稳定发动机离合器控制的方法、发动机离合器系统及车辆与流程

文档序号:11650211阅读:407来源:国知局
稳定发动机离合器控制的方法、发动机离合器系统及车辆与流程

相关申请的引证

本申请要求于2015年12月10日在韩国知识产权局提交的韩国专利申请第10-2015-0175688号的优先权权益,通过引证将其全部公开内容结合于此。

本公开的示例性实施方式涉及发动机离合器控制,并且具体地,涉及用于稳定基于双离合变速器(dct)的干式发动机离合器控制的方法和发动机离合器系统,以及采用该方法和系统的发动机。



背景技术:

通常,混合电动车辆(在下文中,被称为“hev”)被构造为使用内燃机和电动机作为动力。就动力传递结构而言,hev可被分类为并行、串行以及轻型(mildtype)。hev使用双离合变速器(dct)作为变速系统,其中,偶数齿轮输入轴和奇数齿轮输入轴与两个离合器结合使用。

具体地,通常hev以ev模式(电动车辆模式)和hev模式(混合电动车辆模式)操作,在ev模式中,只有电动机用作动力,在hev模式中,发动机和电动机一起用作动力。采用发动机离合器系统以便在ev模式与hev模式之间改变操作模式时,连接发动机与电动机或者断开发动机与电动机。

例如,发动机离合器系统可由nc(常闭)式发动机离合器和电动液压致动器形成。如果电动液压致动器不操作,则发动机离合器将维持发动机与电动机之间的连接,由此可维持发动机与电动机之间的动力连接。如果电动液压致动器操作,则发动机离合器将断开发动机与电动机之间的连接,由此断开发动机与电动机之间的动力连接。

以此方式,hev可根据发动机离合器系统的操作状态而选择性以ev模式或hev模式操作。

然而,发动机离合器系统可被构造为通过由液压管线连接电动液压致动器与发动机离合器而形成流动通道,由此如果油类泄露,则不可能基于电动液压致动器来控制发动机离合器。重复油类泄漏可导致发动机离合器基于电动液压致动器的正常操作发生故障。



技术实现要素:

本公开的实施方式针对于用于稳定发动机离合器控制的方法和发动机离合器系统,以及采用该方法和系统的发动机,其中,可以以这样的方式快速检测任意油类泄漏,即,将由于致动器行程而产生的电动液压致动器的液压异常变化变为油类泄漏数据,并且具体地,在油类泄漏的情况下,可通过将电动液压致动器恢复为非操作状态,来防止由于异常致动器行程而出现的发动机离合器控制区段中的任何离合器滑动和离合器燃烧。

通过以下描述可理解本公开的其他目的和优点,并且参考本公开的实施方式,本公开的其他目的和优点将变得显而易见。此外,对于本公开所属领域的技术人员来说显而易见的是,本公开的目的和优点可通过根据本申请的装置及其组合实现。

根据本公开的一个实施方式,用于稳定发动机离合器控制的方法包括:从控制器向发动机离合器系统传输发动机离合器操作启动命令,该发动机离合器系统包括设置为连接和断开发动机与电动机的发动机离合器;检测在发动机离合器系统的操作过程中生成的液压;使用控制器执行油类泄漏判断模式,以判断液压是发动机离合器的操作可用的正常液压还是发动机离合器的操作不可用的异常液压;以及基于控制器的控制,在异常液压的情况下,将操作模式改变为发动机离合器的操作停止的紧急操作模式,并且在正常液压的情况下,通过操作发动机离合器来执行操作模式改变。

可通过发动机离合器系统的电动液压致动器的致动器行程生成液压。

可以以这样的方式执行油类泄漏判断模式,即,由控制器操作发动机离合器系统的电动液压致动器,由于致动器行程的增加的该液压被检测为当前液压pcurrent,并且将当前液压pcurrent与设定极限液压plimit相比较,由此判断正常液压和异常液压。

可执行致动器行程从初始行程x0到最大行程xmax的增大,并且在最大行程xmax的位置处检测当前液压pcurrent。

极限液压plimit可限定为,在电动液压致动器在没有任意油类泄漏的情况下正常操作时所生成的液压中的最小液压。

正常液压可以是在当前液压pcurrent是超过极限液压plimit的压力的情况下的压力,并且异常液压可以是在当前液压pcurrent小于极限液压plimit或等于极限液压的情况下的压力。

