栅控二极管、电池充电组件和发电机组件的制作方法

文档序号:7017158阅读:243来源:国知局
栅控二极管、电池充电组件和发电机组件的制作方法
【专利摘要】本实用新型涉及栅控二极管、电池充电组件和发电机组件。一种栅控二极管可以包括均为第一导电类型的源极区域和漏极区域。源极区域直接毗邻半导体管芯的第一表面,并且漏极区域直接毗邻半导体管芯的相对的第二表面。漏极区域包括在半导体管芯的外延层中形成的漂移区域。第二导电类型的基极区域被提供在漏极区域和源极区域之间,该第二导电类型与第一导电类型相反。漂移区域还包括调节区域,该调节区域直接毗邻基极区域并且分布布置在相应基极区域和第二表面之间。调节区域中的净掺杂剂浓度为第二子区域中的净掺杂剂浓度的至少两倍。调节区域精确地定义反向击穿电压。
【专利说明】栅控二极管、电池充电组件和发电机组件
【技术领域】
[0001 ] 本实用新型涉及栅控二极管、电池充电组件和发电机组件。
【背景技术】
[0002]由汽车的引擎供电的车辆发电机被用于装载汽车电池。电池充电电路的整流器组件对车辆发电机输出的交流电压整流,并且将经整流电池充电电压提供到汽车电池。整流器组件典型地是基于pn 二极管,其提供低正向偏置电压从而最小化功率损耗以及严格定义的反向击穿特性从而在负载突降情况下可靠地保护车辆中的电子电路。期望提供具有改进性能的电池充电和发电机组件。
实用新型内容
[0003]根据实施例,一种电池充电组件包括栅控二极管,该栅控二极管布置在用于输入交流电压的输入端子和用于供应从所输入交流电压导出的经整流电池充电电压的输出端子之间的负载路径中。
[0004]根据另一实施例,一种栅控二极管包括基底(base),该基底适于压装到二极管载板的开口中。栅控二极管可以从二极管载板的两侧压装。基底包括具有第一平坦表面的底座部分。带头部引线(head wire)包括引线部和具有第二平坦表面的头部。半导体管芯包括栅控二极管结构。第一焊料层将半导体管芯与基底的第一平坦表面配合和电连接。第二焊料层将半导体管芯与带头部引线的第二平坦表面配合和电连接。
[0005]根据又一实施例,一种栅控二极管包括均为第一导电类型的源极区域和漏极区域。源极区域直接毗邻半导体管芯的第一表面并且漏极区域直接毗邻半导体管芯的相对的第二表面。漏极区域包括在半导体管芯的外延层中形成的漂移区域。第二导电类型的基极区域被提供在漏极区域和源极区域之间,该第二导电类型与第一导电类型相反。漂移区域还包括调节区域,其直接毗邻基极区域并且分别布置在相应基极区域和第二表面之间。调节区域中的净掺杂剂浓度为第二子区域中净掺杂剂浓度的至少两倍。
[0006]本领域技术人员在阅读下述详细描述以及在看到附图时将认识到附加的特征和优点。
【专利附图】

【附图说明】
[0007]附图被包括以提供对本实用新型的进一步理解并且被结合以及构成此说明书的一部分。各图说明本实用新型的实施例并且与说明书一起用于解释本实用新型的原理。由于本实用新型的其它实施例和期望优点通过参考下述详细描述而被更好地理解,所述其它实施例和期望优点将容易地被认识。
[0008]图1A为示出具有根据实施例的电池充电组件的车辆发电机的示意性框图。
[0009]图1B为根据实施例的电池充电组件的简化电路图。
[0010]图1C为根据另一实施例具有压装壳体的栅控二极管的示意性局部剖切图。[0011]图2A为依据实施例提供直接毗邻基极接触区域的调节区域的栅控二极管的半导体管芯的一部分的示意性截面视图。
[0012]图2B为依据实施例提供延伸超出基极区域的阱注入区域的本体接触区域的栅控二极管的半导体管芯的一部分的示意性截面视图。
[0013]图2C为依据实施例提供基极延伸区域的栅控二极管的半导体管芯的一部分的示意性截面视图。 [0014]图2D为依据实施例不具有本体接触区域的栅控二极管的半导体管芯的一部分的示意性截面视图。
[0015]图3为依据实施例提供pnp类型的栅控二极管的栅控二极管的半导体管芯的一部分的示意性截面视图。
