生产薄膜单晶器件的方法、太阳能电池组件和其生产方法

文档序号:6883352阅读:155来源:国知局

专利名称::生产薄膜单晶器件的方法、太阳能电池组件和其生产方法
技术领域
:本发明涉及生产薄膜单晶器件的方法、太阳能电池组件以及生产太阳能电池组件的方法。薄膜单晶器件包括例如,太阳能电池之类的光电转换器和用在用以驱动如液晶显示部件之类的图象显示部件的电路中的器件。太阳能电池通常用作驱动各种类型的电力机械和设备的独立电源,或者用作与商业电网互连的系统的电源。作为构成太阳能电池的半导体,通常使用硅和砷化镓。为了实现高的光电转换效率(即光能转换成电能的效率),最好是采用这些半导体单晶。就如液晶显示部件之类的大屏幕图象显示部件来说,由于近几年对更高精细度和更高速度的图象显示的需求的增加,要求在显示部件之内的驱动电路具有更高的容量。为了满足这种要求,驱动电路应当形成在单晶硅上而不是非晶硅多晶硅上。在为了上述目的使用单晶半导体时,会出现一些问题。例如,在把硅应用于太阳能电池的情况下,通常使用的单晶晶片的厚度厚达300-600μm,而吸收入射阳光所要求的薄膜厚度约为30-50μm。在最近的形势--亦即用于太阳能电池的单晶硅占其全部产量的10%的情况下,它的消耗应当降低。在图象显示器件中,由于它们的使用形式的原因,光必须沿着驱动电路中的各元件传遍各个区域。然而,通常使用的单晶片难以具有在其上形成的这种结构。此外,驱动元件自身所要求的单晶层的厚度只有1μm,甚至更小,剩余部分仅仅起支撑衬底的作用。为了解决这一问题,应当根据其使用目的来选择具有合适厚度的薄膜单晶;然而,只要使用现有技术,就难以生产出厚度为300μm或小于300μm的单晶层。特别是,在现有技术的一些方法中,由于单晶衬底是以这样的方式,即把通过使熔融的结晶材料经历晶体生长所获得的晶坯单晶切片并抛光来生产的,所以,难以获得厚度为300μm或小于300μm的单晶。在另一些方法中,为了获得特殊用途的高品质的薄膜单晶,对几百μm厚的单晶衬底的背面进行腐蚀;然而,用这些方法生产高品质的薄膜单晶是相当困难的。但是,最近日本公开专利公报平7-302829号披露的方法能够使薄膜单晶从供薄膜单晶在其上外延生长的衬底上剥离;日本公开专利公报平9-331077号披露的技术能够把从薄膜单晶衬底的表面到一定深度的那一部分作为薄膜从衬底上剥离。然而,这些方法也有一个问题,那就是在剥离作业期间,薄膜单晶中可能出现晶格缺陷,导致薄膜单晶品质的降低,在极个别情况下,薄膜单晶上会出现裂纹,导致产量显著降低。因此,希望有对上述问题的有效的解决方案。大体上说,目前有两种常用类型的太阳能电池采用非晶硅的太阳能电池和采用结晶硅的太阳能电池。这些太阳能电池根据它们的具体用途按各种方式设计而成,以便充分利用它们各自的特征。例如,非晶硅太阳能电池是通过用等离子CVD法在导电衬底上淀积一个非晶硅薄膜并在该非晶硅薄膜上形成透明的导电层而形成的,与采用结晶硅的太阳能电池相比,非晶硅太阳能电池价廉,质轻,且耐冲击性和挠性优良。为了很好地利用这些特性,人们已经尝试把非晶硅太阳能电池用作与建筑材料结合在一起的太阳能电池,也就是说,把非晶硅太阳能电池与建筑物的屋顶、墙壁等结合起来。在这种情况下,通过用粘结剂把增强材料粘结到太阳能电池的不接收光的那一侧而把太阳能电池用作建筑材料。粘结增强材料提高了太阳能电池组件的机械强度,防止因温度变化而引起的翘曲和变形。由于在屋顶上能够收集到更多的阳光,所以,这种类型的太阳能电池通常安装在屋顶上。在其作为与屋顶结合的太阳能电池的使用中,通常按下列步骤进行安装把一框架安装到太阳能电池上,把一支架安装到屋顶上,把太阳能电池安装到支架上。另一方面,粘结有增强材料的太阳能电池可以作为屋面材料,通过粘结增强材料而直接安装到屋顶上。这样可以大大地降低原材料的成本以及作业步骤的数量,从而以低廉的价格提供一种带有太阳能电池的屋顶。此外,由于既不需要框架也不需要支架,所以,可把太阳能电池做得很轻。因此,可把太阳能电池当作金属屋顶材料对待,由于它的可加工性优良、重量轻以及抗震性优良,近来,引起了人们很大的关注。与屋顶材料结合的太阳能电池组件,例如,日本公开专利公报平7-302924号所揭示的太阳能电池组件的可加工性是优良的,这是由于屋顶材料互相接合的那些部分(即没有布置光电元件的区域)受到弯曲处理,就像普通的屋顶材料一样。就机械加工而言,由于用于普通屋顶材料的现行的模制机械能够象其原来那样使用,所以,加工也容易进行。从而能够以低成本安装带有太阳能电池的屋顶。如上所述,由于最好是以重量轻和能够象普通屋顶材料那样机加工的方式构造与屋顶材料结合的太阳能电池组件,所以,最通用的与屋顶材料结合的太阳能电池组件的结构是将光电元件粘结到或者安装到钢板(屋顶材料)上,并用树脂材料进行绝缘密封,如图10A和10B所示。图10A和10B分别是与屋顶材料相结合的板式太阳能电池组件的示意性透视图和沿图10A的10B-10B线截取的剖视图。在图10A和10B中,标号1001表示表面保护材料,标号1002表示填充材料,标号1003表示光电元件,标号1004表示增强板。当把非晶硅太阳能电池组件作为前述的与屋顶材料结合的太阳能电池组件时,它具有理想的和优良的特性,但是,它的缺陷是光电转换效率(把光能转换成电能的效率,以下有时简称为“转换效率”)通常比结晶硅太阳能电池的低,而且,经过长时间的使用之后,它的性能可能因光而导致某种程度上的劣化(光老化)。另一方面,对于结晶硅太阳能电池来说,它的光电转换效率一般比非晶硅太阳能电池的要高,而且不容易光老化。为了利用这些特性,已经研制出能够节省空间的结晶硅太阳能电池板。然而,在太阳能电池组件(特别是与屋顶材料结合的太阳能电池组件)中采用单晶硅时,还有几个问题需要解决。在把硅应用于太阳能电池的情况下,通常使用的单晶晶片的厚度高达约300-600μm,而吸收入射阳光所要求的薄膜厚度约为30-50μm。因此,如果把单晶硅晶片照原样用作光电转换层,意味着单晶硅被不必要地耗费了。在目前的情况下,用于太阳能电池的硅晶体的量占其总产量的10%或者更高,所以迫切要求降低它的消耗。此外,在把上述厚度的硅晶片照原样用作太阳能电池的光电转换层的情况下,由于这种太阳能电池几乎没有像带有薄膜非晶硅层的非晶硅太阳能电池所具有的那样的挠性,所以,非常难以把硅晶片固定到,例如,一个弯曲的表面上。因此,限制了太阳能面板的形状和安装位置,而且,希望把其应用于与建筑材料结合的模件中时,会受到许多限制。另一方面,最近,在建筑材料和太阳能电池的功能和设计方面,要求建筑材料和太阳能电池有广泛的形状变化。