一种薄膜晶体管及制造方法和显示器面板与流程

文档序号:12275103阅读:236来源:国知局
一种薄膜晶体管及制造方法和显示器面板与流程

本发明涉及一种金属氧化物薄膜晶体管结构及其制造方法,尤其是用于显示器面板中的薄膜晶体管结构。



背景技术:

传统的金属氧化物薄膜晶体管通过在有源层上淀积金属来作为电极。在电极和有源层的接触界面处通常会形成肖特基势垒,使得接触界面的电阻值很高,进而增大了薄膜晶体管的寄生接触电阻,同时本征态的金属氧化物半导体通常是高电阻率的,这会带来高电阻率的源漏电阻的问题。现有的解决办法是通过对源区、漏区进行掺杂来降低源区、漏区的电阻率,但这通常以牺牲工艺稳定性和增加制备成本为代价。例如,源漏区域可以通过等离子处理将氢离子掺杂到源区、漏区中,但整个过程并不稳定。其他掺杂物,例如硼和磷,则需要极为昂贵的离子注入设备以及额外的激活过程。为此,在薄膜晶体管制造行业急需要一种成本低廉、制造工艺简单的方法来降低金属氧化物源漏区域的电阻率。

另一方面,背沟道刻蚀(back-channel etched BCE)结构和刻蚀阻挡层(etch-stop ES)结构是背栅金属氧化物薄膜晶体管的两种主流结构。在传统背沟道刻蚀结构的薄膜晶体管中,暴露的沟道上界面会在刻蚀电极的时候受到损害,进而影响到器件的性能。虽然这样的损害可以通过在沟道区上添加一层刻蚀阻挡层来避免,但是这样不仅会增加一步额外的光刻过程、从而增加制备成本,更重要的是刻蚀阻挡层器件结构需要延长沟道长度和栅极电极的长度,这样会扩大薄膜晶体管的面积、进而极大地限制显示器的分辨率的进一步提升,背离了显示器的高分辨率发展趋势。归纳而言,背沟道刻蚀的器件结构的优势在于提供了简单的工艺过程、较低的制备成本和较小的器件尺寸,而刻蚀阻挡层的器件结构提供了更优的器件性能和改善的器件稳定性,但扩大了器件的面积,增加了制造成本。为此,金属氧化物薄膜晶体管制造业急需一种新型的薄膜晶体管结构,能够同时满足低成本、高性能、小尺寸等多重要求。



技术实现要素:

本发明所要解决的技术问题在于克服上述现有技术之不足,首先提供一种源漏区域电阻率小,但制造成本低廉的高性能金属氧化物薄膜晶体管结构。

本发明提供的一种薄膜晶体管,包括:衬底和设置在所述衬底上的由金属氧化物构成的有源层,所述有源层与栅极叠层相毗邻;所述有源层部分区域上覆盖有电极;所述电极与所述有源层之间还包括第一绝缘层,且所述第一绝缘层的厚度小于含氧元素的物质在所述第一绝缘层中的扩散长度;所述电极上覆盖有第二绝缘层,且所述第二绝缘层的厚度大于所述含氧元素的物质在所述第二绝缘层中的扩散长度;所述有源层在所述第二绝缘层覆盖下的区域分别形成源区、漏区,在非所述第二绝缘层覆盖下的区域形成沟道区;所述源区、漏区与所述沟道区相互连接,且分别位于所述沟道区的两端;所述沟道区与所述栅极叠层相毗邻;所述源区、所述漏区和所述沟道区的连接面自对准于所述第二绝缘层在所述有源层投影面积之内的边界的铅垂面;所述源区、所述漏区的电阻率小于所述沟道区的电阻率。

作为上述晶体管结构优选的方式:

所述源区、所述漏区和所述沟道区的连接面和所述电极在所述有源层投影面积之内的边界的铅垂面的间距小于所述有源层厚度的100倍;