可以以这样的方式执行紧急操作模式,即,异常液压被生成为发动机离合器系统油类泄漏代码,该电动液压致动器根据控制器的控制而使致动器行程逆向操作,以便恢复至初始状态,在致动器行程恢复至初始状态之后停止发动机离合器的操作,并且在停止发动机离合器的操作之后控制改变为跛行回家模式控制(thelimphomecontrol)。

致动器行程的初始状态恢复可意味着初始行程x0的位置。

可以以这样的方式执行跛行回家模式控制,即,由控制器驱动发动机,由控制器控制电动机与发动机同步,并且dct借助于控制器执行震荡控制。

可在混合电动车辆(hev)模式与电动车辆(ev)模式之间执行操作模式改变。

发动机离合器可以是基于常闭(nc)式发动机离合器操作的干式发动机离合器。

根据本公开的另一实施方式,发动机离合器系统包括:控制器,该控制器包括油类泄漏检测映射,在该油类泄漏检测映射中,在没有油类泄漏时将系统液压判断为正常液压的数据、以及存在油类泄漏时将系统液压判断为异常液压的数据以映射的形式形成;电动液压致动器,该电动液压致动器包括通过经由高速控制器局域网(can)通信线连接至控制器的局部控制单元(lcu)控制的致动器马达,设置为将致动器马达的旋转改变为直线运动的导螺杆,设置为用于与导螺杆协作生成致动器行程的活塞杆,以及响应于活塞杆的运动基于油类供给或油箱的恢复而形成液压或移除液压的主缸;压力传感器,该压力传感器用于检测主缸的液压并且为控制器提供检测;同心从动缸(scs),该同心从动缸经由液压管线连接至主缸并且基于所提供的液压生成液压行程;以及发动机离合器,该发动机离合器连接至csc和弹簧并且被构造为接收液压行程。

根据本公开的另一实施方式,车辆包括:发动机离合器系统,该发动机离合器系统包括具有油类泄漏检测映射的控制器,在该油类泄漏检测映射中以映射的形式形成,在没有油类泄漏时将系统液压判断为正常液压的数据以及存在油类泄漏时将系统液压判断为异常液压的数据,由控制器控制且基于致动器行程生成液压的电动液压致动器,用于检测液压并且向控制器提供检测的压力传感器,用于接收液压且生成液压行程的同心从动缸(scs),以及连接至csc和弹簧且接收液压行程的发动机离合器;发动机,连接至混合起动机与发电机(hsg);电动机,当通过发动机离合器系统连接至发动机时,该电动机采用混合电动车辆(hev)模式,并且当与发动机断开时,该电动机采用电动车辆(ev)模式;以及双离合变速器(dct),连接至电动机。

根据本公开,可以以这样的方式获得以下优势和效果,即,将在油类泄漏的情况下能够正常控制发动机离合器的发动机离合器系统设置在车辆中。首先,可提供发动机离合器系统的控制结构,该结构能够使用电动液压来控制基于dct的发动机离合器。其次,可提供hev模式控制逻辑,该逻辑能够检测发动机离合器系统中的任意油类泄漏。第三,可防止任意离合器燃烧,由于发动机离合器控制区段中的异常致动器行程,该离合器燃烧可引起离合器滑动。第四,发动机离合器系统可开发为基于dct的干式发动机离合器系统。第五,可预先使用未来采用基于dct的干式发动机离合器系统的混合动力车辆中的油类泄漏检测跛行回家模式控制技术。