在这样的形势下,为了提供形状多变的建筑材料和太阳能电池,仍保持光电元件的平面形状是困难的。而且,应当保证包括光电元件在内的整个范围的太阳能电池的可加工性。作为跟随上述多样化发展趋势的措施,例如,日本公开专利公报平8-222752、日本公开专利公报平8-222753和日本专利公报平6-5769披露了一种波纹状的太阳能电池组件。在各自的方案中,为了提高光的利用率,把光电元件以波纹的形式布置,并按照下列步骤生产波纹状太阳能电池组件,即用粘结剂将光电元件粘结到预先加工成波纹状的钢板上。对于挠性优良的非晶硅太阳能电池来说,这些技术的应用是可行的,然而,把这些技术应用到采用了硅晶片的挠性差的结晶硅太阳能电池上是困难的。对于这些问题,亦即非晶硅太阳能电池和结晶硅太阳能电池各自具有的问题的一种可能的解决方案,是根据其应用目的选择合适厚度的薄膜单晶;然而,用现有技术难以生产出厚度为300μm或小于300μm的单晶。特别是,一些现有技术的方法中,由于单晶衬底是以这样的方式,即把通过使熔融的结晶材料经历晶体生长所获得的晶坯单晶切片并抛光生产的,所以,难以获得厚度为300μm或更薄的单晶。在另一些方法中,为了获得特殊用途的高品质的薄膜单晶,对几百μm厚的单晶衬底的背面进行腐蚀;然而,它的生产过程复杂且受到许多限制。然而,最近提出了一些能够从单晶衬底上剥离薄膜单晶的方法;例如,日本公开特许公报平7-30288披露的方法便能够从衬底上剥离通过外延生长而形成在薄膜单晶衬底上的薄膜单晶,而且,日本公开特许公报平9-331077披露的技术能够把从单晶衬底的表面到一定深度的那一部分作为薄膜从衬底上剥离。由于这些类型的薄膜单晶与前述的目前使用的硅晶片相比具有优良的挠性,尽管它们的挠性比非晶硅薄膜的差,但这些类型的薄膜单晶还是能够模制成一定程度的曲面形式。然而,即便是薄膜单晶,当剥离过程中和包括有弯曲动作的组件生产过程中不小心弯曲它时,它的上面都可能出现晶格缺陷,导致它的品质降低,在极个别情况下,还可能出现裂纹,导致它的产量显著降低。此外,即便当把薄膜单晶布置在不须经受弯曲的区域时,它也可能被其所在环境的风力或者振动瞬间施压,此外,随着时间的推移,它还可能遭受因其变形而引起的弯曲。因此,薄膜单晶上可能出现晶格缺陷,导致它的品质降低,极个别情况下,上面可能出现裂纹。因此,在生产薄膜单晶器件的情况下,本发明的目的是提供一种从衬底上剥离薄膜单晶而不产生晶格缺陷和裂纹的方法,该方法能够以高产量生产高品质的薄膜单晶器件。本发明的另一个目的是提供一种高品质的薄膜单晶太阳能电池组件,该太阳能电池组件解决了以薄膜单晶为其至少一部分的太阳能电池组件在使用和生产过程中出现的前述的问题,并且,该太阳能电池组件具有优良的耐久性和可靠性,没有缺陷和裂纹,还提供一种生产这种太阳能电池组件的方法。特别是,本发明提供一种利用薄膜单晶生产薄膜单晶器件的方法,该薄膜单晶是通过下列步骤获得的在一衬底的表面上依次形成剥离层和薄膜单晶;把一挠性薄片件粘结到上述薄膜单晶的表面上或者粘结到一个额外形成在薄膜单晶表面上的层的表面上;通过把力以弯曲薄片件的方式施加到薄片件上而把薄膜单晶和薄片件一起从衬底上剥离,其中,薄膜单晶从衬底上的剥离是按照这样的方式进行的,即根据薄膜单晶最容易劈裂的平面的表象,使形成在薄膜的表面上的所有直线的方向均不同于已剥离部分的前方线的方向,从而避免产生缺陷和裂纹。此外,本发明提供一种具有挠性的、包含有以薄膜单晶作为其至少一部分的光电转换元件的太阳能电池组件,其中,太阳能电池组件固有的易于弯曲的方向不同于薄膜单晶最易于劈裂的方向。此外,本发明提供一种具有挠性的、包含有以薄膜单晶作为其至少一部分的光电转换元件的太阳能电池组件,其中,太阳能电池组件的具有薄膜单晶的区域的至少一部分须经塑性变形,而且,其中塑性变形的方向不同于薄膜单晶最易于劈裂的方向。此外,本发明提供一种生产具有挠性的、包含有以薄膜单晶作为其至少一部分的光电转换元件的太阳能电池组件的方法,其中,薄膜单晶是按照使太阳能电池组件固有的易于弯曲的方向不同于薄膜单晶最易于劈裂的方向的方式布置的。此外,本发明提供一种生产具有挠性的、包含有以薄膜单晶作为其至少一部分的光电转换元件的太阳能电池组件的方法,该方法包括使太阳能电池组件的具有薄膜单晶的区域的至少一部分经受塑性变形的步骤,其中,塑性变形是按照使塑性变形的方向不同于薄膜单晶最易于劈裂的方向的方式进行的。在本发明中,合适的是,薄膜单晶具有金刚石型或者闪锌矿型结构。在本发明中,薄膜单晶最好是通过下列步骤生产的在一衬底的表面上依次形成剥离层和薄膜单晶层;把一板状挠性件粘结到上述薄膜单晶层的表面上或者粘结到一个额外形成在薄膜单晶层上的层的表面上;通过把力以弯曲板状件的方式施加到板状件上而把板状件从衬底上剥离。本发明的另一些生产薄膜单晶的合适的方法包括,例如,包含有抛光步骤的方法和包含有腐蚀步骤的方法。在本发明中,理想的是,薄膜单晶最易于劈裂的方向与已剥离部分的前方线、太阳能电池组件固有的易于弯曲的方向以及塑性变形的方向三者中任何一个或任何两个或全部之间的夹角是5度或者5度以上,更理想的是10度或者10度以上。图1A和1B是表示剥离薄膜单晶的步骤的示意图,其中,图1A是剥离过程中薄膜单晶的示意性剖视图,图1B是在与图1A对应的剥离过程中薄膜单晶的示意性俯视图;图2A、2B和2C是根据传统方法的剥离薄膜单晶的步骤的示意图,其中,图2A是剥离过程中薄膜单晶的示意性剖视图,图2B是在与图2A对应的剥离过程中薄膜单晶的示意性俯视图,图2C是剥离之后的薄膜单晶的平面图;图3A、3B、3C、3D、3E、3F和3G是表示薄膜单晶太阳能电池的生产步骤的一个例子的剖视图;图4是表示具有金刚石结构的晶体的单元晶格的示意性透视剖视图;图5A是在{100}平面切割的晶片({100}晶片)的示意性俯视图,图5B是在{111}平面切割的晶片({111}晶片)的示意性俯视图;图6是在{100}平面切割的晶片({100}晶片)的示意性俯视图;图7A和图7B是表示剥离步骤的一个例子的示意图,特别是,图7A是剥离过程中晶片的示意性剖视图,图7B是图7A的剥离过程中晶片的示意性俯视图;图8A和8B是根据本发明的一个例子的太阳能电池组件的示意图,其中,图8A是剖视图,图8B是俯视图9A和9B是与屋顶材料结合的波纹状太阳能电池组件的示意图,其中,图9A是透视图,图9B是沿着图9A的9B-9B线截取的剖视图;图10A和10B是与屋顶材料结合的板状太阳能电池组件的示意图,其中,图10A是透视图,图10B是沿着10B-10B线截取的剖视图。下面将详细描述本发明的实施例,包括本发明是如何产生的细节。