所述沟道区与所述源区、所述漏区的电阻率比值大于1000倍。

所述有源层包括以下材料中的一种或多种的组合:氧化锌、氮氧化锌、氧化锡、氧化铟、氧化镓、氧化铜、氧化铋、氧化铟锌、氧化锌锡、氧化铝锡、氧化铟锡、氧化铟镓锌、氧化铟锡锌、氧化铝铟锡锌、硫化锌、钛酸钡、钛酸锶或铌酸锂。

所述第一绝缘层包括以下材料中的一种或多种的组合:氧化硅、氮氧化硅,其中所述氮氧化硅中氮化硅的比例小于20%。其中,所述第一绝缘层的厚度为10至3000纳米。

所述第二绝缘层的厚度为所述含氧元素的物质在所述第二绝缘层中扩散长度的2至100倍之间。

所述第二绝缘层包括以下材料中的一种或多种的组合:氮化硅、氮氧化硅、氧化铝或氧化铪,其中所述氮氧化硅中氮化硅的比例大于20%。其中,所述第二绝缘层的厚度为10至3000纳米。

所述栅极叠层可设置在所述有源层与所述衬底之间;或者,

将所述有源层设置在所述栅极叠层和所述衬底之间。进一步地,所述栅极叠层包括栅极电极和栅极绝缘层,所述栅极电极的厚度小于所述含氧元素的物质在所述栅极电极中的扩散长度,所述栅极绝缘层的厚度小于所述含氧元素的物质在所述栅极绝缘层中的扩散长度。所述栅极电极包含以下材料中的一种或多种的组合:氧化锌、氧化铟锡、氧化铝锌、氧化铟铝、氧化铟锌;所述栅极绝缘层包含以下材料中的一种或多种的组合:氧化硅、氮氧化硅,其中所述氮氧化硅中氮化硅的比例小于20%。所述栅极电极的厚度为10至3000纳米;所述栅极绝缘层的厚度为10至3000纳米。

所述含氧元素的物质包括:氧气、臭氧、一氧化二氮、水、双氧水、二氧化碳和以上物质的等离子体。

所述源区、漏区的电阻率小于10欧姆厘米,所述沟道区的电阻率大于10欧姆厘米。

本发明还提供了一种显示器面板,包括多组显示模块,所述显示模块包含上述所述的薄膜晶体管。

本发明还提供了一种薄膜晶体管的制造方法,包括:

准备一个衬底;

在所述衬底之上设置有源层和与所述有源层相毗邻的栅极叠层,所述有源层由金属氧化物构成;

在所述有源层部分区域上覆盖电极;

在所述电极与所述有源层之间设置第一绝缘层,使所述第一绝缘层的厚度小于含氧元素的物质在所述第一绝缘层中的扩散长度;

在所述电极上覆盖第二绝缘层,使所述第二绝缘层的厚度大于所述含氧元素的物质在所述第二绝缘层中的扩散长度;

进行退火处理,使所述有源层在所述第二绝缘层覆盖下的区域分别形成源区和漏区,在非所述第二绝缘层覆盖下的区域形成沟道区,所述源区、所述漏区与所述沟道区相互连接、且分别位于所述沟道区的两端,且使所述源区、所述漏区和所述沟道区之间由退火形成连接面,该连接面自对准于所述电极在所述有源层投影面积之内的边界的铅垂面,所述源区和所述漏区的电阻率小于所述沟道区的电阻率。

作为本发明上述所述的晶体管制作方法的优选方式:

