控制电动车辆变速器的方法与流程

文档序号:12707249阅读:422来源:国知局
控制电动车辆变速器的方法与流程

本发明涉及一种控制电动车辆的变速器的方法。



背景技术:

在本部分的陈述仅提供与本发明有关的背景信息,并且其不构成现有技术。

电动车辆装配有变速器,其能够对来自电动机的动力进行变速,从而通过减少电动机的容量来减少制造成本。

如上所述,期望的是,电动车辆的变速器具有相对简单的结构,因此,在电动车辆中使用已经用于手动变速器的同步啮合型的换档机构。然而,我们已经发现,同步啮合型的换档机构具有在换档过程中产生切断传输至驱动轮的动力的扭矩中断的缺陷。



技术实现要素:

本发明提出一种控制电动车辆的变速器的方法,其具有基本使用用于电动车辆的同步啮合型换档机构的简单配置,并且其可抑制或防止扭矩中断,其中,该方法可更稳定地和更可靠地控制换档至下级档位(lower gear step)的降档,并且通过允许快速和准确地换档来提高换档质量。

因此,本发明提出了一种控制电动车辆的变速器的方法,其包括:扭矩确保步骤,当控制器确定需要从上级档位降档至下级档位时,根据当前电动机扭矩来确保要通过电动机产生的预定备用扭矩;滑移控制步骤,由控制器通过伺服离合器产生摩擦力,其中,上述伺服离合器被设置成在输入轴与具有比上级档位的传动比更小的传动比的伺服齿轮对中的伺服主动齿轮之间施加摩擦力;换档到空档步骤,在滑移控制步骤开始后,由控制器通过脱开上级档位的同步器来换档至空档;电动机同步步骤,在换档到空档步骤后,由控制器使用在扭矩确保步骤中确保的电动机的备用扭矩来将电动机的旋转速度与下级档位的期望速度同步;档位接合步骤,在电动机同步步骤开始后,由控制器接合下级档位的同步器;以及,离合器脱开步骤,在档位接合步骤后,由控制器通过脱开伺服离合器来结束换档。

扭矩确保步骤可包括:电动机扭矩确定步骤,确定当前电动机扭矩是否比电动机的最大扭矩小预定备用扭矩以上;以及,电动机扭矩减少步骤,当在电动机扭矩确定步骤中,确定最大扭矩和当前电动机扭矩之差小于备用扭矩时,减少电动机扭矩,使得最大扭矩和当前电动机扭矩之差变为预定备用扭矩或更多(以上)。

当通过开始滑移控制步骤,通过上级档位传输的扭矩被切换至伺服齿轮对时,可以执行换档到空档步骤。

当执行换档到空档步骤时,滑移控制步骤可以将伺服离合器的传输扭矩保持在预定水平。

在电动机同步步骤中,利用保持在预定水平的伺服离合器的传输扭矩来主动控制电动机的扭矩。

当控制器确定需要进行降档时,可以开始滑移控制步骤,同时开始扭矩确保步骤。

根据本发明,具有基本使用用于电动车辆的同步啮合型换档机构的简单配置并且可抑制或防止扭矩中断的电动车辆变速器,能够更稳定和更可靠地控制换档至下级档位的降档,并且通过允许快速和准确的换档来提高换档质量。

本发明的更多应用领域将从本文所提供的描述中得以显而易见。应当理解的是,本文描述和特定的示例仅旨在示例性的目的,并且不意图于限制本发明的范围。

附图说明

为了更好地理解本发明,现将参考附图描述以示例的方式给出的本发明的各种实施方式,这些附图中:

图1是示出能够应用本发明的电动车辆的变速器的配置的视图;

图2是示出控制根据本发明的一个实施方式的控制电动车辆的变速器的方法的一个实施方式的流程图;

