化油器调节系统的制作方法

文档序号:5231913阅读:466来源:国知局
专利名称:化油器调节系统的制作方法
技术领域
本发明涉及一种化油器的调节系统,特别是一种将空气/燃料混合气供入小型汽油机中的化油器调节系统,其排气污染受到法律控制。
典型的小型发动机是廉价的单缸四冲程发动机,通常用作割草机或外装机。这种单缸发动机间歇地吸入空气/燃料混合气,这就产生了燃料调节的问题,而且它不象多缸发动机那样主要用于汽车领域。另外,小型发动机并不象汽车发动机,它在调速器所控制的速度下工作,或在速度和负荷之间有固定的关系,而通常还有固定的点火定时。现有的用于这种小型发动机的化油器调节系统有产生不均匀的空气/燃料混合气的趋势,该混合气中包括有能够增加排气污染中碳氢化合物量的来挥发燃料滴。众所周知,均匀的混合气可以在部分负荷下用稀薄的空气/燃料混合气工作,从而具有降低氮的氧化物和一氧化碳的污染的优点。
通常,化油器调节系统产生一个相应于空气流的压力差,并通过这个压力差把燃料从定压的容器推入空气流中,一般形成或多或少的喷雾。为了获得高均匀度的空气/燃料混合气,通过在排气污染方面的上述优点,人们了解到将燃料供入一个纤维油绳中,让热的空气通过这个纤维油绳,从而产生干燥的燃料蒸汽。然而在这种系统中,功率控制的节气门最好位于油绳的下游,以便当功率的要求变化时在油绳处没有明显的压力变化,例如当节气门关闭或者打开时,可能导致混合气浓度出现大幅度的瞬时增加或者减小。
由于这种系统中的节气门的位置,使得其不可能采用传统的文杜里管化油器调节系统,即,这种系统依靠节流片在低负荷时起调节作用。另外,作为另一种固定压降的可变几何形状的化油器调节系统(典型的是公知的S.U化油器)则过于复杂并且因价格原因在小型发动机中已不再使用。
对于每一负荷都有一个最佳的混合气浓度,从而可将排气污染降至最小。对于由调速器控制的发动机或者速度和负荷之间有固定关系的发动机,混合气的量以已知的方式随负荷变化,并且由此用来控制混合气的浓度。最佳的关系是通过对发动机的设计而获得的,并且必须通过实验来确定。加利福尼亚目前的立法中限定了一氧化碳、碳氢化合物以及氮的氧化物的排放。在稀混合气工作中,其空燃比大于17∶1,氮的氧化物的排放随着混合气变得更稀薄而下降,而在非常稀薄的混合气中,碳氢化合物的排放开始升高。对于大于16∶1的空燃比,一氧化碳的污染很低且非常稳定。其结果是在混合气浓度的一定范围内总的污染很低,从而在接近最佳状态处有一个适当的余量。
有关的立法还规定了基于怠速、四分之一负荷、二分之一负荷、四分之三负荷和满负荷情况下所测得的限度。对于这些状态,典型的发动机在怠速时应该需要大约17∶1的空燃比,而在四分之一负荷时约为18∶1,在二分之一和四分之三负荷下约为19∶1,在满负荷下则约为12∶1。后面较浓的混合气是用来获得满负荷的,则总的污染保持尽可能低。由于部分原因是点火定时被固定,因而在低负荷下需要较浓的混合气。
本发明试图提供一种特别适合于这种情况下应用的新的化油器调节系统。
本发明提供了一种化油器调节系统,它包括收集液态燃料使之蒸发进入空气流中形成空气/燃料混合气的蒸发器装置,将燃料供入蒸发器装置中的燃料调节装置以及将空气供入蒸发器装置中从而让供入蒸发器装置中的燃料产生蒸发的空气调节装置,其特征在于空气调节装置包括空气节流器,该节流器带有一组相邻设置的窄的空气通道,以便产生大致的层状空气流,其中至少在空气节流器的主要部分中产生的压力差与通过空气节流器的空气流速呈线性关系。燃料调节装置被设置成根据所述的压力差而提供燃料。