所述源区、所述漏区和所述沟道区之间由所述退火形成的连接面和所述第二绝缘层在所述有源层投影面积之内的边界的铅垂面的间距小于所述有源层厚度的100倍。

所述退火包括利用热、光、激光、微波进行加热。

所述退火在氧化气氛下,持续10秒至10小时,温度在100℃和600℃之间。

所述氧化气氛包括:氧气、臭氧、一氧化二氮、水、二氧化碳和以上物质的等离子体。

根据上述方法,本发明还提供了一种显示器面板,包括多组显示模块,所述显示模块包含上述所述方法制造的薄膜晶体管。

相对于传统的薄膜晶体管结构,本发明具有以下优点:首先,本方案直接通过退火在有源层中形成了源区、漏区,既保持了和背沟道刻蚀结构一样的器件尺寸,又实现了刻蚀阻挡层结构器件的高性能。同时兼顾了高性能和小尺寸的优点,非常符合目前显示器的发展趋势,特别是在增强现实、虚拟现实方面的发展应用。其次,退火减小了源漏区域的电阻率,进而降低了电极与有源层之间的寄生接触电阻,显著提升了薄膜晶体管的开态性能。同时,由于退火还保持甚至提高了沟道区的高电阻率,从而显著地降低了薄膜晶体管的关态电流。更重要的是,退火会在很大程度上消除沟道区中的缺陷密度,极大地提升器件的可靠性。沟道区上方的第一绝缘层保护薄膜晶体管的沟道区免受外界环境的影响,器件的环境可靠性能得到进一步加强。本发明直接以电极之上的第二绝缘层覆盖部分有源层区域,通过退火来降低第二绝缘层覆盖下的源区、漏区的电阻率,在省略了传统半导体工艺中的掺杂步骤和光刻步骤,节省了制备成本的同时,保证了源漏区域的低电阻率的稳定性。因此,此发明,兼具高性能、小尺寸、高可靠性、低成本等优点。

附图说明

图1为传统背沟道刻蚀结构背栅薄膜晶体管的剖视图。

图2为传统刻蚀阻挡层结构背栅薄膜晶体管的剖视图。

图3为本发明中薄膜晶体管结构第一种实施例的剖视图。

图4为本发明中薄膜晶体管结构第二种实施例的剖视图。

图5为本发明中薄膜晶体管结构第三种实施例的剖视图。

图6为本发明中显示面板中第一种显示模块结构的示意图。

图7为本发明中显示面板中第二种显示模块结构的示意图。

图8为本发明中显示面板中第三种显示模块结构的示意图。

具体实施方式

参照图1,图1为传统背沟道刻蚀结构背栅薄膜晶体管的剖视图。其中,薄膜晶体管包括:衬底1a、设置在衬底1a上的有源层2a。有源层2a与衬底1a之间还设置有栅极叠层3a,栅极叠层3a包括栅极电极31a和设置在栅极电极31a和有源层2a之间的栅极绝缘层32a。有源层2a之上覆盖有电极4a。有源层2a与电极4a相接触的区域分别形成源区21a和漏区23a,有源层2a与非电极4a相接触的区域形成沟道区22a。其中,沟道区22a与栅极叠层3a相毗邻,而源区21a和漏区23a分别位于沟道区22a的两端,并与沟道区22a相连接。在薄膜晶体管工作过程中,通过对栅极电极施加一定的电压,能够改变沟道区的电阻率,进而控制通过沟道区的电流,从而实现薄膜晶体管的开关。薄膜晶体管的关态电流很大程度上取决于沟道区的电阻率和缺陷密度,更高的电阻率和更少的缺陷密度可以带来更低的关态电流和更好的器件性能。薄膜晶体管的开态电流受限于源区、漏区的电阻率,更低的源区、漏区的电阻率有利于降低寄生电阻,提高开态电流。对于背沟道刻蚀结构背栅薄膜晶体管,其沟道区22a在刻蚀电极4a的过程中会受到损害,产生大量缺陷密度,大大降低器件的性能。产生的缺陷密度包括导电类缺陷密度,其会降低沟道区22a的电阻率,从而极大地提高薄膜晶体管工作电流的关态电流。另一个问题,本征高电阻率的源区21a、漏区23a也会降低薄膜晶体管的开态电流。

