一种高稳定霍尔元件及其制备方法与流程

文档序号:12479335阅读:364来源:国知局
一种高稳定霍尔元件及其制备方法与流程

本发明涉及磁传感器和半导体器件应用领域,具体涉及一种高稳定霍尔元件及其制备方法。



背景技术:

霍尔元件是一种基于霍尔效应的磁传感器,广泛应用于电流检测、电机中测定转子转速等诸多领域,如录像机的磁鼓,电脑中的散热风扇等,已发展成一个品种多样的磁传感器产品族。霍尔元件可采用多种半导体材料制作,如Ge(锗)、Si(硅)、InSb(锑化铟)、GaAs(砷化镓)、InAs(砷化铟)、InAsP以及多层半导体异质结构量子阱材料等。当温度改变的时候,半导体材料中的载流子浓度及电阻率都将会发生明显变化。霍尔元件的霍尔系数RH=1/ned,其中n为半导体载流子浓度。同时霍尔系数还与载流子迁移率μ和电阻率ρ满足如下关系|RH|=μρ。因而,温度对霍尔元件的霍尔系数及器件等效输入输出阻抗有非常大的影响,进而成为影响霍尔传感器输出精度的主要因素。

如何提高霍尔元件的温度稳定性,最大程度降低温度对霍尔传感器输出精度的影响是当今霍尔元件的主要研究方向。



技术实现要素:

为解决现有技术存在的问题,本发明提供一种高稳定霍尔元件及其制备方法,该高稳定霍尔元件不仅具有形状效应系数高、输出电压高的特点,而且可以降低霍尔系数对温度的响应,进而提升霍尔元件电压的稳定性。

为实现上述目的,本发明采用以下技术手段:

一种高稳定霍尔元件,包括硬质硬质基片、设置在硬质基片上的霍尔片、设置在霍尔片端部上的电极以及包覆在霍尔片上起保护作用的壳体;所述的霍尔片为由正温度霍尔系数薄膜与负温度霍尔系数薄膜堆栈组合的两层薄膜层,或者由正温度霍尔系数薄膜与负温度霍尔系数薄膜间隔堆栈组合的多层薄膜层;所述的霍尔片的四个电极上分别引出一条引线,其中,对称的两端a和b为电流输入端,另外对称的两端c和d为霍尔电压输出端;所述的壳体由环氧树脂或非导磁金属制成;所述的电极选用金或银。

所述的霍尔片结构为十字形结构、缺角矩形结构、四叶草结构或十字星形结构,优选为十字星形结构。

所述的正温度霍尔系数薄膜优选为InAs薄膜层,负温度霍尔系数薄膜优选为InSb薄膜。

所述的基片为高平整度的玻璃、半导体Si材料或者陶瓷材料。

一种高稳定霍尔元件的制备方法,包括在基片上依次通过真空蒸镀、磁控溅射、化学气相沉积或溶胶凝胶方法制备的两层或多层不同霍尔系数的薄膜层,然后通过光刻、3D打印或覆盖掩膜版的方法制备霍尔片的形状,再通过刷浆、印刷方式制备电极,在电极处焊接引线,最后制备起保护作用的壳体。

具体包括以下步骤:

1)将硬质基片清洗干净,取出后用氮气烘干;

2)将清洗好的基片转入蒸镀室采用真空蒸镀的方式蒸发正温度霍尔系数的薄膜,完成第一霍尔片薄膜的制备;

3)再将完成第一霍尔片薄膜的基片放入烘干箱烘干;

4)将烘干的霍尔基片再转入蒸镀室采用真空蒸镀的方式蒸发负温度霍尔系数的薄膜,完成第二霍尔片薄膜的制备;

5)再将完成第二霍尔片薄膜的基片放入烘干箱烘干;

6)将烘干的霍尔基片表面进行抛光;

7)抛光完毕后在上表面覆盖曝光区域与十字星形结构重合的掩膜版,并置于UV光下曝光,曝光后刻蚀出霍尔片所需结构区域;

8)刻蚀完毕后用相应刻蚀清洗液清洗,去除光刻胶,最后清洗基片,去除残留,放入烘干箱烘干;

9)通过刷银浆,再加热的方式或金线、铝线的方式制备电极;

10)将引线通过点焊焊接于制备好的电极处;

11)用环氧树脂或非导磁金属材料制备起保护作用的壳体;

至此,制备得到一种高稳定霍尔元件。

步骤2)和4)中,真空蒸发薄膜材料分别为InSb和InAs,其对应的厚度均为1-20nm。

本发明与现有技术相比,具有以下优点:

本发明高稳定霍尔元件由基片、电极、霍尔片和壳体组成,霍尔片包括两层或多层不同温度霍尔系数的薄膜层,并且霍尔片结构设计为具有四个端点的中心对称图形。通过此种结构设计,不仅具有形状效应系数高,输出电压高的特点,而且可以降低霍尔系数对温度的响应,进而提升霍尔元件输出电压的稳定性。

