立式热处理装置的制作方法

文档序号:11621835阅读:191来源:国知局
立式热处理装置的制造方法

本发明涉及在由加热部包围的立式的反应容器内对配置成搁板状的多个基板进行热处理的立式热处理装置。



背景技术:

作为半导体制造装置之一,存在如下立式热处理装置:将多个基板呈搁板状保持于基板保持器具,并将多个基板向由加热部包围的立式的反应容器内输入,对基板进行成膜处理等热处理。作为形成处理气体的气流的方法,公知有如下方法:分别使气体喷射器和排气口位于基板的保持区域的后方侧和前方侧,形成横向的处理气体的气流(所谓的横向流动)。

这样的方法是基于向各基板高效地供给处理气体的想法研究出的技术,但相对于基板间的间隙而言,基板与反应容器的壁部之间的间隙较宽,因此,从气体喷射器的各气体喷出孔喷出来的处理气体易于穿过基板的外侧的间隙。因此,向基板间供给的气体以低流速且接近扩散流的状态被排气。

另一方面,器件的设计图案微细化、复杂化,要进行成膜处理的基板上的被处理面的表面积变大。因此,若沿着基板的被处理面流动的处理气体的流速较慢,则成膜气体的浓度在靠近气体喷出孔的区域与远离气体喷出孔的区域之间的浓度差变大,因此,成为面内的膜厚分布均匀性恶化的主要原因,而且,成膜速度也变慢。

例如,公知有如下构造:若将从气体供给管观察晶圆的中心侧的方向设为前方,则在基板呈搁板状保持于支柱的晶圆舟皿的左右两侧,沿着晶圆的外周缘配置有圆弧状的分隔板。不过,在该构造中,晶圆的外周缘与分隔板之间从最上层侧到最下层侧可以说变成空腔,因此,相对于晶圆间的区域而言,无法充分地谋求晶圆的外侧的区域的低电导率(日文:コンダクタンス)化。

另外,公知有如下结构,该结构包括:晶圆舟皿,其具有位于晶圆的外侧的外环部;以及以与外环部的外端面相对的方式设于反应管的内壁的环状分隔板。不过,该结构需要将外环部与环状分隔板之间的间隙设定成预估到晶圆舟皿的轴偏摆的尺寸,以使晶圆舟皿旋转时两者不发生碰撞,因此,无法充分地谋求晶圆的外侧的区域的低电导率化。



技术实现要素:

发明要解决的问题

本发明提供一种在立式热处理装置中能够将处理气体向基板间效率良好且以较快的流速供给的技术。

用于解决问题的方案

本发明是一种立式热处理装置,在由加热部包围的立式的反应容器内形成从一侧朝向另一侧横向流动的处理气体的气流而对呈搁板状配置的多个基板进行处理,该立式热处理装置包括:

基板保持器具,其具有:支柱;基板保持部,其沿着所述支柱设有多个,用于分别保持基板;气流引导部,其针对每个基板设于所述支柱,以其周缘部向比基板靠外侧的位置伸出的方式形成;

升降台,其用于支承所述基板保持器具而将所述基板保持器具从所述反应容器的下方输入所述反应容器;

旋转机构,其设于所述升降台,用于使所述基板保持器具绕纵轴旋转;

处理气体供给口和排气口,其分别设于保持有所述多个基板的基板保持区域的后方侧和前方侧;

整流部,其以在所述基板保持区域的左右朝向彼此相邻的气流引导部之间的空间从外侧向内侧突出而面对该空间的方式相对于所述基板保持器具独立地设置。

附图说明

附图作为本说明书的一部分被编入来表示本发明的实施方式,与上述的通常的说明和随后论述的实施方式的详细内容一起说明本发明的概念。

图1是本发明的第1实施方式的立式热处理装置的纵剖侧视图。

图2是所述立式热处理装置的纵剖侧视图。

图3是所述立式热处理装置的横剖俯视图。

图4是要向设于所述立式热处理装置的反应容器输入的晶圆舟皿的立体图。

图5是所述晶圆舟皿和所述反应容器的纵剖侧视图。

图6是表示所述反应容器内的处理气体的流动的示意图。

图7是所述第1实施方式的变形例的立式热处理装置的横剖俯视图。

图8是本发明的第2实施方式的立式热处理装置的横剖俯视图。

图9是构成所述第2实施方式的立式热处理装置的晶圆舟皿和反应容器的纵剖侧视图。

图10是表示所述晶圆舟皿的其他结构的概略纵剖侧视图。

图11是表示所述晶圆舟皿的其他结构的概略纵剖侧视图。

图12是表示所述晶圆舟皿的其他结构的概略纵剖侧视图。

图13是表示所述晶圆舟皿的其他结构的概略纵剖侧视图。

图14是表示评价试验的结果的曲线图。

具体实施方式

(第1实施方式)