[0016]图4为依据实施例提供超级结类型的栅控二极管的半导体管芯的一部分的示意性截面视图。
[0017]图5为依据实施例提供边缘终止构造的半导体管芯的部分的示意性截面视图。
[0018]图6为依据另一实施例的半导体管芯的示意性透视图。
【具体实施方式】
[0019]在下述详细描述中参考附图,附图形成下述详细描述的一部分,并且在附图中通过说明的方式示出可以在其中实践本实用新型的特定实施例。将理解,可以利用其它实施例并且可以进行结构或逻辑变化而不背离本实用新型的范围。例如,针对一个实施例说明或描述的特征可以在其它实施例上或者结合其它实施例使用从而得到又一实施例。意图在于,本实用新型包括这种更改和变更。使用特定语言来描述各示例,其不应解读为限制所附权利要求的范围。图不是按比例的并且仅仅是用于说明的目的。为了清楚起见,如果不另外声明,则在不同图中用相应附图标记来标示相同的元件。
[0020]术语〃具有〃、〃含有〃、〃包含〃、〃包括〃以及类似物是开放性的,并且该术语标示存在所声明的结构、元件或特征但是不排除附加的元件或特征。冠词〃 一 "("a"、"an")和〃该〃意图包括多个以及单个,除非上下文清楚作出相反指示。
[0021]术语"电连接的"描述电连接的元件之间永久的低欧姆连接,例如相关元件之间的直接接触或者经由金属和/或重掺杂半导体的低欧姆连接。术语〃电耦合的〃包括适于信号传输的一个或多个中间元件可以被提供在电耦合的元件之间,所述元件例如为可控制以在第一状态中提供低欧姆连接以及在第二状态中提供高欧姆电退耦的元件。
[0022]各图通过紧接着掺杂类型〃n〃或〃p〃指示〃-〃或〃+〃来说明相对掺杂浓度。例如,"n"是指比"η"掺杂区域的掺杂浓度低的掺杂浓度,而"η+"掺杂区域具有的掺杂浓度高于"η"掺杂区域。同一相对掺杂浓度的掺杂区域不一定具有相同的绝对掺杂浓度。例如,两个不同的"η"掺杂区域可以具有相同或不同的绝对掺杂浓度。
[0023]图1A示出电池充电组件500,其具有用于从车辆发电机(交流发电机)600接收交流电压的输入端子。受车辆发电机600的定子绕组的数目约束,电池充电组件500可以包括一个、两个、三个或更多个输入端子。电池充电组件500对从车辆发电机接收的交流电压进行整流并且将经整流的电池充电电压供应到汽车电池700。
[0024]如图1B说明,车辆发电机600可以包括三个定子绕组610以用于产生交流电压的三个相,每个相相对于其它相偏移了交流电压的周期的三分之一。定子绕组610中的电流由旋转的转子绕组620的磁场感应。
[0025]电池充电组件500包括整流器组件510。对于将整流器组件510与定子绕组610其中之一连接的每个输入端子,整流器组件510提供一对栅控二极管400 (栅极受控二极管、沟道二极管),使得所输出电流在各相的正和负半周期内都被供应。用于在正半周期期间供应经整流电池充电电压的第一组栅控二极管400的阴极端子被彼此连接,并且与汽车电池700的阳极端子连接。用于在负半周期期间供应经整流电池充电电压的第二组栅控二极管400的阳极端子被彼此连接并且与汽车电池700的阴极端子连接。
[0026]控制器电路520控制受整流器组件510的所输出电压制约的转子绕组620两端的电压,从而获得指定输出电压。
[0027]栅控二极管400提供低正向偏置电压或接通状态电阻RDSon,使得与相当的基于pn 二极管的整流器组件相比,整流器组件510消耗更少的功率。
[0028]对于基于肖特基二极管的整流器组件,肖特基二极管的正向偏置电压由提供肖特基结的金属材料限定,并且无法通过简单地更改工艺参数而容易地改变。结果,由于更改的应用要求引起的正向偏置电压的规格的任何改变要求对制造工艺进行精心的改变。另外,金属材料在苛刻环境条件下在寿命期间趋于退化。相比之下,栅控二极管400的接通状态电阻或正向偏置电压受器件参数约束,器件参数可以通过简单地更改比如掺杂剂浓度或层厚度(例如栅极电介质的厚度)的很好地可控制的工艺参数而被更改,所述工艺参数即使在苛刻环境条件下也是稳定的。