由于燃料调节较为容易,即其流速与用于驱动燃料的压力差呈线性正比关系,因此,只要使用产生基本上为层状的空气流的节流器,那么不论压力如何波动,例如在单缸发动机中所遇到的那样,都会在空气流速的很宽的范围内获得一个恒定的空气/燃料混合气浓度。
空气节流器最好包括一系列由隔板分开的平行板,且在其间限定出窄的通道。作为另一方案,空气节流器还可以包括一系列并排设置的小孔管。在任何一种情况下,相关于空气流的节流器的压力差主要由于粘滞效应而产生。基本是提供了一种雷诺数小于临界值的线性关系曲线,它随着燃料流速以及隔开的空间或者管的直径的增加而增加。
为了将雷诺数保持在低于使用中遇到的空气流速的临界值以下,节流器必需包括很多的通道。成本及空间的限制使得穿过节流器的空气通道截面的流动被降低,因而由于空气流通截面的增加,在节流器的出口处排出时会产生更进一步的压力降。该进一步的压力降按照流速的平方变化,从而对总的压力差产生一个非线性影响。在某些发动机中,在最稀薄范围扭矩处的混合气浓度也需要比低负荷时更浓。对压力差的小的非线性影响可以在高流率下产生这个所需的加浓。在另一种情况下,则不希望有非线性的影响。
相应地,根据本发明的一种改型,可以在节流器的上游设置一个文杜里(venturi)管,在文杜里管的喉部形成一个压力降,使在节流器的排出口处的压力降基本上被补偿。
众所周知,文杜里管在其喉部产生一个压力降,这个压力降与随着压力恢复的流量的平方成正比,从而使文杜里管的出口压力基本上与其进口压力相等。这样,如果将文杜里管喉部的压力用作基准压力,那么节流器出口的压力由于压力差将不同于基准压力,而压力差对于即使高到相应于临界雷诺数的任何流速都基本上与空气流速呈线性关系,文杜里管的喉部的压力降则选择成与节流器出口处的压力降相匹配的形式。然后,节流器的截面和长度可被选择成产生较大的压力差以实现所需的燃料流动,同时保持节流器紧凑且有最小的空气流动节流作用的形式。
在本发明的最佳实施例中,燃料调节装置包括燃料节流器,该节流器是截面较窄的导管形式,燃料由空气节流器中的压力差来穿过该导管传导。例如可以在空气节流器的入口和燃料节流器上游的某一点之间进行连接,使燃料节流器上游的燃料保持空气节流器入口处的相应压力,可以在空气节流器的出口与燃料节流器下游的某一点之间形成连接,以使燃料节流器下游的燃料保持空气节流器出口的压力。如果调节系统包括一个文杜里管,那么可以在文杜里管的喉部与燃料节流器上游的某一点之间形成连接,以使燃料节流器上游的燃料保持文杜里管喉部的基准压力。
本发明还提供了一种用于化油器调节系统中的蒸发器,它将燃料蒸发进入穿过该蒸发器的空气流中。该蒸发器包括一系列的平行的层状元件,它们由隔板分开,以在其间确定出窄的空气通道,且沿着通道的侧壁提供多孔的蒸发表面,它还包括将燃料供给该层状元件的装置,以便使蒸发表面上的燃料通过毛细作用产生扩散,它还包括将空气供给空气通道的装置,以便确保从蒸发表面蒸发出来的燃料在空气穿过该通道时进入该空气中。
层状元件可以是刚性的多孔材料板,例如烧结的金属或者是在刚性的支撑上沿隔板伸展的织物层。
本发明还提供了一种化油器调节系统,它包括收集液态燃料使之蒸发进入空气流中的蒸发器装置,将燃料供入蒸发器装置中的燃料调节装置以及将空气供入蒸发器装置中从而让供入蒸发器装置中的燃料产生蒸发的空气调节装置,其中燃料调节装置包括第一燃料节流器、第二燃料节流器和切换装置,第一燃料节流器用来在稀混合气操作及浓混合气操作两种状态期间将燃料从燃料源供入蒸发器中,第二燃料节流器则用来在系统的浓混合气操作期间将附加的燃料从燃料源供入蒸发器中,切换装置则通过将所述附加燃料供到蒸发器中,从而从稀混合气工作状态切换到浓混合气工作状态。