图3A至图3E是顺序示出根据本发明的控制电动车辆的变速器的方法的由图1中示出的变速器执行换档的过程的视图;以及

图4是示出根据本发明的控制电动车辆的变速器的方的由图1中示出的变速器执行换档的过程的曲线图。

本文所描述的附图仅用于阐释性目的,并且不意图于以任何方式限制本发明的范围。

具体实施方式

下文描述本质上仅为示例性的,并且并不旨在限制本发明、应用或用途。应当理解的是,贯穿附图,对应的附图标记指代相同或对应的部件和特征。

参考图1,一种电动车辆的变速器包括:输入轴IN,其接收来自电动机M的动力;在输入轴IN上的第一主动齿轮1D和第二主动齿轮2D;输出轴OUT,其平行于输入轴IN;第一从动齿轮1P,其位于输出轴OUT上,用于通过与第一主动齿轮1D接合来产生第一传动比,以及第二从动齿轮2P,其位于输出轴上,用于通过与第二主动齿轮2D接合来产生第二传动比;同步器SS,其将第一从动齿轮1P或者第二从动齿轮2P连接至输出轴OUT,或者从输出轴OUT上断开;可旋转地安装在输入轴IN上的伺服主动齿轮SD、和不可旋转地安装在输出轴OUT上以通过与伺服主动齿轮SD接合来产生比第二传动比更小的传动比的伺服从动齿轮SP;以及,伺服离合器SC,其在伺服主动齿轮SD和输入轴IN之间施加摩擦力。

伺服主动齿轮SD和伺服从动齿轮SP组成伺服齿轮对,这将在下文进行描述。

同步器SS可以由用于将第一从动齿轮1P连接至输出轴OUT或从输出轴OUT上断开的第一同步器、以及用于将第二从动齿轮2P连接至输出轴OUT或从输出轴OUT上断开的第二同步器组成,但是在图1中单个同步器SS配置成负载这些功能。

伺服离合器SC是锥形离合器,使得其可以在相同体积下传输更大的摩擦力。

电动机M、同步器SS以及伺服离合器SC可由控制器C进行控制。

为了参考,在下文描述中上级档位(upper gear step)意味着第二档位,并且下级档位(lower gear step)意味着第一档位。

参考图2至图4,一种控制电动车辆的变速器的方法包括:扭矩确保步骤,当控制器C确定需要从上级档位降档至下级档位时,根据当前电动机扭矩确保通过电动机产生的预定备用扭矩(S10);滑移控制步骤,由控制器通过伺服离合器产生摩擦力,其中,所述伺服离合器设置成用于在输入轴和具有比上级档位的传动比更小的传动比的伺服齿轮对中的伺服主动齿轮之间施加摩擦力(S20);换档到空档步骤,在开始滑移控制步骤后,由控制器通过脱开上级档位的同步器来换档至空档(S30);电动机同步步骤,在换档到空档步骤后,由控制器使用在扭矩确保步骤中确保的电动机的备用扭矩将电动机的旋转速度与下级档位的期望速度进行同步(S40);档位接合步骤,在开始电动机同步步骤后,由控制器接合下级档位的同步器(S50);以及,离合器脱开步骤,在档位接合步骤(S50)后,由控制器C,通过脱开伺服离合器SC来结束换档过程(S60)。

即,根据本发明,当期望从上级档位换档至下级档位时,控制器C掌握当前电动机扭矩以确保备用扭矩,在滑移控制步骤(S20)中伺服离合器产生摩擦力,并且执行换档到空档步骤(S30)来脱开作为上级档位的第二档位。因此,可以用备用扭矩主动地控制电动机,使其与作为下级档位的第一档位的期望速度同步,同步器的套筒(sleeve)和与第一从动齿轮一体设置的离合器齿轮接合,并且脱开伺服离合器;因此,能够快速地和准确地结束换档。

如上所述能够进行快速和准确换档的原因是:由于电动机的扭矩和速度能够被相对简单并且十分准确的控制,因此,电动机能够通过在扭矩确保步骤(S10)中确保的备用扭矩在电动机同步步骤(S40)中主动地与期望速度同步。

因此,如上所述,通过在为空档而脱开上级档位的状态下控制电动机,可将备用扭矩设置成使电动机速度平滑并快速地与下级档位的期望速度同步的水平上。进一步地,可通过多个测试和分析确定备用扭矩,并且可根据设计者的意图,为了更快速的同步而将备用扭矩设置成相对较大。