[0029]图1C为栅控二极管400的局部剖切图。底座部分415的横截面积小于基底410的插座部分416。根据实施例,栅控二极管400相对于纵轴401是旋转对称的,并且底座部分415的直径小于插座部分416。插座部分416可以具有锯齿横向表面416a,使得插座部分416可以压装到二极管载板的开口中。底座部分415具有第一平坦表面411。配合部分412,例如直径小于插座部分416的直径并且大于底座部分415的直径的环可以从在底座部分415侧面的插座部分416延伸。
[0030]带头部引线490包括具有第二平坦表面491的头部495,该第二平坦表面的表面积近似和第一平坦表面411的表面积一样大。带头部引线490的引线部496具有比头部495小的直径并且提供线缆连接的端子支持附件。带头部引线490和基底410布置成彼此相隔一定距离,第一和第二平坦表面411、491彼此平行并且基底410和带头部引线490的纵轴吻合。在基底410和带头部引线490之间形成均匀宽度的间隙。在该间隙中,第一焊料层451将半导体管芯300与基底410配合和电连接。第二焊料层459将半导体管芯300与带头部引线490配合和电连接。钝化结构455可以用半导体300密封该间隙的内部部分。受栅控二极管400中半导体管芯300的取向约束,基底410可以提供阴极或阳极端子。
[0031]套筒450可以配合在外围部分412的内径上并且可以围住底座部分415、头部495以及头部495和底座部分415之间的间隙。填充材料455可以填充由套筒450罩住的空间。
[0032]根据实施例,半导体管芯300包括栅极受控二极管结构。为栅控二极管提供压装壳体则允许改进的具有二极管载板的整流器组件,该二极管载板具有用于压装壳体的开口。传统二极管载板可以不更改地被使用,从而允许在现有整流器组件、电池充电组件和车辆发电机中用栅控二极管一对一地替换Pn和肖特基二极管。[0033]图2A示出包括栅极受控二极管结构305的半导体管芯300的部分,该栅极受控二极管结构可以被提供在图1C的栅控二极管400以及图1B的整流器设备510的栅控二极管400 中。
[0034]半导体管芯300包括由半导体衬底形成的半导体本体100。半导体本体100由例如硅S1、碳化硅SiC、锗Ge、锗硅SiGe、氮化镓GaN或砷化镓GaAs的半导体材料提供。在所说明部分之外,半导体本体100可以包括另外的掺杂和未掺杂区段、外延半导体层以及先前或过后制作的绝缘和导电结构。
[0035]半导体本体100具有第一表面101以及与第一表面101相对的第二表面102。沿着第一表面101,源极区域110在半导体本体100中形成。漏极区域130直接毗邻第二表面102。漏极区域130和源极区域110均具有第一导电类型。漏极区域130包括在半导体本体100的轻掺杂外延层104中形成的漂移区域138。基极区域120形成于源极区域110和漏极区域130之间。基极区域120具有与第一导电类型相反的第二导电类型。在所说明示例中,第一导电类型为η型并且第二导电类型为P型。根据其它实施例,第一导电类型为P型并且第二导电类型为η型。
[0036]每个基极区域120可以包括阱注入区域124或可以包括另外的掺杂区域,该掺杂区域可以与阱注入区域124部分交叠。通过例如由注入工艺将第二导电类型的杂质引入外延层104的预定区段来反向掺杂轻掺杂外延层104,由此可以形成阱注入区域124。根据实施例,每个基极区域120可以包括沟道调节区域122,其在阱注入区域124中形成并且具有的净掺杂剂浓度高于沟道调节区域122外部的阱注入区域124中的净掺杂剂浓度。根据实施例,沟道调节区域122中的净掺杂剂浓度为沟道调节区域122外部的净掺杂剂浓度的至少两倍,例如至少十倍。沟道调节区域122与栅电极250交叠并且允许受应用要求约束而对源极区域110和漏极区域130之间的导电沟道进行成形。其它实施例可以提供不具有沟道调节区域122的基极区域120。