虽然对这些实施例的描述主要是以把本发明应用到生产薄膜单晶硅太阳能电池的方法为例进行的,该方法包括通过剥离利用一多孔层外延生长的薄膜单晶硅层获得薄膜单晶硅的步骤,但是,应当明白,本发明并不是只适用于包括前述步骤在内的生产太阳能电池组件的方法和由该方法生产的太阳能电池组件;它当然可以适用于用其它方法生产的薄膜单晶硅太阳能电池组件以及生产这样的太阳能电池组件的方法。例如,本发明也可以适用于把通过抛光或者腐蚀单晶衬底所获得的薄膜单晶用于太阳能电池组件的情况。此外,本发明还适用于除太阳能电池之外的薄膜单晶器件。下面将结合薄膜单晶硅太阳能电池组件的生产步骤对本发明的实施例进行说明。图3A至3E是表示薄膜单晶硅太阳能电池的生产步骤的一个例子的示意性剖视图。首先,将一单晶硅晶片用作衬底301。在把衬底浸泡于氢氟酸溶液中的同时,将一正电场施加到衬底的表面上,以便在从衬底的表面到几μm至几十μm深的范围内形成大量的相互之间不规则地连接的微小孔隙。具有大量微小孔隙的这个区域被称作多孔层302(图3A的步骤)。在该仍然保持单晶状态的多孔层302上,通过CVD法或者液相生长法进行外延生长,以便形成第一单晶层303(图3B的步骤),第二单晶层304也是通过外延生长形成的(图3C的步骤)。在这里,第一单晶层303制作成弱p型半导体(p-型),而第二单晶层304制作成强n型半导体(n-型)。第一单晶层303和第二单晶层304形成一个pn结,该结的作用是产生光电压。第二单晶层304可以用在第一单晶层303上形成一个含有n型掺杂物的层并使该层的n型掺杂物热扩散的方式在图3C的步骤中形成。然后,在第二单晶层304上依次形成防反射层305和栅电极306(图3D的步骤)。当把力施加到衬底301和/或单晶层303及304上时,因孔隙的形成已变得脆弱的多孔层302在内部断裂,从而把包括第一单晶层303在内的上部分从衬底301的主体上剥离(图3E的步骤)。在图3A至3G中,为易于理解,把衬底301表示成与单晶层303和304具有相同的厚度。然而,衬底301的厚度通常约为600μm,远远大于多孔层302或者单晶层303和304的厚度。有时候多孔层302的残留物可以保留在已经剥离下来的第一单晶层303的背面,残留物不必去掉。然后,用具有高的光反射率的、导电的粘接剂把背面电极307粘接到第一单晶层303的背面(图3F的步骤)。这样便完成一个薄膜单晶硅太阳能电池。用这种方式获得的薄膜单晶硅品质极高,这是由于它是在高品质的单晶硅衬底上进行外延生长获得的。在图3E的剥离步骤之后,用抛光、腐蚀等手段除去衬底上的多孔层的残留物,以便复原衬底,复原后的衬底308可以重新用在图3A的步骤(图3G的步骤)。因此,昂贵的衬底就可以重复使用,从而显著降低生产成本。下面将参照图2A至2C更加详细地介绍剥离步骤(图3E的步骤),这是因为与其它步骤相比,剥离步骤是一个特别重要的步骤,它大大影响薄膜单晶的品质、产率和产量。参见图2A至2C,它们是表示剥离步骤的示意图,特别是,图2A是表示剥离过程中薄膜单晶硅晶片的状态的示意图,图2B是表示与图2A对应的剥离过程中的状态的示意性俯视图,图2C是剥离以后的薄膜单晶的平面图。在图2A至2C中,参考标号201代表衬底,标号202代表剥离层,标号203代表薄膜单晶层,标号204代表薄片件,标号205代表剥离辊,标号206代表定向平面,标号207代表已剥离部分的前方线,标号208代表剥离之后的薄膜单晶,标号209代表在薄膜单晶上产生的裂纹。在图2A中,形成在衬底201上的剥离层202能够通过从外部施加合适的力而劈裂,它相当于图3A至3G中的多孔层302。薄膜单晶层203形成在该剥离层上。为了有效地剥离薄膜单晶层203,应当采用图2A和2B所示的方法。在该方法中,将一挠性板状件(薄片件)204粘结到薄膜单晶层203的表面。虽然图2A示出的薄片件204直接粘结到薄膜单晶层203上,但是,薄片件204也可以粘结到像图3A至3G所示那样额外形成在薄膜单晶层203上的一个层比如防反光层和电板的表面上。如图3F所示,当光从前侧(防反光层305的这侧)进入太阳能电池时,薄片件204或者用以粘结薄片件204的粘接剂必须是透明的,或者以后将它们除掉。也允许光从剥离层202的这侧进入。在这种情况下,薄片件可以是不透明的,但希望它是导电的,而且使用合适的金属片。在剥离辊205夹持住已经直接或者借助于一些辅助层粘结到薄膜单晶203上的薄片件204的端部的情况下,当把扭矩施加给剥离辊205时,剥离层202劈裂,从而将薄膜单晶203从衬底201的端部开始剥离。由于该方法能够有效地从衬底上剥离薄膜单晶层203,所以,该方法适合于大批量生产太阳能电池。上述方法的使用能够使薄膜单晶的生产相对容易些。然而,由于这种薄膜单晶在特定方向上固有地容易劈裂,因此,在剥离步骤和随后的太阳能电池组件制造步骤之后,有可能在薄膜单晶208上出现微小的缺陷。此外,它们可能出现在成品组件的结构中或者使用中,个别情况下,如图2A和2C所示,还可能出现裂纹209。换句话说,在薄膜单晶容易劈裂的方向与变形应力施加的方向一致或者几乎一致的情况下,根据环境条件,在薄膜单晶上可能出现缺陷,甚至可能出现裂纹。更具体地说,在前述的剥离步骤中,当剥离的方向,亦即薄膜单晶被剥离辊弯曲的方向与薄膜单晶容易劈裂的方向一致或几乎一致时,可能会在薄膜单晶上出现缺陷或裂纹。此外,在组件制造步骤里组件遭受塑性变形的情况下,或者在把薄膜单晶固定到已遭受塑性变形的底板(增强板)上的情况下,当底板变形的方向与薄膜单晶容易劈裂的方向一致或者基本一致时,那么,在把薄膜单晶固定到底板之后的塑性变形步骤(即弯曲步骤)里,或者在把薄膜单晶固定到已经遭受塑性变形的背板的步骤里,薄膜单晶上可能会出现缺陷或裂纹。当受压时,太阳能电池组件固有地易于在某方向弯曲,该方向取决于太阳能电池组件的形状。因此,当组件在其施工过程中(例如,在将其安装到屋顶或外墙壁的过程中)受压,而刚好组件容易变形的方向又与装配到组件中的薄膜单晶容易劈裂的方向一致或者基本一致时,便可能因施工过程中组件的弯曲而导致薄膜单晶中出现弯曲或裂纹。即便在组件安装之后,在使用较长的一段时间之后,组件可能因风压、振动等产生的应力作用而弯曲,这种弯曲取决于它的使用环境。当组件因振动等产生的应力作用而弯曲的方向与装配到组件中的薄膜单晶容易劈裂的方向一致或基本一致时,在使用了较长的一段时间之后,薄膜单晶上可能出现缺陷和裂纹。下面将参照图9A至10B详细说明这种现象。参见图9A和9B,它们是与屋顶材料相结合的波纹状太阳能电池组件的示意图,特别是,图9A是与屋顶材料相结合的波纹状太阳能电池组件的透视图,图9B是沿着图9A的9B-9B线截取的剖视图。