以下,参照附图对本发明的实施方式进行说明。在下述的详细的说明中,为了能够充分地理解本发明,提供了很多具体的详细内容。然而,没有这样的详细的说明,本领域技术人员能够实现本发明是显而易见的。在其他例子中,为了避免难以理解各种实施方式的情况,没有详细地示出公知的方法、顺序、系统、构成要素。

参照作为纵剖侧视图的图1和图2、作为横剖俯视图的图3对本发明的实施方式的立式热处理装置1进行说明。立式热处理装置1利用cvd(chemicalvapordeposition,化学气相沉积)在作为圆形的基板的晶圆w形成sio2(氧化硅)膜。在图中附图标记11是例如石英制的反应容器,构成为立式的有顶的圆筒形,其下端部向外侧扩展,形成了凸缘12。不过,若对图1~图3进行补充,则图1、图2表示反应容器11的周向的彼此不同的位置处的纵剖侧面,图1是图3的ⅰ-ⅰ向视剖视图,图2是图3的ⅱ-ⅱ向视剖视图。

上述的反应容器11的被凸缘12包围的区域开口成基板输入输出口13,被设于舟皿升降机(未图示)的石英制的圆形的盖体14气密地封闭。在作为升降台的盖体14的中央部,沿着铅垂方向(纵方向)延伸的旋转轴15贯通地设置,可在该旋转轴15的上端部支承作为基板保持器具的晶圆舟皿2。

也参照图4的立体图对晶圆舟皿2进行说明。晶圆舟皿2由石英形成,具有水平的圆形的顶板21、与该顶板21平行的圆形的底板22、和铅垂的4个支柱23。支柱23沿着顶板21和底板22的圆周彼此隔开间隔地设置,以能够从晶圆舟皿2的侧方相对于后述的环板24进行晶圆w的交接。此外,支柱23只要将顶板21、底板22以及环板24连结起来即可,作为设于1个晶圆舟皿2的支柱23的根数,并不如图4的例子那样限于4根,既可以是3根以下的根数,也可以是5根以上的根数。

顶板21与底板22之间形成基板保持区域,在该基板保持区域中,形成基板保持部的圆形的环板24彼此隔开间隔沿着上下方向设为多层。各环板24的周缘部被上述的支柱23贯通,各环板24由该支柱23水平地支承。环板24的外形形成得比晶圆w的直径大,晶圆w以其中心与环板24的中心对齐的方式保持于该环板24上。因而,环板24的周缘部向比所保持的晶圆w靠外侧的位置伸出、并如随后论述那样构成用于对反应容器11内的气流进行引导的气流引导部。此外,为了图示方便,在图4仅示出设有很多的环板24中的两个。

晶圆舟皿2构成为,在该晶圆舟皿2向反应容器11内装载(输入)、反应容器11的基板输入输出口13被盖体14封堵的处理位置(图1~图3中所示的位置)与反应容器11的下方侧的基板交接位置之间升降自由。基板交接位置是指利用设于未图示的装载区域内的移载机构相对于晶圆舟皿2进行晶圆w的移载的位置。另外,上述的旋转轴15构成为,利用设于盖体14的形成旋转机构的马达17绕铅垂轴线旋转自由。利用该旋转轴15的旋转,载置到该旋转轴15上的晶圆舟皿2绕所保持的各晶圆w的中心、即纵方向的轴线旋转。图中附图标记16是设于盖体14的绝热单元,由沿着上下方向隔开间隔叠置多张并且包围旋转轴15的环状的板构成,用于对晶圆舟皿2与盖体14之间进行绝热。