[0037]其它实施例可以提供完全形成在阱注入区域124中或者部分交叠阱注入区域124的基极接触区域121。通过示例的方式,基极接触区域121直接毗邻第一表面101并且可以被提供在相邻源极区域110之间。例如,可以通过局部地反向掺杂阱注入区域124的预定区段而形成一个单一源极注入区域,并且可以通过反向掺杂源极注入区域的预定区段而形成基极接触区域121。基极接触区域121的净掺杂剂浓度高于在基极接触区域121之外的阱注入区域124中的净掺杂剂浓度。根据实施例,基极接触区域121中的净掺杂剂浓度为在基极接触区域121之外的净掺杂剂浓度的至少两倍,例如至少十倍。基极接触区域121提供低欧姆界面到阱注入区域124,而更轻掺杂阱注入区域124提供高反向击穿电压,该反向击穿电压为栅极受控二极管结构在其处击穿的最小反向电压。
[0038]栅极电介质210将栅电极250与基极区域120分离。根据实施例,栅电极250可以被提供在从第一表面101延伸到半导体本体100中的沟槽中。根据所说明实施例,栅电极250被提供在半导体本体100的体积之外。栅电极250可以由提供合适功函数的材料提供,该材料例如为重掺杂多晶娃。
[0039]应用到栅极受控二极管结构305的栅电极250的电势控制在基极区域120的沟道部分中沿着栅极电介质210的电荷载流子分布。在接通状态中,第一导电类型的电荷载流子累积在毗邻栅极电介质210的沟道部分中,并且形成源极区域110和漏极区域130之间的导电沟道。在切断状态中,基极区域120将源极区域110与漏极区域130电分离。
[0040]第一电极层310在所说明实施例中提供栅控二极管结构305的阳极电极,该第一电极层通过在栅电极250之间延伸并且直接毗邻半导体本体100的接触部分312而电连接到源极区域110和本体区域120。电介质结构220可以将第一电极层310与漏极层130分离。第二电极层320在所说明实施例中提供阴极电极,该第二电极层可以直接毗邻第二表面 102。
[0041 ] 电介质结构220可以包括一个或多个子层,例如粘合剂层、缓冲层和/或扩散阻挡层。根据实施例,电介质结构220包括热生长的氧化硅层,其可以与栅极电介质210同时形成。电介质结构220还可以包括扩散阻挡层,例如氮化硅或氮氧化硅层。薄氧化硅层可以由沉积的氧化物提供,例如使用TEOS (四乙氧基硅烷)作为前驱体材料,或者由例如未掺杂硅酸盐玻璃的硅酸盐玻璃提供,从而形成粘合剂或缓冲层。电介质结构220还可以包括由BSG (硼硅酸盐玻璃)、PSG(磷硅酸盐玻璃)或BPSG (硼磷硅酸盐玻璃)提供的主层。其它实施例可以提供更少或更多的子层。
[0042]第一和第二电极层310、320至少其一可以由这样的子层组成或者包括这样的子层,该子层由下述组成或含有下述作为(多种)主成份:铝Al、铜Cu或者铝或铜的合金,例如AlS1、AlCu或AlSiCu。根据其它实施例,第一和第二电极层310、320至少其一由这样的子层组成或者包括这样的子层,该子层含有下述至少其一作为(多种)主成份:镍N1、钛T1、银Ag、金Au、箔Pt和/或钯Pd。例如,第一和第二电极层310、320至少其一可以包括两个或更多个子层,每个子层含有N1、Tig、Ag、Au、Pt、Pd的一个或多个作为(多种)主成份和/或其合金。第一和第二电极层310、320可以包括沿着到半导体本体100和/或栅电极250的界面有选择地形成的金属硅化物结构。
[0043]漏极区域130还包括第一导电类型的调节区域132。每个调节区域132被指派给栅极受控二极管结构305其中之一。对于每个栅极受控二极管结构305,调节区域132直接毗邻基极区域120并且布置在基极区域120和第二表面102之间与第一表面101正交的垂直方向上。根据实施例,在垂直方向上的净掺杂剂浓度梯度是最陡峭的位置处,调节区域132毗邻基极区域120。调节区域132中的净掺杂剂浓度为毗邻调节区域132的漂移层138的部分中的净掺杂剂浓度的至少两倍,例如至少十倍。调节区域132可以由在外延层104的外延生长期间执行的表面注入形成,或者作为在外延层104完成之后的深注入形成。