在图9A和9B中,参考标号901代表表面保护材料,标号902代表光电元件,标号903代表填充材料,标号904代表增强板。参加图10A和10B,它们是像前述那样与屋顶材料相结合的平面式太阳能电池组件的示意图。特别是,图10A是与屋顶材料相结合的板状太阳能电池组件的透视图,图10B是沿着图10A的10B-10B线截取的剖视图。在图9A和10A中,参考标号1和2表示方向。在图9A和9B所示的波纹状组件中,例如,光电元件包含一个作为其至少一部分的薄膜单晶层,该光电元件以沿着增强板的曲面弯曲的方式布置在波纹状部分(曲面部分)。因此,在粘结期间和粘结之后,布置在波纹状部分的光电元件在弯曲方向(方向2)不可避免地受到压力。因此,如果方向2与构成光电元件的至少一部分的薄膜单晶易于劈裂的方向一致或者基本一致,那么,在组件用了较长一段时间之后,随着时间的推移,因上述原因,便有可能逐渐出现缺陷和裂纹。即便是图10A和10B所示的板式组件,当它有或是在方向1上或是在方向2上弯曲(在图10A和10B中,它容易在方向1上弯曲)的倾向时,根据其使用环境,因风压、振动等产生的应力使其弯曲。如果因振动等产生的应力使组件弯曲的方向与薄膜单晶容易劈裂的方向一致或者基本一致,那么,在组件使用了较长一段时间之后,随着时间的推移,可能出现缺陷和裂纹。(实验)为了解决这些问题,本发明人首先用各种类型的硅晶片作为衬底,以形成薄膜单晶硅层,并做了一个实验,以便检测在薄膜单晶层的剥离步骤中,在从各个方向施加应变以弯曲薄膜单晶层的情况下,单晶层上裂纹产生的条件。实验结果示于表1。表1<tablesid="table1"num="001"><table>使用的硅晶面主要裂纹方向{100}{110}{111}&lt;110&gt;&lt;112&gt;,&lt;110&gt;&lt;110&gt;</table></tables>这里,晶向表示为&amp;#60100&amp;#62。&amp;#60100&amp;#62通常代表[100]方向以及在晶体结构的对称性上与[100]等同的那些晶向。此外,晶面的取向表达为{100}。{100}通常代表(100)面取向以及在晶体结构的对称上等同于(100)的那些晶面,表1的结果表明,薄膜单晶硅中裂纹的方向与已知的用作衬底的各个晶片最容易劈裂的方向是相重合的。此外,由于当把薄膜单晶从一个而且是同一个衬底上剥离时,有些情况下裂纹容易出现,而在另一些情况下却不出现,因此,本发明进一步做了一个详细的实验,结果表明,劈裂的容易与否取决于剥离的方向。换句话说,在图2A中,当已剥离部分的前方线207与容易劈裂的方向重合时,发现明显有破裂的趋势。具体地说,在这种情况下,容易劈裂归因于以下事实假定衬底201为{100}的面取向,定向平面206定向于&amp;#60100&amp;#62方向,剥离的前方线207平行于容易劈裂的方向&amp;#60100&amp;#62。关于这一点的一种改进方案是图1A和1B所示的剥离方法。图1A和1B是剥离步骤的示意图,其中,图1A是表示剥离过程中的状态的示意性剖视图,图1B是表示在与图1A对应的剥离过程中的状态的示意性俯视图。在图1A和1B中,标号101代表衬底,标号102代表剥离层,标号103代表薄膜单晶硅层,标号104代表薄片件,标号105代表剥离辊,标号106代表定向平面,标号107代表剥离的前方线。在这里,故意使剥离的前方线107偏离&amp;#60100&amp;#62,这种情况下不容易出现劈裂,再者,在使用另外的面取向的衬底的情况下,观察到了类似的倾向,并通过变换剥离的前方线107和最容易发生劈裂的方向之间的角度做了一些实验。在不小于5度的角度下,劈裂显著地减少,而在不小于10度的角度下,几乎没发现劈裂。估计这个结果是具有普遍意义的。这一点将参照图4说明。图4是表示具有金刚石型结构的晶体的单元晶格的示意性透视图。对于具有图4所示的金刚石型结构的晶体来说,譬如硅,劈裂容易发生在{111}面。因此,即便对于包含具有任意方向的表面的晶片来说,晶片{111}面显现的方向就是容易劈裂的方向,而且,只需要进行使剥离的前方线107偏离容易劈裂的方向的剥离。下面将借助于图4、5A和5B,描述一个预测具有一般面取向的晶片的容易劈裂的方向的例子。在图4中,标号401代表一个位于晶格表面的原子,402代表位于晶格内部的原子,403代表晶格常数,404代表共价键。此外,标号406和407代表{111}面,该面最容易劈裂,标号405代表{100}面。在沿该面切割晶体的情况下,{111}面407表现为用标号408(&amp;#60110&amp;#62方向)指明的那样的直线。然而,{111}面具有几个等效面,标号408代表两种类型的直线,但是,它们当中任意一个都代表&amp;#60110&amp;#62方向。图5A是从上方观看时沿着{100}面切割的晶片({100}晶片)501的视图,标号502代表定向平面&amp;#60110&amp;#62,标号503代表&amp;#60110&amp;#62方向。根据本发明者的发现,剥离的前方线向这个方向只倾斜5度或5度以上,更好的是10度或10度以上。然而,由于有两个方向等同于&amp;#60110&amp;#62,剥离的前方线的理想方向最终变成如同难以劈裂的角504所标明的那样。在图4中,标号406代表等同于面407的{111}面。在该面上切割晶体的情况下,{111}面407表现为如同标号409标注的直线(&amp;#60110&amp;#62方向)。然而,有等同于{111}面的面,并且,三种类型的直线用标号408标示,它们中的任何一个都表示为&amp;#60110&amp;#62。图5B是从上方观看时沿着面{111}切割的晶片({111}晶片)的示意图,其中,标号506代表定向平面&amp;#60110&amp;#62,507代表&amp;#60110&amp;#62的方向。在这种情况下,剥离的前方线最好如同用难以劈裂的角508标明的那样。上述思路能够应用到剥离具有除金刚石型结构之外别的结构的硅之外的薄膜单晶层的情况。对于Ⅲ-Ⅴ半导体,比如GaAs和InP,Ⅱ-Ⅵ半导体,比如ZnSe和InS的闪锌矿型结构晶体来说,据说{110}面最容易劈裂,一个类似的分析建议只需使剥离的前方线的角偏离该面出现在衬底表面的方向即可。图6是从上方观看时沿着{100}切割的闪锌矿型结构半导体晶片601({100}晶片)的示意图,其中,标号602和603分别代表定向平面&amp;#60100&amp;#62和&amp;#60100&amp;#62的方向。