在反应容器11的侧壁部,向外方鼓起的扩张区域31、扩张区域32、扩张区域33沿着反应容器11的周向彼此分开,俯视沿着顺时针以该顺序形成。扩张区域31~33是从处理位置处的晶圆舟皿2的上端的高度到反应容器11的下端形成的纵长的区域。在扩张区域32,形成为铅垂的棒状的气体喷射器41、42的顶端侧沿着反应容器11的周向彼此隔开间隔地设置。在该铅垂的气体喷射器41、42的顶端侧,许多气体喷出孔43沿着铅垂方向隔开间隔地开设,以便能够分别朝向保持于处理位置的晶圆舟皿2的各晶圆w的中心部喷出处理气体。

气体喷射器41的基端侧被弯折,以沿着径向贯通凸缘12的方式沿着水平向外方延伸,按照阀v1、质量流量控制器44的顺序经由阀v1、质量流量控制器44与teos(四乙氧基硅烷)气体的供给源45连接。气体喷射器42的基端侧与气体喷射器41的基端侧同样地被弯折,以沿着径向贯通凸缘12的方式水平地向外方延伸,按照阀v2、质量流量控制器46的顺序经由阀v2、质量流量控制器46与o2(氧)气体的供给源47连接。也就是说,从气体喷射器41的气体喷出孔43喷出teos气体作为处理气体,从气体喷射器42的气体喷出孔43喷出o2气体作为处理气体。

另外,反应容器11的侧壁部的与扩张区域32相对的区域开口,构成为排气口51。排气口51形成为沿着上下延伸的矩形的狭缝状,从晶圆舟皿2的顶板21的高度形成到底板22的高度。从该排气口51进行排气,并且从上述的气体喷射器41、42供给各处理气体,从而能够形成横向的处理气体的气流(横向流动)。

在反应容器11的外侧设有围绕该反应容器11的有顶的外管52。外管52的下端连接于反应容器11的凸缘12上。图1、图2中附图标记53是包围在外管52的周围的支承板,外管52和反应容器11被支承于该支承板53。在外管52的比排气口51靠下方的位置连接有排气管54的上游端。排气管54的下游端借助由阀等构成的排气量调整部55与由真空泵等构成的排气机构56连接。利用排气管54对在外管52与反应容器11之间形成的缓冲空间57进行排气,由此,能够从上述的排气口51进行排气。图1、图2中附图标记59是作为加热部的加热器,在支承板53的上侧以包围外管52的侧周的方式设置,对反应容器11内进行加热,以使晶圆w成为设定温度。此外,在图3中,省略了该加热器59的图示。

以后,出于方便,将形成有上述的扩张区域32的那一侧设为前方侧、将形成有排气口51的那一侧设为后方侧来对立式热处理装置1进行说明。若对上述的扩张区域31、33进一步进行说明,则这些扩张区域31、33分别在反应容器11的前方侧形成为俯视圆弧状。

不过,在上述的盖体14上,以向铅垂上方延伸的方式设置有作为支承部的两根支柱61。移载机构从后方侧进入上述的反应容器11的下方的基板交接位置处的晶圆舟皿2而进行晶圆w的交接,因此,各支柱61以不妨碍该晶圆w的移载的方式设于盖体14的前方侧,并且各支柱61构成为,在将晶圆舟皿2输入到处理位置之际分别收纳于上述的扩张区域31、33。在该例子中,各支柱61沿着扩张区域31、33的侧周面形成为俯视圆弧状。

在各支柱61上呈多层设有作为整流部的水平的整流板62。整流板62以俯视时沿着扩张区域31、33的方式形成为圆弧状,以从支柱61向反应容器11的中心侧水平地突出的方式呈多层设置。因而,扩张区域31、33是反应容器11的侧壁部中的与整流板62相对的部位向外方鼓起而形成的区域。另外,晶圆舟皿2相对于盖体14旋转自由,而整流板62相对于盖体14固定。即,整流板62相对于晶圆舟皿2独立地设置。各整流板62具有与环板24一起减小晶圆w的外周的间隙、使该外周处的处理气体的电导率降低的作用。