[0044]由于调节区域132由位置和剂量可以被精确定义的注入形成,调节区域132提供基极区域120和漏极层130之间就掺杂剂浓度梯度而言严格定义的界面,即使在漂移区域138形成于外延层104的位置中,在该位置中掺杂剂浓度可能由于工艺不均匀性而波动。由于最小反向击穿电压受最陡峭掺杂剂浓度梯度约束,击穿条件首先出现在本体接触区域121和调节区域132之间严格定义的界面处。反向击穿电压可以被狭窄地指定,这是因为在由相同制造工艺形成的多个栅控二极管中,掺杂剂浓度梯度的分布并且因此实际反向击穿电压的分布是狭窄的。基于半导体管芯300的栅控二极管就反向击穿电压方面可以用非常狭窄的容差指定,并且在负载突降情况下可靠地消耗发电机功率。此特性是长时间稳定的。
[0045]通过比较,由于在肖特基二极管中反向电流与在肖特基结处的电压降落密切关联,某些设计提供将半导体本体中最大电场强度的位置偏移离开肖特基结,从而降低在肖特基结处的电压降落。为此目的,某些设计提供沟槽,使得接近沟槽底部发生反向击穿。然而,沟槽的边缘和角落可能按照在制造环境中难以预测和控制的方式局部地增大电场强度。结果,在同一类型器件中肖特基二极管的击穿电压比较强烈地变化,并且此外由于在苛刻环境条件下的材料退化原因而可能随时间变化。
[0046]因此,在负载突降条件方面,例如使用具有图2A中说明的栅极受控二极管结构305的半导体管芯300的如图1B说明的整流器设备可以被狭窄地指定。连接到电池充电电路或汽车电池的电子电路可以更可靠地操作,在电子电路端的努力更少。
[0047]调节区域132可以分别毗邻基极区域120的中心区段。例如,调节区域132可以在基极接触区域121的投影中形成。其它实施例可以提供在毗邻源极区域110之间从第一表面延伸到半导体本体100中的接触沟槽,其中接触结构312延伸到接触沟槽中从而将第一电极层310与基极区域120电连接。除了或替代基极接触区域121,可以提供接触沟槽。调节区域132可以形成于接触沟槽的投影中。
[0048]根据实施例,在半导体管芯300的中心部分中,调节区域132毗邻基极区域120的中心区段,而在取向为更接近半导体管芯300的边缘的外围部分中,调节区域132可以从中心区段偏移,使得局部反向击穿电压随着与半导体管芯300的边缘的距离减小而增大。根据其它实施例,调节区域132和第一表面101之间的距离和/或调节区域132中的掺杂剂浓度可以受到半导体管芯300的边缘的距离约束,使得与中心部分中的栅极受控二极管结构305相比,更接近边缘的栅极受控二极管结构305具有略高的反向击穿电压。
[0049]在图2A中本体接触区域121完全形成于阱注入区域124中的情况下,图2B的实施例提供了与阱注入区域124相比在外延层104中延伸得更深的本体接触区域121,并且调节区域132形成在距阱注入区域124 —定距离处从而更好地定义具有最陡峭掺杂剂浓度梯度的pn结。
[0050]图2C示出提供浅基极接触区域121的实施例,该浅基极接触区域完全形成在阱注入区域124中并且不到达漂移区域138。基极延伸区域129形成于阱注入区域124和调节区域132之间。基极延伸区域129中的净掺杂剂浓度可以高于阱注入区域124但是低于基极接触区域121。基极延伸区域129中的净掺杂剂浓度不依赖于基极接触区域121中的净掺杂剂浓度。因此,最小反向击穿电压可以独立于基极接触区域121的要求被调谐。基极延伸区域129可以沿着阱注入区域120的中心区段与阱注入区域120连接。例如,基极延伸区域129可以形成于基极接触区域121的投影中。根据提供从第一表面101延伸到半导体本体100中的接触沟槽的实施例,基极延伸区域129可以被提供在接触沟槽的投影中。