在这种情况下,剥离的前方线最好象用难以劈裂的角604标明的那样。下面参照图7A和7B描述适于本发明的剥离方法的另一个例子。图7A和7B是一个与前述不同的剥离步骤的例子的示意图,其中,图7A是表示剥离过程中的状态的示意性剖视图,图7B是在与图7A对应的剥离过程中的状态的俯视图。在图7A和7B中,标号701代表衬底,702代表薄膜单晶层,703代表石英玻璃支撑板,704代表剥离楔,705代表已去掉部分的前缘,706代表倾斜部分和剥离的前方。在该例子中,用腐蚀或类似措施预先把薄膜单晶层的一部分去掉(前端去掉部分705),把具有倾斜部分706的的石英玻璃支撑板703粘接到薄膜单晶层上,通过从前端去掉部分705的侧面驱动剥离楔704把薄膜单晶层702从衬底701上剥离。顺便说一下,在该例子中,薄膜单晶层702直接形成在衬底701上,但是,也可以在它们之间形成一个剥离层,以便在这里驱动剥离楔704。此外,在该剥离例子中,通过使剥离的前方线707偏离薄膜单晶层702容易劈裂的方向,能够达到本发明的效果。如上所述,与传统晶体结构相比,薄膜单晶挠性非常优良,但是,由于弯曲应力,可能出现裂纹,并且,业已发现,出现裂纹的可能性与应力施加的方向有很大的关系。因此发现,通过控制施加到薄膜单晶上的应力的方向,能够更加有效地利用薄膜单晶的挠性。此外,在前面的叙述中,结合例子具体地说明了通过以外延生长形成薄膜单晶层并在生长完成之后把薄膜单晶层从用来生长的衬底上剥离的办法获得薄膜单晶的方法。在生产用于太阳能电池组件的薄膜单晶时,通过把该薄膜单晶布置成不让它的最容易劈裂的方向与组件固有的容易弯曲的方向重叠,能够达到本发明的效果,不仅适用于上述的通过剥离制备的薄膜单晶,而且适用于通过研磨步骤或腐蚀步骤获得的薄膜单晶。下面通过展示本发明的例子,进一步详细说明本发明的具体布置和效果。(例1)该例是本发明应用到图3A至3G所示的薄膜单晶硅太阳能电池的生产的一个例子。把一个面取向{111}的p+型硅晶片301浸进氢氟酸和异丙醇的液体混合物[49%重量的氢氟酸(剩余部分水)和99.9%纯度的异丙醇的液体混合物;体积比1∶0.1]中,以该晶片301作为正极,以铂板作为负极进行阳极化处理。以1A/cm2的电流强度进行5分钟的电流处理,在从表面至约5微米深的范围内形成复杂交缠的微小孔隙,以便产生多孔层302。在液相生长设备中,利用通过把p型硅溶解进铟溶剂中所形成的溶解物在该多孔层302的表面外延生长一大约30μm厚的p型薄膜单晶层303。通过电子束衍射法证实硅层303是外延生长的。此外,根据在这种状态下用本发明的方法剥离的薄膜单晶层的霍尔效应测量结果,证实该薄膜单晶层303是p型。在液相生长设备中,利用通过把n+型硅溶解进锡溶剂中所形成的溶解物在该p型薄膜单晶硅层303的表面外延生长一大约0.2μm厚的n+型薄膜单晶硅层304。在该表面上,用溅射法淀积一个大约70nm厚的氮化硅层,作为防反射层305。此外,在该表面上形成一个通孔并通过印刷方式形成一个栅电极306,利用作为粘结剂层(未示出)的EVA粘接剂把一0.2mm厚的PET薄膜粘结到该表面,作为图1A所示的薄片件104。把该薄片件的一端粘结到直径为100mm的剥离辊105上并沿周边卷绕。此时,在密切关注薄片件的粘结位置和剥离辊105的轴的方向的情况下进行卷绕,剥离辊轴应当相对于晶片的定向平面106(取向&amp;#60110&amp;#62)始终保持45度的角。与卷绕动作同步地,薄膜单晶硅层在多孔层302的部分处开始剥离。此时,剥离的前方线107的方向平行于剥离辊105的轴的方向。在卷绕照原样继续进行之后,就把整个薄膜单晶硅层从衬底上剥离下来。在如此获得的硅的背面,用以铜作为主要成分的导电的粘结剂粘结一背面电极307。在这种状态下,根据利用一调整到AM1.5的太阳能模拟器的测试结果,获得了15%的转换效率。就该太阳能电池来说,在45℃的温度和85%的湿度的环境条件下,转换效率相当于14.0%,该值足以比得上实际应用。其次,当剥离完成以后把晶片浸入氟硝酸腐蚀液中时,保留在晶片表面的多孔层残留物溶解并扩散,复原后的衬底(晶片)308的表面又变成镜面。用该晶片通过重复上述步骤获得的太阳能电池也表现出14.8%的转换效率,因此,证实了晶片的可重复利用性。另一方面,作为对比试验,当以除了在卷绕薄膜单晶层时保持剥离辊的轴平行于定向平面之外其它与前述相同的方式生产太阳能电池时,在剥离的薄膜单晶上发现了裂纹,而且还发现了栅电极线断裂。在45℃的温度和85%的湿度下,该太阳能电池的转换效率是4.5%,且用任何手段都得不到输出。此外,在剥离之后的晶片上,残留有单晶层碎屑,而且,清洁面不能因腐蚀而露出。此外,当在剥离辊的轴总是相对于晶片的定向平面106保持5度角的条件下进行卷绕时,剥离的薄膜单晶层上似乎没发现裂纹,转换效率是14.5%,获得了相当于实际应用的功能,但是,在45℃的温度和85%的湿度的环境条件下,转换效率降低到5.5%。可以想象,出现了微小的、几乎不能观察到的缺陷。当在剥离辊的轴总是相对于晶片的定向平面106保持10度角的条件下进行卷绕时,就观察不到这种在高温和高湿度条件下功能的明显降低。(例2)这是一个把本发明应用到采用薄膜单晶GaAs生产太阳能电池的例子。制备一个面取向{100}的p型GaAs晶片。在液相生长设备中,利用通过把砷和微量的硅溶解进镓溶剂中所形成的溶解物在该衬底的表面上外延生长一0.1μm厚的n+型GaAs层。此后,以500keV的加速电压将5×1016/cm2个氢离子注入该晶片的表面。然后,在该表面上形成一个作为防反射层的厚为70nm的氮化硅层。在这种情况下,衬底的温度设定为450℃。在该表面上形成一通孔并用印刷的方式形成栅电极以后,利用作为粘结剂层(未示出)的丙烯基粘结剂把一0.3mm厚的聚碳酸酯薄膜粘结其上,作为图1A所示那样的薄片件104。把该薄片件的一端粘结到直径为100mm的剥离辊105上并沿周边卷绕。此时,在密切关注薄片件的粘结位置和剥离辊105的轴的方向的情况下进行卷绕,剥离辊轴应当相对于晶片的定向平面106(取向&amp;#60100&amp;#62)始终保持45度的角。与卷绕动作同步地,薄膜单晶层在距离单晶GaAs晶片的表面5μm的深度处开始剥离。这可以归因于这样的事实通过从表面注入氢离子,氢离子集中在从表面起5μm的深度,而且,在溅射氮化硅的时候,氢离子积聚,把应力施加给晶体结构,导致剥离层的形成,在进一步施加外力的情况下,便可在该部分将单晶层剥离。与此同时,剥离的前方线107的方向平行于剥离辊105的轴的方向。在照原样继续进行卷绕之后,就可把从表面算起5μm厚的一部分薄膜单晶GaAs和叠加在其上的GaAs外延生长层从衬底上剥离。