也参照图5的纵剖侧视图来对反应容器11与处理位置处的晶圆舟皿2和整流板62之间的位置关系进行说明。各整流板62位于与晶圆w和环板24不同的高度,各整流板62的顶端分别面对该晶圆舟皿2的顶板21与该顶板21的正下方的环板24之间的间隙、相邻的环板24之间的各间隙、底板22与该底板22的正上方的环板24之间的间隙、并且进入这些间隙。反应容器11中的扩张区域31、33的侧周面与支柱61之间的距离l1例如是9.0mm。环板24的周端与整流板62的顶端之间的水平方向上的距离l2例如是10.0mm。即,若俯视观察,则环板24与整流板62重叠。另外,对于彼此相邻的整流板62与侵入这些整流板62之间的环板24,在环板24与整流板62之间形成的间隙的高度h1例如是3mm。上述的距离l2越大,上述的高度h1越小,在晶圆w的外周形成的间隙越小,由此,能够更可靠地进行随后论述的处理气体的流动的限制。

不过,考虑到例如由于装置1的动作的精度的极限引起盖体14的升降轴的偏摆。已述的扩张区域31、33是为了在如此引起了轴偏摆的情况下防止升降中的支柱61与反应容器11的内周干涉而设置的。也就是说,扩张区域31、33虽然设为在晶圆w的外周配置整流板62的结构,但也是为了确保上述的反应容器11和设置该整流板62所需的支柱61之间的距离l1而设置的。另外,假设在环板24和整流板62配置于相同的高度的情况下,如在背景技术中所述那样需要考虑盖体14的旋转轴的偏摆,因此,为了防止整流板62与环板24之间的干涉,整流板62的顶端的位置受到很大限制。不过,通过如上述那样整流板62配置于与环板24不同的高度,能够以该整流板62的顶端朝向反应容器11的中心侧较大程度突出而位于晶圆w的周端附近的方式构成该整流板62。也就是说,通过整流板62配置于与环板24不同的高度,能够使反应容器11的外周的间隙更小。由此,能够更可靠地进行随后论述的处理气体的流动的限制。

另外,如图1、图2所示,上述的立式热处理装置1具有由计算机构成的控制部5。所述控制部5构成为,控制盖体14的升降、基于加热器59的晶圆w的温度、基于质量流量控制器44、46和阀v1、v2的各处理气体的供给量、基于排气量调整部55的排气量、基于马达17的旋转轴15的旋转等各动作。并且,控制部5编入有步骤组,以便能够执行后述的一系列的处理。该程序以储存于例如硬盘、软盘、光盘、磁光盘(mo)、存储卡等存储介质的状态下储存于控制部5。

接下来,对由立式热处理装置1实施的成膜处理进行说明。首先,将晶圆w向支承于旋转轴15上并且位于反应容器11的下方的基板交接位置的晶圆舟皿2输送,晶圆w呈搁板状保持于各环板24上。然后,盖体14上升,晶圆舟皿2从反应容器11的下方上升到处理位置并且支柱61和整流板62收纳于扩张区域31、33,基板输入输出口13被封闭。并且,利用来自排气口51的排气进行抽真空,以使反应容器11内成为预定的压力的真空气氛,并且晶圆w被加热器59加热成预定的温度。而且,利用马达17借助旋转轴15使晶圆舟皿2旋转。

之后,从气体喷射器41、42的各喷出孔43朝向各晶圆w的表面的中心部喷出teos气体和o2气体作为处理气体。通过利用排气口51进行排气,teos气体和o2气体在反应容器11内从前方侧朝向另一侧横向流动。图6中以空心箭头表示该处理气体的流动。此外,图6中的虚线的箭头表示晶圆w的旋转方向。

在晶圆w的外周设有朝向环板24的内方的整流板62,该整流板62设置成位于环板24的周缘部所处的位置、并且该整流板62从扩张区域31、33侵入彼此相邻的环板24之间,从而若从喷出来的各处理气体观察,左右的晶圆w的外周的间隙被抑制得较小,因此,该处理气体的向晶圆w的外周的扩散受到抑制,该处理气体能够向相邻的晶圆w之间的间隙高效地供给。并且,从如此供给到晶圆之间的间隙的处理气体观察,晶圆w的外周向上的间隙由于整流板62而比较小,因此,该处理气体的向晶圆w的外周方向的扩散受到抑制。其结果,处理气体以比较高的流速朝向排气口51以横穿晶圆w的方式流动,被从该排气口51排出。