附图说明

图1a和图1b是用于描述根据本公开的实施方式的用于稳定发动机离合器控制的方法的流程图。

图2是示出采用根据本公开的实施方式的用于稳定发动机离合器控制的方法的车辆的实例的视图。

图3是示出根据本公开的实施方式的发动机离合器系统的详细构造的视图。

图4是示出根据本公开的实施方式的发动机离合器系统的操作状态的视图。

图5是示出根据本公开的实施方式的电动液压致动器的液压曲线的实例的曲线图。

图6是根据本公开的实施方式的与电动液压致动器相关的发动机离合器的离合器控制曲线。

图7是示出根据本公开的车辆的发动机离合器系统处于ev模式时的操作状态的曲线图。

具体实施方式

在本说明书和权利要求书中使用的术语和词语不应被解释为它们的通常意义或字典意义。基于发明人可定义术语的适当概念以便以最佳方式描述他/她自己的公开的原理,意义应被解释为符合本公开的技术构思的意义和概念。因此,在本说明书中描述的实施方式以及在附图中示出的构造仅是本公开的一个优选实施方式,并且详细说明部分不涵盖本公开的所有技术构思。因此,应理解,在提交本申请时,可进行各种改变和修改。此外,本领域公知的功能和构造的详细说明可省去,以避免不必要地模糊本公开的概念。下面将参考附图更详细地描述本公开的示例性实施方式。

图1a和图1b是用于描述根据本公开的实施方式的用于稳定发动机离合器控制的方法的流程图。如其中示出的,提供根据本公开的用于稳定发动机离合器控制的方法,其中,可以以这样的方式基于相对于致动器行程的液压区的极限压力值来检测液压管线处的任意油类泄漏即,即,在液压管线处的油类泄漏的情况下,在发动机离合器系统处识别由于致动器行程而异常地生成液压的情形。因此,车辆随后可改变为跛行回家模式(由于硬件错误而产生的车辆的最小驱动状态)作为油类泄漏的情况下的紧急操作模式。因此,车辆能够在没有由于离合器控制区段中的异常致动器行程而产生的任意离合器滑动和燃烧的情况下,获得hev模式控制逻辑。

图2和图3是示出根据本公开的实施方式的采用用于稳定发动机离合器控制的方法的车辆和发动机离合器的视图。

参考图2,车辆100可包括但不限于:内燃式发动机200;电动式电动机300;hsg(混合起动机与发电机)400,连接至发动机200的曲柄轴并且设置为在启动发动机时驱动发动机200;dct(双离合器变速器)500,连接至电动机300并且被构造为作为变速系统操作;以及发动机离合器系统1,能够响应于发动机200与电动机300的连接和断开控制而在hev模式与ev模式之间改变驱动模式。

参考图3,发动机离合器系统1可包括但不限于,控制器10、油类泄漏检测映射10-1、电动液压致动器20、压力传感器30、液压管线40、csc(同心从动缸)50以及发动机离合器60。

更具体地,控制器10可被配置为作为经由高速can(控制器局域网)通信线连接至车辆100的每个下位控制器的上位控制器操作,通信线可包括电动液压致动器20的lcu(局部控制单元)21-1。因此,控制器10可与设置为控制hev/ev模式以及跛行模式的hcu(混合控制单元)相同。具体地,控制器10可连接至油类泄漏检测映射10-1或者可包括油类泄漏检测映射以便读取油类泄漏检测映射10-1的数据。油类泄漏检测映射10-1可形成为可包括极限液压的映射,以判断由于电动液压致动器20的致动器行程的正常液压和油类泄漏,以及与油类泄漏相关的发动机离合器系统油类泄漏代码等。此外,控制器10可被配置为向pwm(脉冲宽度调制)duty提供任意指令或命令。

更具体地,电动液压致动器20可包括但不限于:致动器马达21,其通过经由高速can通信线连接至控制器10的lcu(局部控制单元)21-1控制;导螺杆23,其将致动器马达21的旋转转换为直线移动;活塞杆25,其与导螺杆23同步生成致动器行程;以及主缸27,其能够根据油类提供或油箱的恢复,基于活塞杆25的运动形成液压或移除液压。

更具体地,压力传感器30检测在主缸27处产生的液压,并且向油类泄漏检测映射10-1(或者经由高速can通信线连接的控制器)传输检测。

更具体地,液压管线40连接主缸27与csc50,由此向csc50提供在主缸27处生成的液压。具体地,液压管线40可由软管或管子形成。

更具体地,csc50连接至发动机离合器60的弹簧并且设置为向发动机离合器60提供由来自液压管线40的液压生成的行程。具体地,csc50可形成为这样的类型,即由配备有离合器分离缸、分离杆、分离叉、分离轴承、枢轴以及输入轴套筒的功能的模块。