切换装置最好包括泄油阀,它可开启一条连接第二燃料节流器与燃料源之间的线路,以使所述的附加燃料不能供入蒸发器中,它还可以关闭,以便将所述附加燃料供入蒸发器中。
本发明还包括控制设备,用来控制供入发动机中的空气/燃料混合气的流速,包括将空气/燃料混合气供入发动机的排出口,在开启和关闭位置之间可相对于排出口移动的阀件,将阀件根据发动机的负载相对于排出口进行移动的控制装置,在发动机负荷增加时,首先排出口被阀件逐渐打开,然后至少被部分关闭,最后再逐渐开启。
为了更全面地了解本发明,下面将以举例的方式参照附图描述根据本发明的几个化油器调节系统,其中

图1是第一系统的方框图;图2是该系统的示意草图;图3是沿图2中A-A线的剖视简图;图4和图5分别是系统的阀件的剖视图和立体图;图6是一个说明图;图7和图8是可用于该系统中的两个蒸发器部分;图9是第二系统的油绳和空气调节部分的剖视简图;图10是表示油绳细节的剖视简图;图11是第二系统的燃料调节部分的剖视图。
下面参照表示系统方框图的图1说明根据本发明的第一化油器调节系统。空气和燃料分别通过入口100和101输入系统中,所需的空气/燃料混合气则通过出口102输出。空气通过空气滤清器103进入系统中,并且通过一个固定的降压阀104以及一个空气节流器105在通过节气门107到达发动机之前进入燃料蒸发器106。如果需要,元件104和105可以互换。
燃料被送入一个固定压力的储油器108中,该容器的压力数据即是离开空气滤清器的空气的压力。典型的储油器108是传统的浮子室的。对于稀混合气操作,燃料从储油器108中供出,通过燃料节流器109到达蒸发器106,该燃料节流器109最好是简单的窄管。对于浓混合气操作,附加的燃料从储油器108中供出,通过另外一个燃料节流器110进入空气流,该燃料节流器的结构与上述燃料节流器相近。燃料节流器110的入口设置成高于可允许燃料从储油器108中流出的程度,通过开启泄油阀112使这种附加的燃料流入被停止,该泄油阀则具有一个出口111,它或是大气压或是来自空气滤清器103排出口的基准压力。泄油阀112的开启可以通过发动机调速器轴上的凸轮来根据于发动机的负荷进行控制。
由于储油器108是浮子控制的,因而储油器108中燃料的量应该低于蒸发器106的燃料自由表面,以便防止燃料在发动机不运行时泄漏。作为替代方案,储油器108是由膜片控制的,蒸发器中燃料的自由表面必须高于由膜片偏压弹簧设定的点,在该点处燃料将通过虹吸从储油器中流出。这需要在任何燃料流动之前提供出一定的压力,该压力仅在发动机运行时起作用。因而,用来产生所需燃料流动的压力差必须包括一个固定部分(分支)加上一个最易与流量成线性正比的可变部分。
下面来看系统的空气一侧,理想的设置是提供一种具有相应固定部分加上与空气流动和所需空燃比的乘积成正比的可变部分。实际上,空燃比随负荷(因而随空气流动)的改变通过提供一个带有稍稍大于燃料一侧分支的固定部分和一个与空气流动基本上呈线性关系的可变部分的空气一侧压力差而达到十分相近的程度,而所述可变部分具有一个小的正二阶微量项(压力降部分与空气流动的平方成正比)。(如果空气一侧固定部分与燃料一侧的分支完全相等,而且没有二阶微量项,那么空燃比将不随空气流动变化)。