参照图2,图2为传统刻蚀阻挡层结构背栅薄膜晶体管的剖视图。其中,薄膜晶体管包括:衬底1b、设置在衬底1b上的有源层2b。有源层2b与衬底1b之间还设置有栅极叠层3b。栅极叠层3b包括栅极电极31b和设置在栅极电极31b和有源层2b之间的栅极绝缘层32b。在有源层2b上设置有刻蚀阻挡层5。刻蚀阻挡层5和有源层2b之上覆盖有电极4b。有源层2b与电极4b相接触的区域分别形成源区21b、漏区23b,有源层2b与非电极4b相接触的区域形成沟道区22b。其中,沟道区22b与栅极叠层3b相毗邻,而源区21b和漏区23b分别位于沟道区22b的两端,并与沟道区22b相连接。通过刻蚀阻挡层5可以保护沟道区22b免受电极4b刻蚀过程所带来的损害,从而避免在沟道区22b引入缺陷密度和降低电阻率。但是因为刻蚀阻挡层5的引入,沟道区2b2和的栅极电极31b相应地要有所延长,以保证沟道区22b依然可以通过源区21b、漏区23b和电极4b相连接。这样极大地增加了薄膜晶体管的面积,背离了薄膜晶体管小型化的发展趋势。同时,因需要额外的一步光刻步骤来图形化刻蚀阻挡层5,制备成本也会增加。同样地,在刻蚀阻挡层结构薄膜晶体管中本征高电阻率的源区21b、漏区23b也会降低薄膜晶体管的开态电流,影响器件性能。

下面结合附图及实施例详细描述本发明。应当理解,此处所描述的具体实施例为非限制性示例实施例,且附图示出的特征不是必须按比例绘制。所给出的示例仅旨在有利于解释本发明,不应被理解为对本发明的限定。

参照图3,图3为本发明中薄膜晶体管结构第一种实施例的剖视图。本实施例中薄膜晶体管采用背栅结构。其中,薄膜晶体管包括:设置在衬底1上的有源层2;有源层2与衬底1之间还设置有栅极叠层3,栅极叠层3则包括栅极电极31和设置在栅极电极31和有源层2之间的栅极绝缘层32;有源层2的上方覆盖有第一绝缘层6,第一绝缘层6上形成有深至有源层2的通孔,所述通孔内淀积有导体,从而从由所述通孔中引出电极4,电极4分别与有源层2的部分区相电连接;在电极4和第一绝缘层6的上方设置有第二绝缘层7。

参照图3,衬底1包括但不限于以下材料:玻璃、聚合物衬底、柔性材料等。

参照图3,有源层2包括以下材料中的一种或多种的组合:氧化锌、氮氧化锌、氧化锡、氧化铟、氧化镓、氧化铜、氧化铋、氧化铟锌、氧化锌锡、氧化铝锡、氧化铟锡、氧化铟镓锌、氧化铟锡锌、氧化铝铟锡锌、硫化锌、钛酸钡、钛酸锶或铌酸锂。

本发明中,当绝缘层或导体层的厚度小于含氧元素的物质在该绝缘层或导体层中的扩散长度时,含氧元素的物质能在退火处理中透过该绝缘层或导体层进入金属氧化物有源层,从而保持、甚至提高金属氧化物的电阻率,此时该绝缘层或导体层是透氧层;当一个绝缘层或导体层的厚度大于含氧元素的物质在该绝缘层中的扩散长度时,该绝缘层或导体层能阻挡含氧元素的物质,从而降低金属氧化物的电阻率,此时该绝缘层或导体层是不透氧层。

所述含氧元素的物质包括:氧气、臭氧、一氧化二氮、水、双氧水、二氧化碳和上述物质的等离子体。

参照图3,第一绝缘层6的厚度小于含氧元素的物质在第一绝缘层6中的扩散长度,所述含氧元素的物质在退火处理中能够透过第一绝缘层6,因而第一绝缘层6是透氧层。第一绝缘层6包括以下材料中的一种或多种的组合:氧化硅、氮氧化硅;其中,所述氮氧化硅中氮化硅的比例小于20%。第一透氧层6的厚度为10至3000纳米。优选地,第一绝缘层6的厚度在200纳米到500纳米之间。