利用以铜作为主要成分的导电的粘结剂把不锈钢制成的背面电极粘结在其背面。根据在这种状态下利用一调整到AM1.5的太阳能模拟器的测试结果,获得了18%的转换效率。其次,当剥离完成以后把晶片浸入氟硝酸腐蚀液中时,晶片的表面又变成镜面。用该晶片通过重复上述步骤获得的太阳能电池也表现出17.5%的转换效率,因此,证实了晶片的可重复利用性。另一方面,作为一个对比试验,按照除了在进行薄膜单晶层剥离卷绕时保持剥离辊的轴平行于定向平面之外其它与上述相同的方式,生产太阳能电池,在剥离的薄膜单晶上发现了裂纹,而且还发现了栅电极线断裂,除此之外,剥离以后的晶片上残留有单晶层的碎屑,而且,不能够通过腐蚀露出清洁面。(例3)本例是本发明应用于生产具有用来构成透光的驱动电路的粘结到石英玻璃上的薄膜单晶层的图象显示部件的一个例子。把一个面取向{100}的p+型硅晶片浸进氢氟酸和异丙醇的液体混合物[49%重量的氢氟酸(剩余部分水)和99.9%纯度的异丙醇的液体混合物;体积比1∶0.1]中,以该晶片作为正极,以铂板作为负极进行阳极化处理。以1A/cm2的电流强度进行5分钟的电流处理,结果,在从表面至约5微米深的范围内形成复杂交缠的微小孔隙,以便产生多孔层。在衬底温度为1000℃的条件下,通过热CVD法用三氯氢硅(SiHCl3)在该多孔层的表面上外延生长一个大约0.5μm厚的p型薄膜单晶层。此后,将该薄膜单晶的表面彻底地清洁,通过加热把一表面保持亲水性的可弯曲的石英玻璃支撑板(薄片件)粘结到清洁后的表面上,石英玻璃支撑板牢固地吸附到薄膜单晶的表面上。此后,利用图7A和7B所示的方法把该薄膜单晶从硅晶片上剥离。在图7A中,硅晶片标示为701。该晶片的背面借助于真空吸附或者电磁吸附之类的方法牢固地吸附到一个台面上。在这种状态下,将一剥离楔704从左侧插入。为了便于插入时把持,允许把薄膜单晶702的前端去掉,以便形成一个空间(705),或者在石英玻璃支撑板703的前端形成一个倾斜部分706。当楔硬挤入时,薄膜单晶层702和晶片701在它们的界面的多孔层部分(未示出)处开始剥离。这时,剥离的前方线707以使其相对于晶片的方向{110}为45度角的方式布置。在把那个面上的多孔层残留物去掉以后,把如此剥离的薄膜单晶层在1050℃的温度和氢气气氛下进行退火处理,从而产生几乎完美无缺的平表面。虽然薄膜单晶层702是完美的单晶层,由于薄膜只有0.5μm厚,能够把它作得透明,且它的不必要部分在其上形成电路之后容易去掉,因此,有利于内置液晶显示部件驱动电路。此外,由于晶片能够复原并重复使用,所以,还能够降低生产成本。另一方面,在使剥离的前方线707与{110}方向重合的情况下,在薄膜单晶层的表面发现了沿{110}方向延伸的条纹状凹凸不平,即使经过氢退火之后也不能够得到良好的表面。(例4)本例是本发明应用于生产图3A至3G所示的薄膜单晶硅太阳能电池的一个例子。把一个面取向{111}的p+型硅晶片301浸进氢氟酸和异丙醇的液体混合物中,并用该晶片301作为正极,用铂板作为负极进行阳极化处理。以0.8A/cm2的电流强度进行10分钟的电流处理,结果是,在从表面至约5微米深的范围内形成复杂交缠的微小孔隙,以便产生多孔层302。在液相生长设备中,利用通过把p型硅溶解进铟溶剂中所形成的溶解物在该多孔层302的表面外延生长一大约25μm厚的p型薄膜单晶层303。通过电子束衍射法证实是外延生长。此外,根据在这种状态下用本发明的方法剥离的薄膜单晶层的霍尔效应测量结果,证实该薄膜单晶层303是p型。在液相生长设备中,利用通过把n+型硅溶解进锡溶剂中所形成的溶解物在该p型薄膜单晶硅层303的表面外延生长一大约0.2μm厚的n+型薄膜单晶硅层304。在该表面上,用溅射法淀积一个大约70nm厚的氮化硅层,作为防反射层305。在该表面上形成一个通孔并通过印刷方式形成一个栅电极306之后,利用作为粘结剂层(未示出)的EVA粘接剂把一0.2mm厚的PET薄膜粘结其上,作为图1A所示的薄片件104。把该薄片件的一端粘结到直径为100mm的剥离辊105上并沿周边卷绕。此时,在密切关注薄片件的粘结位置和剥离辊105的轴的方向的情况下进行卷绕,剥离辊轴应当相对于晶片的定向平面106(取向&amp;#60110&amp;#62)始终保持45度的角。与卷绕动作同步地,薄膜单晶硅层在多孔层302的部分处开始剥离。此时,剥离的前方线107的方向平行于剥离辊105的轴的方向。在照原样继续进行卷绕之后,就把整个薄膜单晶硅从衬底上剥离下来。用以铜作为主要成分的导电的粘结剂把不锈钢的背面电极307粘结到硅的该背面。在这种状态下,在25℃的温度和50%的湿度的环境下,用一调整到AM1.5的太阳能模拟器进行测试。其次,与该太阳能电池类似的,在45℃的温度和85%的湿度的环境下,对光电转换效率进行测试。对这些光电转换效率进行比较。结果示于表2中。如从表2所看到的,把本发明的太阳能电池在25℃的温度和50%的湿度下的光电转换效率设为1,那么,在45℃的温度和85%的湿度的环境下的相对值变为0.98,但是,我们发现该值足以相当于实际应用。表2注表2的数值表示在把例4在常规温度和常规湿度下的光电转换效率设为1的情况下,各个试样在各自的条件下的光电转换效率的相对值。(例5)剥离完成以后,当把例4所用的晶片浸进氟硝酸基腐蚀液中时,晶片表面残留的多孔层残留物溶解掉,晶片表面变成镜面,从而提供复原的晶片308。利用该晶片308,通过重复类似于例4的步骤生产太阳能电池,并对获得的太阳能电池的光电转换效率做类似的测试。测试结果与例4的一起示于表2中。从表2可以看出,在把例4制备的第一太阳能电池的在25℃的温度和50%的湿度下测得的光电转换效率设为1的情况下,在同样环境下例5的光电转换效率的相对值为0.98和0.97,因此,证实了晶片的可重复使用性。(比较例1)另一方面,作为对比试验,当以除了在卷绕薄膜单晶层时保持剥离辊的轴平行于定向平面之外其它与例4相同的方式生产太阳能电池时,在剥离的薄膜单晶层上发现了裂纹,而且,还发现栅电极线断裂。如上所述,对该太阳能电池的光电转换效率进行测量。其结果与例4和例5的一起示于表2中。从表2可以看出,其相对于例4的光电转换效率的相对值是0.3,而在45℃的温度和85%的湿度下几乎得不到任何输出(相对值是0.05)。此外,在剥离以后,薄膜单晶层碎屑残留在晶片上,不能够通过腐蚀露出清洁面,衬底不能复原。(例6)作为对比试验,以除了改变剥离辊的轴相当于定向平面106的定向角之外其它与例4相同的方式生产太阳能电池。