二阶微量项提供了一种随空气流动而增加的空燃比。由空气一侧固定部分超过燃料一侧分支的量提供出一个在所述的空气流动中固定的附加燃料流量,并由此在低流动处产生出一个大些的空燃比。因而,通过改变固定部分,线性部分和二阶微量项的相对大小,就可以产生任何所需数值空燃比的逐渐变化。人们发现总的污染仅缓慢地随着空燃比接近于稀混合气的最佳值而变化,因而可以有一定的余量并且由机械装置产生的空燃比的变化可被保持在所需的余量之内。
下面参照图10所描述的系统,它带有不同于上述的空气一侧节流器105和蒸发器1 06的元件。这表示出是否蒸发器106的空气阻力随着燃料供入量而变化。例如是否蒸发器采用了机织织物层来封闭空气流的情况。在这种情况下,穿过纤维编织束之间的空气或多或少地随着燃料量的变化在束膨胀或者收缩时被限制住。然而,在另外一种蒸发器结构中,空气穿过形成于由材料构成的通道,通道的大小基本上不随燃料量的改变而变化,在这种情况下,在一定的状态下,如果需要,两个元件105和106可以合并,以使蒸发器本身利用所需的压力差。
在给定的雷诺数下的给定蒸发器具有一个由其排出口处混合气浓度与在燃料温度和空气压力的给定状态下的饱和混合气浓度之比所确定出的效率。因而,低效率的蒸发器必须有一个高于理论上所需温度的出口温度(因而有较高的混合气饱和浓度)。这一较高的温度降低了充气密度并且因而降低了发动机的功率。在蒸发器的出口处,紧靠燃料表面的混合气浓度正好是燃料表面的混合气饱和浓度。然而,在远离燃料表面的空气通道中,混合气浓度由从燃料表面散布开的蒸汽量所决定。因而,高的效率要求在空气从入口到出口之间穿过时基本上从燃料表面完全扩散。实际上这需要在很短的结构中的很小的空气通道,例如或许可以从精细机织织物或多层较粗糙的机织织物中找到,或需要一组带有由燃料浸湿的间隔壁的长通道。精细机织织物具有不太将燃料通过毛细作用横向扩散的能力,这对于将燃料良好雾化的情况是最适合的。另一方面,较长的通道可以设置在刚性多孔材料制成的板之间,例如烧结金属或陶瓷板,或者在其间具有适合空间的刚性支撑物上缠绕的纤维层之间。除此之外,通道也可以是厚的多孔材料块上开出小孔的形式。
图2显示了这样一个系统的设计方案,其中燃料蒸发器113布置在壳体120的下部以使蒸发器113的平板114的下部浸入在燃料121中,燃料121是通过进油口122(相当于图1中来自燃料节流器109和110的进口)供给壳体120的底部的。空气通过包括一组平行板127的空气层流节流器128输入蒸发器113的进口123,平行板127被隔板(未画出)分开并且在平板127之间限定出窄槽,由蒸发器113输出的空气/燃料混合气通过输出管126供入发动机。
如果需要,可以在节流器128和蒸发器113中间设置一个固定减压阀(未画出),该减压阀被一个重弹簧或一个轻弹簧保持在关闭状态。在后一种情况下,压降将不保持绝对不变,而是根据一定程度的流量变化,从而提供了另一个调整空燃比和流量关系的装置。该装置当阀的进、出口的压差超过一个预定标准时,将使阀开启,并随流量的增加而逐渐打开以保持所需压降。
输出管126包括一个槽形进口130,该进口130开口于连有蒸发器113的壳体120的空间131中,并形成一个与槽形进口130有相同截面积且与发动机相连的圆形出口。一个阀件132(在图2中未示出)邻近进口130布置并且与一个能由发动机调速器(未示出)带动旋转一个有限的角度的轴133相连接。