参照图3,第二绝缘层7的厚度大于所述含氧元素的物质在第二绝缘层7中的扩散长度,第二绝缘层7能阻挡所述含氧元素的物质,因而第二绝缘层7是不透氧层。优选地,第二绝缘层7的厚度为所述含氧元素的物质在第二绝缘层7中扩散长度的2至100倍之间。第二绝缘层7包括以下材料中的一种或多种的组合:氮化硅、氮氧化硅、氧化铝或氧化铪,其中所述氮氧化硅中氮化硅的比例大于20%。第二绝缘层7的厚度为10至3000纳米。优选地,第二绝缘层7的厚度在200纳米到500纳米之间。

参照图3,退火处理中,第二绝缘层7阻挡了所述含氧元素的物质,有源层2在第二绝缘层7覆盖下的区域的电阻率得以降低,形成源区21、漏区23。降低了的源区21、漏区23的电阻率有利于降低源区21、漏区23与电极4之间的接触电阻,从而提高薄膜晶体管的开态性能。与第二绝缘层7的特性相反,退火处理中,所述含氧元素的物质能够通过第一绝缘层6进入有源层2,因而有源层2在非第二绝缘层7覆盖下的区域的电阻率得到保持甚至提高,形成沟道区22。在沟道区22上方的第一绝缘层6还能提高沟道区22的电阻率、降低沟道区22的缺陷密度,从而改善薄膜晶体管的关态特性,并且第一绝缘层6还能保护沟道区22免受外界环境的影响,提高薄膜晶体管的稳定性和可靠性。

参照图3,通过在有源层2部分区域上方覆盖第二绝缘层7,继而用退火处理来降低源区21、漏区23的电阻率,同时保持甚至提高沟道区22的高电阻率。有源层2中的源区21、漏区23和沟道区22相互连接。其退火形成的连接面无需借助任何光刻对准工艺,而自动对准于覆盖有源层2的第二绝缘层7的边界,这类似于现有硅基场效应晶体管工艺中,掺杂形成的源区、漏区和沟道区的连接面自动对准于栅极电极边界。这种自对准通常都存在一定的偏差范围。本发明中,源区、漏区和沟道区的连接面自对准于第二绝缘层在有源层投影面积之内的边界的铅垂面,其对准的偏差小于有源层厚度的100倍。

在本发明中,所述的投影面积为具体实施例中的附图所示的垂直方向的投影面积。

在本发明中,所述退火处理包括但不限于利用热、光、激光、微波进行加热。所述退火处理是在氧化气氛下,持续10秒至10小时,温度在100℃和600℃之间。所述氧化气氛包括:氧气、臭氧、一氧化二氮、水、二氧化碳和上述物质的等离子体。

相对于传统的通过对源区和漏区进行掺杂的方式来降低源区、漏区的电阻率,本发明中退火所得的源区、漏区的电阻率比掺杂所得的电阻率更低,且第二绝缘层保护下的源区、漏区的低电阻率更稳定。相对于传统掺杂方式,本发明的工艺更简单、成本也更低。但本发明不限制掺杂,有源层2中可以掺入以下一种或多种杂质:氢、氮、氟、硼、磷、砷、硅、铟、铝或锑。这不妨碍器件的源区、沟道区和漏区的形成。也因此,本方案和现有掺杂工艺完全兼容,具有高可扩展性。

