实施例和对比例催化剂在不同反应温度下的甲烷氧化偶联反应性能。采用ch4:o2:n2=5:1:4(ch4浓度:50%)的原料气,以ch4和o2计,气时空速ghsv=8000ml·h-1·g-1、常压和反应温度为620~700℃条件下进行反应评价。还在750℃、保持其他条件不变时,测试了对比例3催化剂的催化性能。

有关实施例催化剂和对比例催化剂在甲烷氧化偶联反应中的催化效果分别见表1所示。

表1不同反应温度下各催化剂对甲烷氧化偶联反应的催化效果

由表1实验结果可见:本发明提供的甲烷氧化偶联催化剂,因活性组分中具有钛酸锰物相,因而体现出出乎意料的低温活性和选择性,使甲烷氧化偶联制烯烃反应在620~700℃的较低温度和常压下就可实现高达27%的甲烷转化率和76%的c2-c3烃类选择性;而对比例提供的甲烷氧化偶联催化剂在低于700℃时几乎不具有活性,更谈不上选择性。说明本发明相对于现有技术,取得了显著性进步和出乎意料的效果。

图4为实施例1所制备的3mn2o3-10na2wo4-10mntio3/77sio2催化剂和对比例1所制备的3mn2o3-10na2wo4/87sio2催化剂分别在甲烷氧化偶联反应中于不同温度下的甲烷转化率和c2-c3烃类选择性的关系曲线;图5为实施例2所制备的5mn2o3-5na2wo4-8mntio3/82sio2催化剂和对比例2所制备的3mn2o3-10na2wo4/87sillicalite-1催化剂在甲烷氧化偶联反应中于不同温度下的甲烷转化率和c2-c3烃类选择性的关系曲线。结合图4和图5可见:本发明催化剂相较于传统催化剂,具有良好的低温活性和选择性,相对于现有技术取得了显著性进步。

应用例2

催化剂反应评价和产物分析系统同应用例1。

本应用例的目的是考察实施例催化剂在甲烷氧化偶联反应中的稳定性。采用ch4:o2:n2=5:1:4(ch4浓度:50%)的原料气,在以ch4和o2计的气时空速ghsv=8000ml·h-1·g-1、常压和反应温度650℃条件下进行300小时的反应稳定性测试,选用实施例1制备的3mn2o3-10na2wo4-10mntio3/77sio2催化剂,用量0.8克。反应结果见图6所示。由图6可以看出,本发明催化剂具有良好的反应稳定性,在300小时稳定性测试中,转化率始终保持在24%左右,选择性保持在67%左右。

最后需要指出的是:以上仅是本发明的部分优选实施例,不能理解为对本发明保护范围的限制,本领域的技术人员根据本发明的上述内容做出的一些非本质的改进和调整均属于本发明的保护范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1