下面参照图4,5和6对阀件132的结构和功能进行进一步描述,该阀件用来在化油器运作的两种模式之间形成变换系统,即稀混合气操作,提供大约四分之三负荷,其中燃油是通过节流器109单独供给的以及浓混合气操作,其中附加燃料通过节流器110供给。在稀混合气操作中,随着负荷增加,节气门107由调速器带动逐渐开启到全开。此后,负荷进一步增加,便发生向浓混合气操作的转变,并且随着附加燃料的供入,为了防止扭矩逐步增加,关闭节气门107。负荷再进一步,便导致节气门107再次逐渐开启,直到全开。
参照图5和图6,可以看到阀件132具有由槽136分开的第一和第二挡板134和135,挡板134和135和槽136连同输出管126的进口130一起控制依赖于发动机负荷而供给发动机的空气/燃料混合气的比率。随着负荷增加,阀件132按箭头137的方向旋转。此外,阀件132的角度位置也决定了是否有额外的燃料通过燃料节流器110由泄油阀112(见图1)的关闭而加入到混合气中。最初,在低负荷时,泄油阀112是开启的,因此没有额外的燃料加入混合气中并且空燃比随着负荷而变化,如图6中所示对照负荷的空燃比斜线140的开头部分那样。另外阀件132的挡板134处在这样一个位置,即挡板134部分地盖住进口130从而限制混合气流入发动机。当负荷增加时,阀件132按箭头137方向旋转使得挡板134不覆盖进口130,结果进口130的开启面积随负荷而逐渐增加,正如图6中对照负荷的进口面积斜线141的开头部分那样。
当进口130基本上完全不被挡板134覆盖时,正好刚高于四分之三的负荷,通过泄油阀112的关闭实现了从稀混合气操作到浓混合气操作的转变,从而使附加燃料通过燃料节流器110进入蒸发器113。这个转折点在图6中用虚线142表示,由于额外的燃料的补充,如斜线140所示,空燃比会逐渐增加而超过这点。同时阀件132的挡板135开始移动经过出口130,就这样不断减小进口130的开口面积直到进口130的最大面积被挡板135覆盖。那么就到达了另一个转折点,如图6中虚线143所示,此后进口130被挡板135逐渐让开,而额外的燃料仍然通过节流器110供给蒸发器113。那么在满负荷下,进口130的开口面积再次增加到最大,如图6中虚线144所示。这个方案保证了当阀件132根据发动机负荷按箭头137方向旋转时输出扭矩是逐渐变化的。
图7所示蒸发器113由一组刚性多孔材料如烧结金属制成的垂直板114组成,相邻的板114由上、下隔板115分开,以便在其间确定出空气通道116。上隔板115与板114的顶端齐平,而下隔板115离开板114的底部一段距离,以留下板114少量的下部浸在燃料中。在一个容器中填入很多板114,从而使空气被迫在板114之间并沿着板114和隔板115确定出的通道116的纵向通过。供入到板114下部的燃料由于毛细作用向上移动从而提供出一个大的燃料表面积,进行蒸发进入沿通道116流动的空气中。为了简化生产过程,每个平板114可以和它相联的隔板115制成一体。
图8显示了上述蒸发器113的一种变型,其中不用板114,代之以一组缠绕织物118的实心板117,板117由隔板119分开,并且织物118在相继的板117的缠绕之间以单层卷绕住隔板119。
在以上描述的蒸发器方案中,重要的是燃料蒸发率应尽可能在空气流量的一个宽的范围内与空气流量成线性变化,因此,对于一个给定的混合气浓度,板的含气程度将不应该随空气流量的变化而产生显著变化。板的含气程度仅随蒸发器板中固有的燃料量的变化而变化,而固有的燃料量的变化是不希望有的,因为它们在所要求的燃料供给量中产生瞬时变化或在混合气浓度中产生瞬时偏移。通常这个方案是这样的,即对于所需的流量范围,雷诺数保持在一临界值以上,并且可以按这个目的提供各种补偿机构。