相对于传统薄膜晶体管的方法,本发明中退火处理还保证了、甚至提高了沟道区的高电阻率,从而极大地降低了薄膜晶体管的关态电流,远低于目前主流的10-13安每微米,甚至降低到极低的10-18安每微米。更重要的是,退火还在很大程度上消除了沟道区中的缺陷密度,比如,氧空位缺陷密度、金属填隙缺陷密度等,这些缺陷密度广泛地存在于金属氧化物中,被认为是降低薄膜晶体管的性能和可靠性的重要因素,但在传统的器件结构中又很难彻底地消除。因为消除了这些缺陷密度,本发明中所公开的薄膜晶体管结构极大地增强了薄膜晶体管的性能和长期可靠性。比如,金属氧化物薄膜晶体管的电流开关比极大地提高、甚至高于1011;常见的回滞效应引起的阈值电压漂移被抑制到0.15V之内;栅极电极上施加一定的电压时所产生的阈值电压的漂移退化消除到0V左右。其次,沟道区上方覆盖的第一绝缘层不仅能够像刻蚀阻挡层一样完全保护沟道区免受电极刻蚀带来的损害,还能够很好地保护薄膜晶体管免受外界环境的影响、增强薄膜晶体管的环境稳定性。比如,在80摄氏度、80%相对湿度下保存10个小时所引起的阈值电压漂移等性能退化的问题,通过本发明中薄膜晶体管结构可以得到大大改善。

总结来说,本发明相较于传统薄膜晶体管结构拥有诸多优点,包括:更简单的制造工艺,更低的制备成本,更高的工艺扩展性,更优的器件性能,可靠性和环境稳定性。

参照图4,图4为本发明中薄膜晶体管结构第二种实施例的剖视图。本实施例中薄膜晶体管采用顶栅结构。同样地,薄膜晶体管包括:衬底1;设置在衬底1上的有源层2;有源层2之上设置有透氧栅极电极311和设置在透氧栅极电极311和有源层2之间的透氧栅极绝缘层321;有源层2、透氧栅极绝缘层321和透氧栅极电极311的上方覆盖有第一绝缘层6,第一绝缘层6上形成有深至有源层2的通孔,所述通孔内淀积有导体,从而由所述通孔中引出电极4,电极4分别与有源层2的部分区域相电连接。电极4和第一绝缘层6之上还设置有第二绝缘层7。

参照图4,透氧栅极电极311的厚度小于所述含氧元素的物质在栅极电极31中的扩散长度,所述含氧元素的物质在退火处理中能够透过透氧栅极电极311,因而透氧栅极电极311是透氧层;透氧栅极电极311包含以下材料中的一种或多种的组合:氧化锌、氧化铟锡、氧化铝锌、氧化铟铝或氧化铟锌;透氧栅极电极311的厚度为10至3000纳米。优选地,透氧栅极电极311的厚度在200纳米到500纳米之间。

参照图4,透氧栅极绝缘层321的厚度小于所述含氧元素的物质在透氧栅极绝缘层321中的扩散长度;所述含氧元素的物质在退火处理中能够透过透氧栅极绝缘层321,因而透氧栅极绝缘层321是透氧层;透氧栅极绝缘层321包含以下材料中的一种或多种的组合:氧化硅、氮氧化硅,其中所述氮氧化硅中氮化硅的比例小于20%;透氧栅极绝缘层321的厚度为10至3000纳米。优选地,透氧栅极绝缘层321的厚度在200纳米到500纳米之间。

参照图4,退火处理中,第二绝缘层7阻挡了所述含氧元素的物质,有源层2在第二绝缘层7覆盖下的区域的电阻率得以降低,形成源区21、漏区23。降低了的源区21、漏区23的电阻率有利于降低源区21、漏区23与电极4之间的接触电阻,从而提高薄膜晶体管的开态性能。与第二绝缘层7的特性相反,第一绝缘层6、透氧栅极电极311和透氧栅极绝缘层321是透氧层。退火处理中,所述含氧元素的物质能够通过第一绝缘层6、透氧栅极电极311和透氧栅极绝缘层321进入有源层2,因而有源层2在非第二绝缘层7覆盖下的区域的电阻率得到保持甚至提高,形成沟道区22。在沟道区22上方的第一绝缘层6还能提高沟道区22的电阻率、降低沟道区22的缺陷密度,从而改善薄膜晶体管的关态特性,并且第一绝缘层6还能保护沟道区22免受外界环境的影响,提高薄膜晶体管的稳定性和可靠性。