当以保持剥离辊的轴相对于定向平面始终为5度夹角的方式进行卷绕时,似乎没有发现裂纹,且光电转换效率的相对值同样是0.96,这表明其功能相当于实际应用,但是,在45℃的温度和85%的湿度下,相对值降低到0.36。出现了几乎不能发现的微小缺陷。当以保持剥离辊的轴相对于定向平面106始终为10度夹角的方式进行卷绕时,未发现这种在高温、高温下明显的功能衰退。从该例子发现剥离辊的轴相对于定向平面106的角理想的是5度或5度以上,更理想的是10度或10度以上。(例7)本例是本发明应用于采用薄膜单晶GaAs生产太阳能电池的一个例子。制备一个面取向{100}的p型GaAs晶片。在液相生长设备中,利用通过把砷和微量的硅溶解进镓溶剂中所形成的溶解物在该衬底的表面上外延生长一0.1μm厚的n+型GaAs层。此后,以500keV的加速电压将5×1016/cm2个氢离子注入该晶片的表面。然后,在该表面上形成一个作为防反射层的厚为70nm的氮化硅层。在这个时候,衬底的温度设定为450℃。在该表面上形成一通孔并用印刷的方式形成栅电极以后,利用作为粘结剂层(未示出)的丙烯基粘结剂把一0.3mm厚的聚碳酸酯薄膜粘结其上,作为图1A所示那样的薄片件104。把该薄片件的一端粘结到直径为100mm的剥离辊105上并沿周边卷绕。此时,在密切关注薄片件的粘结位置和剥离辊105的轴的方向的情况下进行卷绕,剥离辊轴应当相对于晶片的定向平面106(取向&amp;#60100&amp;#62)始终保持45度的角。与卷绕动作同步地,薄膜单晶层在距离单晶GaAs晶片的表面5μm的深度处开始剥离。这可以归因于这样的事实通过从表面注入氢离子,氢离子集中在从表面起5μm的深度,而且,在溅射氮化硅的时候,氢离子积聚,把应力施加给晶体结构,导致剥离层的形成,在进一步施加外力的情况下,便可在该部分将单晶层剥离。与此同时,剥离的前方线107的方向平行于剥离辊105的轴的方向。在照原样继续进行卷绕之后,就可把薄膜单晶GaAs作为一个整体从衬底上剥离。利用以铜作为主要成分的导电的粘结剂把不锈钢制成的背面电极粘结在GaAs的背面。根据在这种状态下利用一调整到AM1.5的太阳能模拟器的测试结果,获得了18%的转换效率。其次,当把剥离完成以后的晶片浸入氟硝酸腐蚀液中时,残留在晶片表面的多孔层碎屑溶解掉,因而,晶片的表面又变成镜面。用该晶片通过重复上述步骤获得的太阳能电池也表现出17.5%的转换效率,因此,证实了晶片的可重复利用性。(比较例2)另一方面,作为一个对比试验,按照除了在进行薄膜单晶层剥离卷饶时保持剥离辊的轴平行于定向平面之外其它与上述相同的方式生产太阳能电池,在剥离的薄膜单晶上发现了裂纹,而且还发现了栅电极线断裂,除此之外,剥离以后的晶片上残留有单晶层的碎屑,而且,不能够通过腐蚀露出清洁面,衬底不能复原。(例8)接下来,通过按照图8A和8B所示的顺序串联连接在与例4类似的条件(在卷绕的同时剥离,卷绕时剥离辊的轴的方向相对于定向平面(取向&amp;#60110&amp;#62)106保持45度的角)下生产的太阳能电池,然后,把它们固定到一块底板(增强板)上并对它们进行叠层处理,从而生产具有图8A和8B所示形状的太阳能电池组件。顺便说一下,图8A是例8生产的组件的示意性剖视图,图8B是它的示意性俯视图。在图8A和8B中,标号801代表薄片件,802代表透明电极,803代表含有薄膜单晶硅层的太阳能电池,804代表导电粘结剂,805代表用以串联连接的金属带,806代表填料,807代表保护材料的前表面,808代表绝缘层,809代表底板(增强板)。此外,就生产的太阳能电池组件的形状来说,有图10A和10B所示的平板状太阳能电池组件以及具有模压成图9A和9B所示的曲面的波纹状太阳能电池组件。此时,对于平板状太阳能电池组件和波纹状太阳能电池组件,通过使弯曲处理的方向(图9A中箭头2的方向;塑性变形的方向)以及容易弯曲的方向(图10A中箭头1的方向)相对于薄膜单晶层的定向平面(取向&amp;#60110&amp;#62)106保持10度和45度的角,各自产生两种组件的布置形式。用这四种形式(平板状-10度,平板状-45度,波纹状-10度,波纹状-45度)的太阳能电池组件作为评价试样,进行以下的评价。(初始外观)对诸如太阳能电池组件的填料的填充缺陷(最后形式)和太阳能电池表面上的裂纹之类的初始外观进行评价。此外,与此同时,还从处理后的作为建筑材料和屋顶材料的太阳能电池组件的美观性的角度进行评价。按照以下评价标准进行评价◎…无外观缺陷且作为建筑和屋顶材料美观性优良。○…有一些外观缺陷但不影响实际使用×…不良填充和表面缺陷如此严重,以致于外观缺陷非常严重,或者严重损害作为建筑和屋顶材料的美观性。(高温/高湿测试)在85℃/85%(相对湿度)的环境下放置3000小时以后,取出太阳能电池组件并在AM1.5和100W/cm2的光照条件下测量光电转换效率,以评价与放置前初始值的变化率。根据以下评价标准进行评价◎…光电转换效率的变化小于1.0%。○…光电转换效率的变化大于等于1.0%而小于3.0%。△…光电转换效率的变化大于等于3.0%而小于5.0%。×…光电转换效率5.0%或者5.0%以上。(扭曲测试)用太阳能电池JISC8917进行扭曲测试,换句话说,将三个角固定,使一个角位移3cm,这样的扭曲重复50次。类似的扭曲先后施加于所有的角。扭曲测试以后,再进行前述的外观和高温/高湿测试,并按照与上述标准类似的标准进行评价。结果示于表3。表3(比较例3)按照除了在布置薄膜单晶太阳能电池时使弯曲处理的方向(图9A中箭头2的方向)以及容易弯曲的方向(图10A中箭头1的方向)相对于薄膜单晶层的定向平面(取向&lt;110&gt;)106保持0度的角(即,平行)之外,其它与例8相同的方式,生产平板状组件和波纹状组件并进行同样的评价,评价结果与例8的一起示于表3中。(例9)按照除了在布置薄膜单晶太阳能电池时使弯曲处理的方向(图9A中箭头2的方向;塑性变形的方向)以及容易弯曲的方向(图10A中箭头1的方向)相对于薄膜单晶层的定向平面(取向&lt;110&gt;)106保持3度的角之外,其它与例8相同的方式,生产平板状组件和波纹状组件并进行同样的评价。评价结果与例8和比较例3的一起示于表3中。从表3可以看出,根据本发明的太阳能电池组件,改善了生产加工期间和应力施加期间的耐久性,这是其在布置时使薄膜太阳能电池的容易劈裂的方向偏离太阳能电池组件固有的容易弯曲的方向的结果。(例10)与例8、比较例3和例9类似的,以薄膜单晶层太阳能电池的容易劈裂的方向和太阳能电池组件固有的容易弯曲的方向或者塑性变形的方向之间的各种各样的角度生产太阳能电池组件,并进行与图8类似的评价。