[0051]根据另一实施例,在半导体管芯300的中心部分,基极延伸区域129可以毗邻基极区域120的中心区段,而在取向为更接近半导体管芯300的边缘的外围部分中,基极延伸区域129和调节区域132可以从中心区段偏移,使得局部反向击穿电压随着与半导体管芯300的边缘的距离减小而增大。根据其它实施例,基极延伸区域129和第一表面101之间的距离和/或调节区域132和基极延伸区域129中的掺杂剂浓度会受到半导体管芯300的边缘的距离约束,使得与在中心部分的栅极受控二极管结构305相比,更接近边缘的栅极受控二极管结构305具有略微更高的反向击穿电压。
[0052]图2D涉及这样的实施例,其中源极区域110由空间上分离的注入形成,从而在更低的总掺杂剂浓度提供到基极区域120的低欧姆连接。反向击穿电压由阱注入区域120和调节区域132之间的界面指定。[0053]在图2C涉及栅控npn 二极管的情况下,图3涉及具有η型基极区域的相应栅控pnp二极管。图3中的每个掺杂区域和层具有与图2C中的相应掺杂区域和层相反的导电类型。
[0054]图4涉及超级结类型的栅控二极管305。外延层104包括第一导电类型的第一柱136和第二导电类型的第二柱126。第一和第二柱136、126在与第一表面101垂直的垂直方向上延伸并且交替地布置。第一柱136形成直接毗邻基极区域120的漂移区域138的部分。漂移区域138还可以包括位于衬底层138和第一和第二柱136、126之间的连续部分。每个第二柱126与基极区域120其中之一连接。第一柱136中的净掺杂剂浓度可以等于或可以高于连续部分中的净掺杂剂浓度。
[0055]第一柱136中比较高的净掺杂剂浓度导致栅极受控二极管结构305的低接通状态电阻或正向偏置电压。另一方面,当反向电压被应用时,耗尽区域在横向方向上在第一和第二柱136、126之间延伸,使得尽管第一柱136中高的掺杂剂浓度,但仍可以实现高反向击穿电压。
[0056]调节区域132被提供在第二柱126和第二表面102之间的垂直投影中,调节区域132直接毗邻第二柱126的底部并且由注入工艺形成。调节区域132精确地定义反向击穿电压。此外,基极延伸区域可以被提供在第二柱126和调节区域132之间。
[0057]图5涉及的实施例使用注入工艺在半导体管芯300的中心部分191中形成调节区域132和基极延伸区域129,以用于在半导体管芯300的边缘部分199中形成边缘终止构造。边缘部分199包括对应于基极延伸区域129的第一边缘区域129a以及对应于调节区域132的第二边缘区域132a。第一边缘区域129a可以通过相同导电性的另外掺杂区域121a、124a与第一电极层310连接,该另外掺杂区域直接毗邻第一表面101。电介质边缘结构290可以沿着半导体管芯300的垂直边缘在第一和第二表面101、102之间形成。
[0058]对于与第一表面101的距离以及对于掺杂剂浓度,第一和第二边缘区域129a、132a对应于基极延伸区域129和调节区域132。第一和第二边缘区域129a、132a具有分层结构,该分层结构具有第一和第二边缘区域129a、132a之间的近似平坦以及就掺杂剂浓度梯度而言均匀的界面。该界面在电介质边缘结构290处以直角结束。由于该均匀界面的原因,在边缘部分199中的局部击穿电压略高于提供调节区域132和基极延伸区域129之间具有不均匀界面的泡形调节区域132和基极延伸区域129的中心部分191中的局部击穿电压。边缘部分199中可能扩展相同类型栅控二极管的击穿电压的频率分布的击穿条件可以被避免。
[0059]图6示出由半导体衬底390形成的圆形半导体管芯300,其中环形边缘部分199围绕半导体管芯300的中心部分191。圆形半导体管芯300很好地装配在例如如图1C说明的旋转对称的压装壳体中。