下级档位的期望速度是指使作为在从第二档位降档至第一档位的过程中所期望的档位的第一档位的第一从动齿轮的离合器齿轮速度与同步器的套筒速度相同的电动机速度。即,控制电动机的速度,使得在电动机同步步骤(S40)中,第一从动齿轮的离合器齿轮速度与套筒速度同步,并且随后,执行档位接合步骤(S50)。

扭矩确保步骤(S10)包括电动机扭矩确定步骤,确定当前电动机扭矩是否比电动机最大扭矩小预定备用扭矩以上(S11);以及,电动机扭矩减少步骤,当在电动机扭矩确定步骤中确定最大扭矩和当前电动机扭矩之差小于备用扭矩时,减少电动机扭矩,使得最大扭矩和当前电动机扭矩之差变为备用扭矩或者更多(备用扭矩以上)(S12)。

显然地,当在电动机扭矩确定步骤(S11)中,确定从当前电动机扭矩至电动机最大扭矩存在高于备用扭矩的余量时,不执行电动机扭矩减少步骤(S12)。

当控制器确定需要降档时,如图2和图4所示,可以与扭矩确保步骤(S10)一同开始滑移控制步骤(S20),从而能够尽快地执行换档。

不过,为了易于控制,可首先执行扭矩确保步骤(S10)并且随后开始滑移控制步骤(S20)。

可继续执行滑移控制步骤(S20),直到离合器脱开步骤(S60)结束。

当通过滑移控制步骤(S20),通过上级档位传输的扭矩被切换至通过伺服齿轮对时,执行换档到空档步骤(S30)。

即,当开始滑移控制步骤(S20)时,在伺服主动齿轮和输入轴之间产生摩擦力,并且本来通过第二主动齿轮和第二从动齿轮传输的扭矩开始通过伺服齿轮对进行传输,并且随着摩擦力增加,扭矩将不再通过第二主动齿轮和第二从动齿轮传输,而是仅通过伺服齿轮对传输,并且此时,执行换档至空档步骤,因此,可无冲击地平滑地脱开第二档位。

显然地,在从脱开第二档位至接合第一档位的阶段,通过伺服离合器和伺服齿轮对无扭矩中断地、持续地将扭矩传输至输出轴。

当执行换档到空档步骤(S30)时,滑移控制步骤(S20)可将通过伺服离合器传输的扭矩保持在预定水平,使得在电动机同步步骤(S40)中更容易地控制电动机。

即,在电动机同步步骤(S40)中,可以利用保持在预定水平的伺服离合器SC的传输扭矩主动地控制电动机,因此能更准确并更容易地控制电动机的速度使其同步。

如上所述,当电动机的速度与期望速度同步时,执行档位接合步骤(S50)。电动机的速度与期望速度的同步并不仅仅是指第一从动齿轮的离合器齿轮速度与同步器的套筒速度完全相同,而且还包括同步器能够应对的范围内的误差,实际上,当以同步器能够应对的范围内的速度差完成同步时,通过操作同步器接合第一档位是能够尽可能地减少换档时间的方式。

作为参考,图3A和图4中的(A)示出当车辆在接合作为上级档位的第二档位的状态下驱动时的状态,图3B和图4中的(B)示出当开始滑移控制步骤并且执行扭矩确保步骤时的状态,其中伺服离合器产生摩擦力,图3C和图4中的(C)示出在第二档位脱开并且同步器处于空档的状态下执行换档到空档步骤后的状态,其中,在同步器移向空档时,通过执行电动机同步步骤,电动机速度与第一档位的期望速度同步,并且图3D和图4中的(D)示出将同步器与第一档位接合的档位接合步骤,并且图3E和图4中的(E)示出伺服离合器脱开的离合器脱开步骤。

作为参考,在图4中,档位1和档位2分别意味着第一档位和第二档位的速度。

根据本发明,如上所述,通过主动地控制电动机的速度,能够更快并且更准确地实现降档,因此车辆的换档质量得以提高,因此,电动车辆的商业价值得以提高。

尽管本发明已经参考在附图中示出的具体的实施方式进行描述,但是对于本领域的技术人员显而易见的是,在不违背本发明的范围的情况下,本发明可以各种方式进行变化和修改。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1