对于单缸发动机,在蒸发器中空气量最好一直等于或大于发动机每个循环的最大值。如果需要,脉动的空气流量的影响可以由设计一种蒸发器来补偿,即在蒸发器中空气通过的时间相对于循环时间而言是很长的,这也就是板面和板间隙乘积构成的总容积与每循环最大的空气吸入量相比很大的原因,从而给出了尽可能长的时间使燃料蒸发扩散进入空气流中。
相反,于对多缸发动机,流经蒸发器的空气量更接近于连续。在这种情况下,保证蒸发器设计成这样是必要的,即雷诺数高于临界值,以使平均最小空气流量通过蒸发器。然而,对于一个固定几何结构,蒸发器所利用的压降与空气流量的平方成正比变化,结果,如果机构的设计是最适合于通过蒸发器的最低空气流量,那么在最大空气流量时这个压降将变得很大。为了避免在最大流量时的这种大的压降,可能使用各种补偿机构。例如,提供一个可调整的补偿板,用来以线性或逐级的方式逐渐让开蒸发器板间的间隙,以便当空气流速增加时,增加的通道数可以使空气流过蒸发器,这样在所需范围内保持了雷诺数。如果提供了这样一个补偿机构就不需要蒸发器中让空气的容积保持等于或大于发动机每循环所要求的最大量。
参照图9,根据本发明的第二化油器调节系统包括,在共用的壳体2中的一个油绳4和一个层流空气节流器8。节流器8把壳体2分成一个油绳腔14和一个下腔13。壳体2具有一个借助于节气门(未画出)伸入发动机的排出管7。排出管7具有一个半圆保护板9用来防止油滴进入发动机。油绳4包括一个有两斜伸部分11和12的金属线保护网10,这两斜伸部分11和12表成V型剖面,并且油绳4在油绳腔14的两相对侧壁之间沿伸。
油绳的结构在图10中更详细地被显示。保护网10的逆流侧和顺流侧15和16分别是由相对紧密的机织织物层17或18覆盖,织物层具有足够细的网目以阻止油滴通过。紧密机织织物能高效率地汽化燃料。另外,相对较松的机织织物层20仅在保护网10的逆流表面使用,它处在保护网10和紧密机织材料层18之间,用来从扩散器管22(见图9)吸收液体燃料到油绳4,并且由于毛细作用随后横向扩散到整个层20以使燃料以最大表面积通过油绳4从而有效地蒸发进入空气流。
扩散器管22延着油绳4的顶部延伸并嵌入在较松的机织织物层20中,沿其纵向形成小孔,通过扩散器管22燃料进入油绳4。为了对空气/燃料混合气浓度进行精确控制并避免在发动机循环期间混合气浓度的波动,根据在第一和第二压力开口19和21之间的压差,燃料通过扩散器管22供给油绳4,压力开口19和21分别设置在接近空气节流器8的进口23和接近空气节流器8的出口25处。由于空气节流器8包括一组由隔板(未画出)分开的平行板24并在板24之间限定出窄槽因而通过空气节流器8的空气流在空气节流器8的端部之间产生压差,此压差基本上与通过空气节流器8(空气节流器8设置得足够大)的空气流速成线性关系。
参照图11,装在下腔13中的系统的燃料调节部分28,包括一个储油器30,在储油器30中由浮子34确定出所装燃料32的高度33。储油器有一个进油口36并由连结第一压力开口19的压力管37泄油,以把第一压力开口1 9的压力传递到储油器30中的燃料32上。储油器30由导管38与燃料节流器40连结,燃料节流器40包括一节小口径管41,燃料从燃料节流器40进入油腔50。