[0060]在中心部分191中,栅极受控二极管结构305包括泡形调节区域132和基极延伸区域129,在调节区域132和基极延伸区域129之间具有不均匀界面。边缘部分199包括具有分层结构的第一和第二边缘区域129a、132a,该分层结构具有第一和第二边缘区域129a、132a之间的平坦且就掺杂剂浓度梯度而言均匀的界面。该界面在DTI (深沟槽绝缘体)380处以直角结束,该DTI可以是由衬着沟槽的氧化物层钝化的沟槽。DTI 380可以用氧化物被完全填充或仅仅少量填充,使得通过包括锯切以及扩大为锯切提供的切割胶带的机械步骤,半导体管芯300可以与周围的半导体衬底390分离。[0061]另一实施例涉及一种发电机组件,其包括发电机,该发电机适于由汽车引擎供电,并且在安装在车辆中且由车辆的汽车引擎供电时装载汽车电池。一种整流器组件包括布置在用于输入交变电流的输入端子和用于输出经整流电池充电电压的输出端子之间的负载路径中的栅控二极管。输入端子电耦合到发电机的定子绕组。
[0062]根据实施例,该整流器组件包括具有开口的二极管载板,其中栅控二极管压装到开口中。栅控二极管可以包括适于压装到开口中的基底以及具有第一平坦表面的底座部分。栅控二极管还可以包括带头部引线,其包括具有第二平坦表面的头部以及引线部。半导体管芯的第一表面被焊接到基底的底座部分的平坦表面,并且半导体管芯的第二表面被焊接到带头部引线的头部的平坦表面。栅控二极管可以是如上所述的栅控二极管。
[0063]另一实施例包括一种半导体衬底,例如半导体晶片,其包括用于栅控二极管的多个相同半导体管芯。每个半导体管芯包括第一导电类型的源极区域和漏极区域,该源极区域直接毗邻第一表面并且该漏极区域直接毗邻相应半导体管芯的相对的第二表面,漏极区域包括在半导体管芯的外延层中形成的漂移区域。与第一导电类型相反的第二导电类型的基极区域被提供在漏极区域和源极区域之间。漏极区域包括多个调节区域,其中每个调节区域直接毗邻基极区域其中之一并且布置在相应基极区域和第二表面之间。调节区域具有的净掺杂剂浓度为在毗邻调节区域的漂移区域的部分中的净掺杂剂浓度的至少两倍。半导体衬底的另外实施例对应于如上文参考各图所描述的栅控二极管的实施例。
【权利要求】
1.一种栅控二极管,包括: 第一导电类型的源极区域和漏极区域,该源极区域直接毗邻第一表面并且该漏极区域直接毗邻半导体管芯的相对的第二表面,该漏极区域包括在半导体管芯的外延层中形成的漂移区域; 与第一导电类型相反的第二导电类型的基极区域,该基极区域被提供在漏极区域和源极区域之间;并且其中 该漏极区域包括多个调节区域,该调节区域直接毗邻基极区域其中之一且分别布置在相应基极区域和该第二表面之间,并且具有的净掺杂剂浓度为在毗邻调节区域的漂移区域的部分中的净掺杂剂浓度的至少两倍。
2.根据权利要求1所述的栅控二极管,其中调节区域中的净掺杂剂浓度为在毗邻调节区域的漂移区域的部分中的净掺杂剂浓度的至少十倍。
3.根据权利要求1所述的栅控二极管,其中在相应一个基极区域中在与第一表面正交的垂直方向上的净掺杂剂浓度的梯度是最陡峭的部分中,该调节区域毗邻该基极区域。
4.根据权利要求1所述的栅控二极管,还包括栅电极以及分别位于基极区域其中之一和栅电极其中之一之间的栅极电介质。
5.根据权利要求4所述的栅控二极管,其中该基极区域与该源极区域和栅电极电连接。
6.根据权利要求1所述的栅控二极管,其中该漏极区域包括衬底层,该衬底层的净掺杂剂浓度为漂移区域中的净掺杂剂浓度的至少十倍。
7.根据权利要求6所述的栅控二极管,其中该漂移区域将该衬底层与该调节区域分离。
8.根据权利要求1所述的栅控二极管,其中该基极区域分别包括基极接触区域,该基极接触区域直接毗邻该第一表面,并且基极接触区域中的净掺杂剂浓度为在基极接触区域之外的基极区域的部分中的净掺杂剂浓度的至少十倍。
9.根据权利要求8所述的栅控二极管,其中该调节区域分别直接毗邻基极接触区域其中之一。
10.根据权利要求8所述的栅控二极管,其中该第二表面和该基极接触区域之间的距离小于该第二表面和在基极接触区域之外的基极区域的部分之间的距离。