参照图5,图5为本发明中薄膜晶体管结构第三种实施例的剖视图。本实施例中薄膜晶体管采用背栅结构。其中,薄膜晶体管包括:衬底1;设置在衬底1上的有源层2;有源层2与衬底1之间还设置有栅极叠层3,栅极叠层3则包括栅极电极31和设置在栅极电极31和有源层2之间的栅极绝缘层32;有源层2的上方覆盖有第一绝缘层6,第一绝缘层6上形成有深至有源层2的通孔,所述通孔内淀积有导体,从而由所述通孔中引出电极4,电极4分别与有源层2的部分区域相电连接;在电极4和第一绝缘层6的上方设置有第二绝缘层7。在本实施例中,第二绝缘层7的投影面积与电极4的投影面积完全重叠。

参照图5,在退火处理中,电极4和第二绝缘层7共同阻挡所述含氧元素的物质,有源层2在电极4和第二绝缘层7共同覆盖下的区域的电阻率得以降低,形成源区21、漏区23。降低了的源区21、漏区23的电阻率有利于降低源区21、漏区23与电极4之间的接触电阻,从而提高薄膜晶体管的开态性能。与第二绝缘层7的特性相反,退火处理中,所述含氧元素的物质能够透过第一绝缘层6进入有源层2,因而有源层2在非电极4和第二绝缘层7共同覆盖下的区域的电阻率得到保持甚至提高,形成沟道区22。在沟道区22上方的第一绝缘层6还能提高沟道区22的电阻率、降低沟道区22的缺陷密度,从而改善薄膜晶体管的关态特性,并且第一绝缘层6还能保护沟道区22免受外界环境的影响,提高薄膜晶体管的稳定性和可靠性。

参照图6,图6为本发明中显示面板中第一种显示模块结构的示意图,显示器面板由多个显示模块组成。显示模块中包括薄膜晶体管、中间绝缘层8、像素电极9、光电材料10以及公共电极11。像素电极9与所述薄膜晶体管的电极4通过中间绝缘层8上的通孔相电连接。光电材料10包括但不限于:液晶、发光二极管、有机发光二极管、量子点发光二极管。在本实施例的显示面板中,所述薄膜晶体管为图3所述的薄膜晶体管。此种薄膜晶体管还可以用于构成电路,比如显示面板中的驱动电路。

参照图7,图7为本发明中显示面板中第二种显示模块结构的示意图,显示器面板由多个显示模块组成。显示模块中包括薄膜晶体管、中间绝缘层8、像素电极9、光电材料10以及公共电极11。像素电极9与所述薄膜晶体管的电极4通过中间绝缘层8上的通孔相电连接。在本实施例的显示面板中,所述薄膜晶体管为图5所述的薄膜晶体管。此种薄膜晶体管还可以用于构成电路,比如显示面板中的驱动电路。

参照图8,图8为本发明中显示面板中第三种显示模块结构的示意图,显示器面板由多个显示模块组成。显示模块中包括薄膜晶体管、像素电极9、光电材料10以及公共电极11。其中,像素电极9与所述薄膜晶体管的电极4通过第二绝缘层7上的通孔电连接,第二绝缘层7兼具中间绝缘层的作用,因而无需再专门设置一层中间绝缘层。在本实施例的显示面板中,所述薄膜晶体管为图3所述的薄膜晶体管。

最后应当说明的是,以上实施例仅为本发明的较佳实施例而已,而非对本发明保护范围的限制,本领域的普通技术人员应当理解,凡在本发明的精神和原则之内所作的任何修改、等同替换或改进等,均应包含在本发明的保护范围之内。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1