结果证实当所说的角等于和大于5度时获得优良的效果,当所说的角等于和大于10度时,获得了特别显著的效果。如上所述,根据本发明的方法,能够反复地把薄膜单晶从衬底上剥离下来,成为具有高品质的薄膜单晶,在薄膜单晶太阳能电池组件成型的时候,能够消除加工过程中的破坏或损伤,还能够以低的成本和高的产量生产使用寿命持久的太阳能电池组件。权利要求1.一种利用薄膜单晶生产薄膜单晶器件的方法,其包括下列步骤在衬底的表面上依次形成剥离层和薄膜单晶;把挠性薄片件粘结到薄膜单晶的表面上或者粘结到额外形成在薄膜单晶的表面上的一个层的表面上;以及通过使薄片件弯曲的方式对薄片件施加力而把薄膜单晶连同薄片件一起从衬底上剥离;其特征是,在剥离步骤中,薄膜单晶的剥离是按照这样的方式进行的,即使根据薄膜单晶最容易劈裂的平面的表象在薄膜的表面上形成的所有直线的方向,均不同于已剥离部分的前方线的方向。2.根据权利要求1所述的生产薄膜单晶器件的方法,其特征是,剥离部分的前方线和所说的直线之间的角度是5度或者5度以上。3.根据权利要求1所述的生产薄膜单晶器件的方法,其特征是,剥离部分的前方线和所说的直线之间的角度是10度或者10度以上。4.根据权利要求1所述的生产薄膜单晶器件的方法,其特征是,薄膜单晶具有金刚石型结构。5.根据权利要求1所述的生产薄膜单晶器件的方法,其特征是,薄膜单晶具有闪锌矿型结构。6.根据权利要求1所述的生产薄膜单晶器件的方法,其特征是,衬底是单晶晶片,剥离层是形成在单晶晶片的表面上的多孔层,薄膜单晶是在多孔层的表面上外延生长的薄膜。7.根据权利要求1所述的生产薄膜单晶器件的方法,其特征是,薄膜单晶器件是太阳能电池。8.根据权利要求1所述的生产薄膜单晶器件的方法,其特征是,薄膜单晶器件是图象显示部件的驱动电路器件。9.一种具有挠性的包含有以薄膜单晶作为其至少一部分的光电元件的太阳能电池组件,其特征是,组件固有的容易弯曲的方向不同于薄膜单晶最容易劈裂的方向。10.一种具有挠性的太阳能电池组件,其包含有以薄膜单晶作为其至少一部分的光电元件,其特征是,组件的具有薄膜单晶的区域的至少一部分须经塑性变形,塑性变形的方向不同于薄膜单晶最容易劈裂的方向。11.根据权利要求9或10所述的太阳能电池组件,其特征是,薄膜单晶具有金刚石型结构。12.根据权利要求9或10所述的太阳能电池组件,其特征是,薄膜单晶具有闪锌矿型结构。13.根据权利要求9或10所述的太阳能电池组件,其特征是,薄膜单晶是通过下述方式生产的,即在衬底的表面上依次形成剥离层和薄膜单晶,把挠性板状件粘结到薄膜单晶的表面上或者粘结到额外形成在薄膜单晶的表面上的一个层的表面上,以及,通过使板状件弯曲的方式对板状件施加力而把薄膜单晶连同板状件一起从衬底上剥离。14.根据权利要求9或10所述的太阳能电池组件,其特征是,薄膜单晶是用至少包含抛光步骤的方法生产的薄膜单晶。15.根据权利要求9或10所述的太阳能电池组件,其特征是,薄膜单晶是用至少包含腐蚀步骤的方法生产的薄膜单晶。16.根据权利要求9所述的太阳能电池组件,其特征是,组件固有的容易弯曲的方向和薄膜单晶最容易劈裂的方向之间的角是5度或大于5度。17.根据权利要求9所述的太阳能电池组件,其特征是,组件固有的容易弯曲的方向和薄膜单晶最容易劈裂的方向之间的角是10度或大于10度。18.根据权利要求10所述的太阳能电池组件,其特征是,塑性变形的方向和薄膜单晶最容易劈裂的方向之间的角是5度或大于5度。19.根据权利要求10所述的太阳能电池组件,其特征是,塑性变形的方向和薄膜单晶最容易劈裂的方向之间的角是10度或大于10度。20.一种生产具有挠性的太阳能电池组件的方法,该组件包含有以薄膜单晶作为其至少一部分的光电元件,其中包括按照使组件固有的容易弯曲的方向不同于薄膜单晶最容易劈裂的方向的方式布置薄膜单晶。21.一种生产具有挠性的太阳能电池组件的方法,该组件包含有以薄膜单晶作为其至少一部分的光电元件,其包括使组件的具有薄膜单晶的区域的至少一部分经受塑性变形的步骤,其特征是,塑性变形是按照使塑性变形的方向不同于薄膜单晶最容易劈裂的方向的方式进行的。22.根据权利要求20或21所述的生产太阳能电池组件的方法,其特征是,薄膜单晶具有金刚石型结构。23.根据权利要求20或21所述的生产太阳能电池组件的方法,其特征是,薄膜单晶具有闪锌矿型结构。24.根据权利要求20或21的所述的生产太阳能电池组件的方法,其特征是,进一步包括生产薄膜单晶的步骤,在该步骤中,在衬底的表面上依次形成剥离层和薄膜单晶,把挠性板状件粘结到薄膜单晶的表面上或者粘结到额外形成在薄膜单晶的表面上的一个层的表面上,并通过使板状件弯曲的方式对板状件施加力而把薄膜单晶连同板状件一起从衬底上剥离。25.根据权利要求20或21所述的生产太阳能电池组件的方法,其特征是,进一步包括用至少包括抛光步骤的方法生产薄膜单晶的步骤。26.根据权利要求20或21所述的生产太阳能电池组件的方法,其特征是,进一步包括用至少包括腐蚀步骤的方法生产薄膜单晶的步骤。27.根据权利要求20所述的生产太阳能电池组件的方法,其特征是,组件固有的容易弯曲的方向和薄膜单晶最容易劈裂的方向之间的角是5度或大于5度。28.根据权利要求20所述的生产太阳能电池组件的方法,其特征是,组件固有的容易弯曲的方向和薄膜单晶最容易劈裂的方向之间的角是10度或大于10度。29.根据权利要求21所述的生产太阳能电池组件的方法,其特征是,塑性变形的方向和薄膜单晶最容易劈裂的方向之间的角是5度或大于5度。30.根据权利要求21所述的生产太阳能电池组件的方法,其特征是,塑性变形的方向和薄膜单晶最容易劈裂的方向之间的角是10度或大于10度。全文摘要提供一种高品质的薄膜单晶太阳能电池组件,亦即耐久性和挠性优良的薄膜单晶太阳能电池组件和其生产方法。该薄膜单晶从衬底上的剥离是按照使根据薄膜单晶最容易劈裂的那些平面比如(111)的表象形成在薄膜单晶的表面的所有直线的方向,均不同于已剥离单晶前方线的方向的方式进行的。该薄膜单晶可用来生产太阳能电池和图象显示部件的驱动电路器件。具有挠性且包含有以薄膜单晶作为其至少一部分的光电元件的太阳能电池组件,是按照使组件固有的容易弯曲的方向不同于薄膜单晶最容易劈裂的方向的方式制造的。文档编号H01L21/304GK1283874SQ00124098公开日2001年2月14日申请日期2000年7月14日优先权日1999年7月14日发明者中川克己,米原隆夫,高井康好,坂口清文,浮世典孝,岩根正晃,岩崎由希子申请人:佳能株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1