油腔50又与另一个油腔54相连以使燃料从油腔50经过溢流口42溢流入油腔54。溢流口42限定出了相对于浮子高度33的限流器40出口处燃料高度。连结第二压力开口21的压力管56使油腔50和54泄油,从而把第二压力开口21的压力加到油腔50的燃料中,这样使压力管37和56之间产生压差,压差与空气流速成线性正比关系,从而控制燃料流过燃料节流器40。燃料32通过燃料供给管57从油腔54流入油绳腔14中的扩散器管22。为了提供必要的压降使燃料沿导管57流动,空气流通过铰接重力阀门58(见图9)从空气节流器8的出口25流入油绳腔14。油腔50具有一个低于储油器30中燃料32高度33的燃料自由表面59,这样防止了由于表面张力作用而不规则地将燃料流进扩散器管22。
所述燃料节流器40提供了燃料调节的精确控制,这是由于通过燃料节流器40的燃料流速与在第一和第二压力开口19和21之间的压差成线性关系,而压差本身也与空气流速成线性关系。除在空气节流器8两端的压差以外,还有一个相应于在空气节流器8的出口25和压力开口21之间的压差的压降,此压降的大小随流速的平方而变化。虽然压降表面上是由于从板24之间的间隔排出的空气在出口25处没有得到补偿而产生的,但严格说,这个压降由于板24引起的流通横截面积的减少而存在于进入空气节流器8的进口处。当空气节流器8做得较小时,这个平方律压降变得更明显,例如在链锯发动机中,就是这种情况。
如果需要补偿这个空气节流器8的出口25处的平方律的压降,那么在进入空气节流器8之前,供给空气节流器8的热空气流可以首先通过一个文杜里管(未画出),在文杜里管(venturitube)的喉部产生一个压降,其大小也是随流量的平方而变化。在文杜里管喉部的下游压力得到补偿,结果在空气节流器8进口23的压力基本上与文杜里管进口的压力相同。压力管37与文杜里管喉部连结以使文杜里管喉部的这个压力当作参考压力而在文杜里管喉部的平方律压降用来补偿空气节流器8出口25处的平方律压降。结果在压力管37和56之间的压差基本上与具有一个小于临界值的雷诺数的空气流速成线性关系。
排出管7最好具为以与参照上述实施例已描述过的方式从稀混合气操作到浓混合气操作变换系统提供一个阀件(未示出)。如图11所示,围绕排出管7的法兰70具有一个泄油孔84和一个燃料加浓孔86。这个泄油孔84借助于泄油管88连结到压力管37上,燃料加浓孔86借助于燃料管90连结到导管38上。阀件的角度位置是由发动机负荷控制的,决定了供给发动机的混合气流速以及是否有额外的燃料通过燃料管90加入混合气中,燃料管90装有一个与燃料加浓孔86相连的燃料节流器92,其形式与在上述实施例中已描述过的相近似。
这样一个化油器调节系统尤其对低成本的单缸四冲程发动机的有好处,例如用在割草机上,尽管在混合气供给中有脉动性,但对于这样一个发动机,空气/燃料混合气浓度也能得到精确控制。而此系统也可用于多缸发动机中。化油器调节系统下游的节气门的运用减小了例如在发动机负荷增减时产生的瞬时混合气浓度偏移。
权利要求
1.一种化油器调节系统,它包括收集液态燃料使之蒸发进入空气流中形成空气/燃料混合气的蒸发器装置(4;113),将燃料供入蒸发器装置中的燃料调节装置(22;122)以及将空气供入蒸发器装置中从而让供入蒸发器装置中的燃料产生蒸发的空气调节装置(8;128),其特征在于空气调节装置包括空气节流器(8;128),该节流器带有一组相邻设置的窄的空气通道,以便产生大致的层状空气流,其中至少在空气节流器的主要部分中产生的压力差与通过空气节流器的空气流速呈线性关系,燃料调节装置被设置成根据所述的压力差而提供燃料。
2.如权利要求1所述的系统,其特征在于空气节流器(8;128)的空气通道是设置成相互平行的直的通道。
3.如权利要求2所述的系统,其特征在于空气节流器(8;113)包括一系列由隔板分开的平行板,且在其间限定出空气通道。