11.根据权利要求1所述的栅控二极管,其中该基极区域分别包括阱注入区域和基极延伸区域,该基极延伸区域形成于阱注入区域和第二表面之间并且直接毗邻阱注入区域,并且基极延伸区域中的净掺杂剂浓度不低于毗邻基极延伸区域的阱注入区域的部分中的净掺杂剂浓度。
12.根据权利要求1所述的栅控二极管,还包括在基极区域和漂移层之间在垂直方向上延伸的第一导电类型的第一柱以及在该垂直方向上延伸并且与该基极区域连接的第二导电类型的第二柱,其中该调节区域在第二柱的垂直方向上形成并且直接毗邻该第二柱。
13.根据权利要求1所述的栅控二极管,还包括: 第一电极层,其通过接触结构与源极区域、基极区域和栅电极电连接; 电介质层,其毗邻该第一表面并且分离该第一电极层和该漏极区域;以及 第二电极层,其直接毗邻第二表面。
14.根据权利要求13所述的栅控二极管,还包括: 基底,其适于压装到二极管载板的开口中并且包括具有第一平坦表面的底座部分;带头部引线,其包括具有第二平坦表面的头部以及引线部;并且其中该第一电极层被焊接到第一和第二平坦表面其中之一,并且第二电极层被焊接到第一和第二平坦表面其中另一个。
15.一种电池充电组件,其包括布置在用于输入交流电压的输入端子和用于输出经整流电池充电电压的输出端子之间的负载路径中的栅控二极管。
16.根据权利要求15所述的电池充电组件,其中该栅控二极管包括半导体管芯,该半导体管芯包括第一导电类型的源极区域和漏极区域以及第二导电类型的基极区域,该第二导电类型与第一导电类型相反,该基极区域被提供在源极和漏极区域之间且分离源极和漏极区域,并且源极区域、本体区域和栅电极彼此电连接。
17.根据权利要求16所述的电池充电组件,其中该源极区域直接毗邻第一表面并且该漏极区域直接毗邻半导体管芯的相对的第二表面,该漏极区域包括在半导体管芯的外延层中形成的漂移区域,该基极区域被提供在漏极区域之间,并且该漏极区域包括调节区域,该调节区域直接毗邻基极区域其中之一且分别布置在相应基极区域和第二表面之间,并且具有的净掺杂剂浓度为在毗邻调节区域的漂移区域的部分中的净掺杂剂浓度的至少两倍。
18.根据权利要求16所述的电池充电组件,其中该栅极受控二极管包括: 基底,其适于压装到二极管载板的开口中并且包括具有第一平坦表面的底座部分;带头部引线,其包括具有第二平坦表面的头部以及引线部;并且其中该半导体管芯被焊接到该基底的底座部分的平坦表面以及该带头部引线的头部的平坦表面。
19.一种栅控二极管,包括: 基底,其适于压装到二极管载板的开口中并且包括具有第一平坦表面的底座部分; 带头部引线,其包括具有第二平坦表面的头部以及引线部; 半导体管芯; 第一焊料层,其将该半导体管芯与该基底的第一平坦表面配合和电连接;并且 第二焊料层,其将该半导体管芯与该带头部引线的第二平坦表面配合和电连接。
20.根据权利要求19所述的栅控二极管,其中该半导体管芯包括: 第一导电类型的源极区域和漏极区域以及第二导电类型的基极区域,该第二导电类型与第一导电类型相反,该基极区域被提供在源极和漏极区域之间并且分离源极和漏极区域;并且 源极区域、本体区域和栅电极彼此电连接。
21.根据权利要求20所述的栅控二极管,其中该源极区域直接毗邻第一表面并且该漏极区域直接毗邻半导体管芯的相对的第二表面,该漏极区域包括在半导体管芯的外延层中形成的漂移区域,该基极区域被提供在漏极区域之间,并且该漏极区域包括调节区域,该调节区域直接毗邻基极区域其中之一且分别布置在相应基极区域和第二表面之间,并且具有的净掺杂剂浓度为在毗邻调节区域的漂移区域的部分中的净掺杂剂浓度的至少两倍。
【文档编号】H01L29/739GK203415584SQ201320308567
【公开日】2014年1月29日 申请日期:2013年5月31日 优先权日:2012年5月31日
【发明者】D.阿勒斯, D.博纳特, L.博鲁基, M.聪德尔 申请人:英飞凌科技股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1