更具体地,发动机离合器60可由可经由nc(常闭)操作的干式发动机离合器形成,并且设置为断开由csc50的操作连接的发动机200与电动机300。因此,发动机离合器60将以这样的方式将车辆100的操作模式从hev模式改变为ev模式,即,断开发动机200与电动机300。

将参考图4至图7描述本公开的用于稳定发动机离合器控制的方法的实施方式。在这种情况下,主要控制部件可以是控制器10,并且控制器10可采用hcu。

步骤s10是由控制器10识别车辆的启动钥匙插入的步骤。在这种情况下,车辆的启动钥匙插入意味着启动发动机200之前的状态。

步骤s20是从控制器10传输发动机离合器操作启动命令的步骤。参考图4,控制器10将向lcu21-1传输电动机旋转命令,并且lcu21-1将响应于电动机旋转命令而允许致动器马达21旋转。在下文中,将假定致动器马达的旋转方向是致动器行程可增加的方向。

步骤s30是由控制器10执行致动器液压提供控制的步骤。参考图4,控制器10可保持向lcu21-1传输命令以用于使致动器马达21持续旋转。因此,致动器马达21的旋转转变为导螺杆23的向前直线移动,因此允许活塞杆25朝向主缸27向前移动,并且活塞杆25的向前移动可导致致动器行程的增加。此后,主缸27的室中的油类被活塞杆25加压。为此,由于致动器行程增加,可在主缸27处形成液压。

步骤s40是在控制器10的致动器行程增加控制的情况下,结束致动器液压提供控制的步骤。参考图4,当致动器行程(xactuatorstroke)改变为初始致动器行程(x0)(即,发动机离合器的连接)时的最大致动器行程(xmax)(即,断开发动机离合器)时,控制器10将停止致动器液压提供控制。为此,控制器10可使用安装在主缸27处的传感器来检测xactuatorstroke或者可使用油类泄漏检测映射10-1,其中,电动液压致动器20的x0和xmax以数据的形式存储。

步骤s50是由控制器10识别在电动液压致动器20处生成的液压的步骤。在这种情况下,控制器10接收由压力传感器30检测的液压并且将所接收的液压识别为电动液压致动器20的当前液压,并且将其限定为pcurrent。本文中,pcurrent指压力传感器30在活塞杆25的最大向前位置(即,xmax)处在主缸27处生成的液压。

步骤s60是由控制器10判断电动液压致动器20处的油类泄漏的步骤。在这种情况下,控制器10将采用plimit与pcurrent相比较。plimit指被检测为xmax的位置(其中,电动液压致动器20处于不存在任意油类泄漏的正常操作状态)的正常液压区中的最小正常液压,并且plimit可被限定为极限液压。plimit将以数据的形式存储在油类泄漏检测映射10-1中。因此,控制器10能够以这样的方式判断电动液压致动器20的油类泄漏状态,即,使用由压力传感器30检测的pcurrent以及存储在油类泄漏检测映射10-1处的plimit。为此,控制器10可采用pcurrent≤plimit的关系式,其中,“≤”指的是示出两个值之间的大小关系并且指plimit大于或等于pcurrent的不等号。参考图5,示出相对于电动液压致动器20的致动器行程的压力特性。由于异常液压判断范围形成在正常液压曲线以下,所以能够通过使用plimit判断任意油类泄漏。

作为步骤s60中的检查的结果,如果当前液压pcurrent小于极限液压plimit,则控制器10进入步骤s70的紧急操作模式,并且如果当前液压pcurrent大于或等于极限液压plimit,则控制器10将进入步骤s100中的模式改变(hev—>ev)。参考图6,示出的是电动液压致动器20与发动机离合器60之间的操作关系。如其中示出的,控制器10将判断液压相对于致动器行程区段(x0<—>xmax)的正常状态,借助于该判断,在与致动器行程区段匹配的离合器控制区段(x0<—>xmax)中的异常液压的情况下,发动机离合器60不能被操作。因此,发动机离合器60将防止由于离合器控制区段中的离合器滑动而可能出现的任意离合器燃烧。