4.如权利要求1或2或3所述的系统,其特征在于空气节流器(8;113)的一部分产生出小的压力降,它随通过空气节流器的空气流速而变化,以在高空气流速时提供出浓度增加了的空气/燃科混合气。
5.如上述任何一条权利要求所述的系统,其特征在于空气节流器(113)与阀门装置(127)相连,用以给空气流提供基本上固定的压力降。
6.如上述任何一条权利要求所述的系统,其特征在于燃料调节装置包括燃料节流器(40;109),燃料通过其由穿过空气节流器(8;105)的压力差所传输。
7.如上述任何一条权利要求所述的系统,其特征在于加浓装置(110)用于在负荷超过预定值时将附加燃料供入空气/燃料混合气中。
8.一种用于化油器调节系统中的蒸发器,它将燃料蒸发进入通过蒸发器的空气流中,其特征在于该蒸发器(113)包括一系列平行的层状元件(114),它们由隔板(115)隔开,以在其间确定出窄的空气通道,且沿着通道的侧壁提供多孔的蒸发表面,它还包括将燃料供给该层状元件的装置(122),以便使蒸发表面上的燃料通过毛细作用产生扩散,它还包括将空气供给空气通道的装置(128),以便确保从蒸发表面蒸发出来的燃料在空气穿过该通道时进入该空气中。
9.一种化油器调节系统,它包括收集液态燃料使之蒸发进入空气流中的蒸发器装置(106),将燃料供入蒸发器装置中的燃料调节装置(109;110)以及将空气供入蒸发器装置中从而让供入蒸发器装置中的燃料产生蒸发的空气调节装置(105),其中燃料调节装置包括第一燃料节流器(109)、第二燃料节流器(110)和切换装置(112),第一燃料节流器(109)用来在稀混合气操作及浓混合气操作两种状态期间将燃料从燃料源供入蒸发器装置中,第二燃料节流器(110)则用来在系统的浓混合气操作期间将附加的燃料从燃料源供入蒸发器装置中,切换装置(112)则通过可将附加燃料供到蒸发器中来从稀混合气工作状态转换到浓混合气工作状态。
10.一种控制设备,用来控制供入发动机中的空气/燃料混合气的流速,该设备包括将空气/燃料混合气供入发动机的排出口(126),在开启和关闭位置之间可相对于排出口(126)移动的阀件(132),将阀件(132)根据发动机的负载相对于排出口(126)进行移动的控制装置,从而在发动机负载增加时,首先排出口(126)被阀件(132)逐渐打开,然后至少被部分关闭,最后被再次逐渐打开。
全文摘要
化油器调节系统包括一个由其下部浸入燃料(121)中的多孔平行板(114)组成的蒸发器(113),传送燃料到蒸发器(113)的燃料调节装置(122)和包括一组由隔板分开的平行板(127)和在板(127)之间定义的狭的间隙的层流空气节流器(128)。这样一个方案在单缸发动机中空气流速的一个宽的范围内能够获得基本上不变的空气/燃料混合气浓度。另外,通过输出管(126)进入发动机的混合气的供给可以由与发动机调速器连结的阀件(132)来控制,以使混合气的流速随负荷变化,另外还使系统在化油器运行的两个方式之间转换,即稀混合气操作,它具有大约四分之三负荷,和浓混合气操作,它把附加燃料供给蒸发器(113)。
文档编号F02B61/04GK1117754SQ9419120
公开日1996年2月28日 申请日期1994年1月14日 优先权日1993年1月16日
发明者J·R·C·佩德森 申请人:约翰·伦德尔·康拉德·佩德森
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1