如此在晶圆w表面流动的处理气体(teos气体和o2气体)由于晶圆w的热而发生化学反应,sio2的分子堆积于晶圆w表面,形成sio2膜。若sio2的分子的堆积得以进展、sio2膜成为所设定的膜厚,则来自气体喷射器41、42的处理气体的供给停止,盖体14下降而晶圆舟皿2从反应容器11输出,成膜处理结束。

在该立式热处理装置1中,能够使用各自保持晶圆w并且周缘部向比晶圆w靠外侧的位置伸出的环板24呈多层设于支柱23的晶圆舟皿2来进行处理。并且,以从反应容器11内的处理位置处的晶圆舟皿2的左右的外侧朝向彼此相邻的环板24之间的间隙突出而面对该间隙的方式设置有相对于该晶圆舟皿2独立的整流板62。利用这样的结构能够抑制从气体喷射器41、42喷出来的处理气体通过晶圆w的外周而朝向排气口51流动,因此能够效率良好且以比较高的流速向各晶圆w的表面供给该处理气体。通过如此效率良好地供给处理气体,能够提高成膜速度(每单位时间的膜厚的上升量),因此,能够谋求装置1的生产率的上升。另外,通过以比较高的流速向晶圆w供给处理气体,能够抑制在旋转的晶圆w的前后的直径方向的处理气体的供给量产生偏差,因此,能够谋求晶圆w的膜厚的均匀性的提升。

不过,如上述那样整流板62是为了缩小晶圆w的外周的间隙来限制处理气体的流动而设置的,通过如图5所示那样以整流板62的顶端侵入相邻的环板24之间的方式构成整流板62,从而能够使该间隙非常小,因此,能够更可靠地获得上述的效果。不过,即使不是这样侵入地设置,通过设置了整流板62,上述的晶圆w的外周的间隙小于没有设置整流板62的情况的间隙,因此,可获得本发明的效果。因而,既可以以整流板62的顶端与环板24的周端彼此重叠、即图5中的l2成为0mm的方式形成整流板62,也可以以整流板62的顶端向反应容器11的周端侧与环板24的周端分开的方式形成整流板62。

(第1实施方式的变形例)

参照图7的横剖俯视图并以与立式热处理装置1之间的不同点为中心对第1实施方式的变形例的立式热处理装置6进行说明。在该立式热处理装置6中,替代整流板62,设有沿着环板24的半周的俯视圆弧状的整流板63,圆弧的一端设于反应容器11内的左右的一侧,圆弧的另一端设于反应容器11内的左右的另一侧,圆弧的长度方向的中央部设于反应容器11内的前方侧。也就是说,整流板63在俯视观察形成为比整流板62长的圆弧状。除了这样的形状的差异,整流板63与整流板62同样地构成。整流板63由例如沿着反应容器11的周向隔开间隔地设置的棒状的铅垂的支柱64支承。该支柱64除了在俯视观察的形状不同之外与上述的支柱61同样地构成。

在反应容器11的侧壁部的与整流板63相对的区域向外方鼓起,形成了第1扩张区域65。该第1扩张区域65除了俯视观察到的形状与上述的扩张区域31、33的形状不同之外与该扩张区域31、33同样地构成。另外,形成第1扩张区域65的反应容器11的侧壁部的前方侧通过局部地进一步向该反应容器11的外方鼓起,形成第2扩张区域66。在该第2扩张区域66中,与上述的扩张区域32同样地设有气体喷射器41、42。气体喷射器41、42的喷出孔43以向相邻的环板24之间喷出处理气体的方式开设。

由于环板24和整流板63而使在晶圆w的外周形成的间隙比较小,因此,如此喷出到相邻的环板24之间的处理气体朝向该外周流动的情况受到抑制,朝向排气口51流动。因而,根据该立式热处理装置6,与立式热处理装置1同样地,能够效率良好且以比较高的流速向各晶圆w供给处理气体。

(第2实施方式)

接下来,参照图8的横剖俯视图和图9的纵剖侧视图并以与立式热处理装置1之间的不同点为中心对第2实施方式的立式热处理装置7进行说明。在立式热处理装置7中,没有设置扩张区域31、33、支柱61以及整流板62,作为替代设置有与整流板62相当的整流板71。对于整流板71,也与整流板62同样呈多层设置,各整流板71以从反应容器11的内周壁的周向上的彼此分开的4个区域面对配置到处理位置的晶圆舟皿2的相邻的环板24之间的间隙的方式朝向该间隙突出。在该例子中,整流板71分别设于反应容器11内的前方侧的左右和后方侧的左右。