步骤s70中的紧急操作模式可被分类为步骤s71至s74中的发动机离合器系统的初始状态恢复控制以及步骤s75和s76中的跛行回家模式控制。因此,当油类泄露时,如果致动器行程不能将发动机离合器60的闭合状态自动恢复为初始状态则车辆100将只以ev模式驱动,由此,防止如果车辆100只以ev模式驱动时可能出现的高压电池的soc(充电状态)消耗。

步骤s71是由控制器10生成错误代码的步骤。参考图4,控制器10将读取存储在油类泄漏检测映射10-1中的发动机离合器系统的油类泄漏代码,并且存储对应油类泄漏代码或者在屏幕上显示油类泄漏代码,或者使用它作为警报灯开启信号。

步骤s72是由控制器10执行致动器液压恢复控制的步骤。参考图4,控制器10将向lcu21-1传输电动机反转命令,并且lcu21-1将响应于电动机反转命令而使致动器马达21反转。致动器马达21的反转将转变为导螺杆23的向后直线移动,由此向后移动活塞杆25使得它可与主缸27分离,并且活塞杆的移动将导致致动器行程的减小。由于致动器行程的减小,因为活塞杆25与主缸27分离,所以在主缸27处液压可降低。

步骤s73是借助于控制器10的致动器行程恢复控制而结束致动器液压恢复控制的步骤。参考图4,当xactuatorstroke从xmax改变为x0时,控制器10将停止致动器液压恢复控制。

步骤s74是从控制器10传输发动机离合器操作停止命令的步骤。参考图4,控制器10向lcu21-1传输电动机控制命令,并且lcu21-1响应于电动机停止命令而停止致动器马达21。因此,完成发动机离合器系统1由于油类泄漏的初始状态恢复控制。

步骤s75是由控制器10执行跛行回家模式控制进入的步骤。参考图2,控制器10将基于发动机启动开始事件向hsg400传输控制命令,由此启动发动机200并且控制电动机与发动机200的每分钟转数同步。因此,车辆100将以hev模式(其中,发动机离合器60处于闭合状态)执行发动机200与电动机300的同步控制。

步骤s76是由控制器10执行跛行回家模式控制的步骤。参考图2,控制器10将使用dct500的能够滑动的dct离合器执行震荡控制,于是车辆100可以是跛行回家模式驱动状态或者可进入跛行回家模式驱动状态。

同时,步骤s100是如果当前液压pcurrent大于或等于极限压力plimit,将执行模式改变的步骤,并且步骤s110是在操作模式从hev模式改变为ev模式之后车辆将利用电动机驱动的步骤。参考图1和图7,csc50可使得csc分离行程具有与电动液压致动器20的致动器行程成比例的运动,并且可基于致动器行程的改变而生成与释放负载成比例的液压并且可将其转移至发动机离合器。此后,由于处于与初始状态相对应的闭合状态的致动器行程的增加,将打开发动机离合器60,并且发动机离合器从闭合状态改变为打开状态可意味着或使得从hev模式改变为ev模式,所以车辆可以以ev模式驱动。

步骤s100和s101与车辆的正常驱动状态相关。

如上所述,在根据本公开的实施方式的用于稳定发动机离合器控制的方法中,具有能够连接和断开发动机200与电动机300的发动机离合器60的发动机离合器系统1通过控制器10接收发动机离合器操作启动命令,并且将基于发动机离合器系统1的电动液压致动器的行程而检测的当前液压pcurrent与极限液压plimit相比较,由此判断由于没有油类泄漏的正常液压并且判断由于存在油类泄漏的异常液压。由于以发动机离合器系统1的nc(常闭)操作的干式发动机离合器60只可在液压油类处于正常状态的情况下操作,以防止发动机离合器控制区段中的任意离合器滑动和离合器燃烧,所以可获得车辆100的hev模式逻辑的稳定性。

尽管已相对于特定实施方式描述了本公开,但对本领域技术人员来说将显而易见的是,在不背离如由以下权利要求所限定的本公开的实质和范围的情况下,可做出各种改变和修改。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1