具体地,霍尔片结构设计为对称的“十”字形结构、缺角矩形结构、四叶草结构、十字星形结构等多种不同的结构,这些具有四个端点的中心对称图形均具有形状效应系数高的特点。

进一步,引线由各种不同结构的四个端引出,两两对称的两端分别为电流输入端和霍尔电压输出端。

本发明的制备方法简单,通过在基片上依次堆栈两层或多层不同霍尔系数的薄膜层组合而成霍尔片,通过光刻、3D打印或覆盖掩膜版等方法形成多种不同的结构,再依次制备电极、和壳体。制备过程可重复性高,适合工业化推广。

【附图说明】

图1为本发明一种高稳定霍尔元件的俯视效果图。其中正方形区域1为壳体,十字星形透明区域2为霍尔片区域,四端阴影区域3为电极,四根线a、b、c、d为引线,两两对称的两端分别为电流输入端和霍尔电压输出端。

图2是本发明所述的霍尔元件制备过程中的结构示意图;图示黑色4和灰色5分别代表不同温度霍尔系数的材料薄膜层。

【具体实施方式】

下面结合附图对本发明作详细描述:

如图1所示,一种高稳定霍尔元件,包括引线、霍尔片2和壳体1。

如图2所示,所述的壳体具有保护霍尔元件的功能。选用材料为环氧树脂或非导磁金属等材料。

所述的霍尔片2结构设计为对称的十字星形结构。该结构通过光刻、3D打印或覆盖掩膜版等方法形成,其上的半导体薄膜层由两层或多层不同霍尔系数的薄膜层可通过真空蒸镀、磁控溅射、化学气相沉积或溶胶凝胶等方法制备;优选的霍尔片由两层薄膜层堆栈组合而成,其中一层为正温度霍尔系数的的薄膜层,另外一层为负温度霍尔系数的薄膜层。

正温度霍尔系数的薄膜层随温度升高而输出霍尔电压增大,负温度霍尔系数的薄膜层随温度升高而输出霍尔电压降低。

所述的电极3通过刷银浆,再加热的方式或金线、铝线的方式制备;

所述的引线由十字星形结构的四个端引出,对称的两端a和b为电流输入端,另外对称的两端c和d为霍尔电压输出端。

本发明一种高稳定霍尔元件的具体制备过程如下,现以部分材料为例进行说明,当然不限于以下材料。基片为高平整度的玻璃、半导体Si材料或者其它陶瓷材料。霍尔片为两层或多层霍尔系数随温度变化不同的半导体材料薄膜堆栈组合而成。

采用具体材料为:基片采用半导体Si材料;霍尔片采用两层或多层不同霍尔系数的半导体材料堆栈组合而成,具体结构如图2所示,再通过光刻、3D打印或覆盖掩膜版制备出不同形状的结构(如,十字形、十字星形、四叶草形等),如图1。霍尔片选用的材料分别为霍尔系数随温度增大而增大的InSb薄膜层和霍尔系数随温度增大而减小的InAs薄膜层;电极选用含金、银的金属材料;起保护作用的壳体选用非导磁性金属。

实施例1

所述一种高稳定霍尔元件制备过程如下:

1、将基片依次放入洗洁精、丙酮、酒精、去离子水中分别超声清洗,取出后用氮气烘干;

2、将清洗好的基片转入蒸镀室采用真空蒸镀的方式蒸发负温度霍尔系数的InSb薄膜(厚度为1-20nm),完成第一霍尔片薄膜的制备;

3、再将完成第一霍尔片薄膜的基片放入烘干箱烘干;

4、将烘干的霍尔基片再转入蒸镀室采用真空蒸镀的方式蒸发正温度霍尔系数的InAs薄膜(厚度为1-20nm),完成第二霍尔片薄膜的制备;

5、再将完成第二霍尔片薄膜的基片放入烘干箱烘干;

6、将烘干的霍尔基片使用抛光机对薄膜表面进行抛光;

7、抛光完毕后在上表面覆盖曝光区域与十字星形结构重合的掩膜版,并置于UV光下曝光,曝光后用KOH溶液刻蚀所需结构区域;

8、刻蚀完毕后用相应刻蚀清洗液清洗,去除光刻胶,最后用去离子水清洗基片,去除残留,放入烘干箱烘干;

9、通过刷银浆,再加热的方式制备电极;

10、将引线通过点焊焊接于制备好的电极处。

至此,霍尔元件制备完成。

步骤2)和4)中,真空蒸发薄膜材料分别为InSb和InAs材料,厚度分别为:1-20nm;

步骤6)中,抛光液选用SiO2水溶液,氧化剂为H2O2,抛光温度为20-25℃。

当霍尔片为三层及以上时,霍尔片由正温度霍尔系数薄膜与负温度霍尔系数薄膜间隔堆栈组合的多层薄膜层。

以上,仅为本发明的较佳实施例,并非仅限于本发明的实施范围,凡依本发明专利范围的内容所做的等效变化和修饰,都应为本发明的技术范畴。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1