在环板24上,沿着周向形成有与整流板71相对应的4个缺口25。在相对于反应容器11输入和输出晶圆舟皿2之际,如图8所示那样以缺口25与整流板71相对的方式利用马达17在晶圆舟皿2的朝向被调整了的状态下使盖体14升降,整流板71在缺口25通过。该缺口25以即使引起已述的晶圆舟皿2的升降轴的轴偏摆、也能够防止环板24与整流板71之间的干涉的方式形成。

在立式热处理装置7中,与立式热处理装置1同样地利用处理气体的供给和排气形成气流,进行晶圆舟皿2的旋转,晶圆w被成膜处理。由于该晶圆舟皿2的旋转,能够一边交替反复在俯视观察时整流板71的顶端部与环板24的周端部不重叠的状态(图8所示的状态)、重叠的状态一边进行成膜处理。在该成膜处理中,通过设置有上述的环板24和整流板71,从喷出到反应容器11内的处理气体观察,在晶圆w的外周形成的间隙比较小,因此,在该立式热处理装置7中,与立式热处理装置1同样地,该处理气体向该晶圆w的外周流动的情况受到抑制。并且,在上述的整流板71与环板24重叠着时,从处理气体观察到的上述的晶圆w的外周的间隙更小,因此,能够更可靠地抑制处理气体向晶圆w的外周流动。

通过如上述那样限制处理气体的流动,该立式热处理装置7也起到与立式热处理装置1同样的效果。另外,该立式热处理装置7的整流板71是固定于反应容器11的结构,因此,能够与晶圆w的移载机构进入晶圆舟皿2的方向无关地设置。也就是说,能够以自由的布局配置于反应容器11内的前后左右。

不过,在上述的各实施方式中,作为晶圆舟皿2的环板24,能够使晶圆w的外周的间隙减小即可,因此无需是完全的圆形,既可以如在第2实施方式中所示那样形成有缺口25,也可以例如是椭圆形、矩形。另外,关于排气口51,为了对各晶圆w之间的面内的压力进行调整,能够设为任意的形状。例如,既可以设为顶端朝向下方变细的楔型的狭缝形状,也可以是沿着上下隔开间隔地开设许多孔并且越是下方侧的孔开口径越缩小的结构。另外,作为排气口51的下游的排气的流路,并不限于上述的结构例。例如也可以是如下结构:不设置外管52而利用罩从反应容器11的外侧覆盖排气口51,由该罩覆盖的空间利用排气管54排气。另外,也能够设为如下结构:排气管54的上游端与外管52的前方侧连接,流入到排气口51的处理气体在反应容器11的顶板上通过而流入排气管54。

而且,对于晶圆舟皿的结构,也并不限于上述的例子。图10~图13是分别表示与晶圆舟皿2不同的结构的晶圆舟皿的概略纵剖侧视图。以下,以与晶圆舟皿2之间的不同点为中心对这些图10~图13的晶圆舟皿进行说明。在图10中,示出了设有圆板72替代环板24的晶圆舟皿73的结构例。圆板72的周缘部与环板24的周缘部同样地向所载置的晶圆w的周缘的外侧伸出。另外,在图11中,示出了设有沿着环板24的内周缘的环状的突起74的晶圆舟皿75,可在该突起74上保持晶圆w。

图12所示的晶圆舟皿76具有从各支柱23向被该支柱23包围的区域的中心部突出的保持体77,可在该保持体77上保持晶圆w的周缘部。并且,在该晶圆舟皿76中,水平的圆形的环板78呈多层设于与保持体77和晶圆w不同的高度,环板78的内周缘由各支柱23支承。该环板78与环板24的周缘部同样地限制反应容器11内的气流。也就是说,在该晶圆舟皿76中,基板保持部和气流引导部独立地形成。并且,图13所示的晶圆舟皿79与晶圆舟皿76大致相同地构成,作为不同点,替代环板78而设有水平的圆板70。

不过,对于相对于各晶圆舟皿移载晶圆w的移载机构,只要能够相对于已述的晶圆舟皿进行晶圆w的移载即可,可使用任意的结构的移载机构。列举一个例子,能够使用具有通过将晶圆w的侧面的彼此分开的不同的位置分别朝向晶圆w的中心按压来把持该晶圆w的把持机构的移载机构。

上述的立式热处理装置1并不限于构成为基于cvd进行成膜的装置,也可以构成为利用ald(atomiclayerdeposition,原子层沉积)进行成膜的装置。另外,也可以是,设置使从气体喷射器41、42喷出来的处理气体在向晶圆w供给之前等离子体化而生成自由基的等离子体化机构,该自由基等活性种向晶圆w供给。在该情况下,如上述那样处理气体以比较高的流速在相邻的晶圆w上流通,因此,能够抑制活性种在到达晶圆w的表面的各部分之前失活,因此,能够谋求装置的高生产率化和晶圆w的面内的处理的均匀化。另外,立式热处理装置1并不限于构成为进行成膜处理的成膜装置,也可以构成为一边供给例如n2(氮)气体等非活性气体一边对晶圆w进行加热而对该晶圆w的表面进行改性的改性装置。此外,已述的各实施方式的结构能够适当组合。例如,作为在立式热处理装置1中支承整流板62的支柱,也可以使用在立式热处理装置6中已说明的支柱64。

不过,在图3、图8所示的例子中,晶圆舟皿2的环板24的周缘部以从晶圆w的整周向比该晶圆w的周缘靠外侧的位置伸出的方式形成,但作为环板24,只要如已述那样获得限制气流的作用即可,并不限于如此以周缘部从晶圆w的整周伸出的方式构成。例如,也可以是,在环板24的周缘部以朝向该环板24的中心的方式形成并且以顶端位于比晶圆w的周缘靠内侧的位置方式形成缺口,以在俯视观察时环板24的周缘部从晶圆w的整周中的大部分、具体而言例如整周中的70%以上的区域向晶圆w的外侧伸出的方式构成该环板24。以这样的方式在环板24的周缘部的多个区域形成有该缺口:在通过使具有分别支承例如晶圆w的背面周缘部上的彼此分开的多个区域的多个爪的输送机构相对于环板24升降、而相对于环板24交接晶圆w时,该爪能够通过。

(评价试验)

作为评价试验1,执行了如下模拟:使用已述的立式热处理装置1而对直径是300mm的晶圆w进行成膜处理。并且,获取了该成膜处理中的相邻的晶圆间的间隙的处理气体的流速的分布。另外,作为比较试验1,除了没有形成整流板62、支柱61、扩张区域31、32之外,执行与评价试验1相同的条件的模拟,与评价试验1同样地获取了处理气体的流速的分布。

图14的图表表示在上述的间隙中从沿着晶圆w的左右方向的直径上获取的流速的分布。以实线表示在评价试验1中获取的流速的分布,以虚线表示在比较试验1中获取的流速的分布。图表的横轴表示检测到流速的位置距晶圆w的中心(设为0m)的距离(单位:m),反应容器11的右侧以+的值表示,左侧以-的值表示。图表的纵轴表示所检测的流速(单位:m/秒),纵轴上的a是正数。若根据该图表对彼此相同的位置处的流速进行比较,则评价试验1的流速比比较试验1的流速大。因而,根据该评价试验的结果确认到已述的本发明的效果。

根据本发明,在基板保持器具的支柱上针对每个基板设置其周缘部向比基板靠外侧的位置伸出的气流引导部、并且以在基板保持区域的左右从外侧朝向彼此相邻的气流引导部之间的空间突出而面对该空间的方式与基板保持器具独立地设有整流部。因而,能够将处理气体向基板之间效率良好且以较快的流速供给。

应该认为此次公开的实施方式在所有方面都是例示而非限制性的内容。实际上,上述的实施方式能够以多样的形态具体化。另外,上述的实施方式只要不脱离权利要求书及其主旨就可以以各种形态省略、置换、变更。意在本发明的范围包含在所附的权利要求书及其等同的意思和范围内的所有变更。

关联申请文献

本发明基于2015年10月21日提出申请的日本特许出愿第2015-207357号的优先权的利益,该日本出愿的全部内容作为参照文献编入本说明书中。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1