电化学工艺的制作方法

文档序号:6791543阅读:591来源:国知局
专利名称:电化学工艺的制作方法
技术领域
本发明涉及用电淀积法生产薄膜半导体材料。
半导体薄膜在光生伏打电池制造中很重要。用电淀积法制造半导体的问题带来了一些特殊问题。材料需要制备得使其达到电子级的纯度,因为极小量的杂质都会对半导体材料制成的器件的性能产生很大的影响。材料在纯度上的要求要比例如一般镀金属时的高。
用淀积法淀积成的一类半导体材料是ⅡB/ⅥB半导体材料。例如,Panicker、Knaster和Kroger在1978年4月第125卷第4期的《电化学协会杂志》(J.Electrochem.Soc.)第556-572页上公开了薄膜ⅡB/ⅥB半导体(例如CdTe)的生产过程,文章的题目是“从电解质水溶液阴极淀积出CdTe”。CdTe是从CdSO4的水溶液淀积出来的,水溶液中加入了TeO,电解是采用覆以半导电性氧化锡锑材料的一个镍板或几个玻璃板进行的,CdTe即淀积在板上。所使用的两个阳极在一起使用。一个阳极是石墨棒,另一个阳极是Te棒。
美国专利4,425,194公开了用电淀积法生产CdTe层及其在光生伏打电池制备中的应用。该专利公开了电化学电解槽的各种配置方式。例如,其中有一种是用碲棒作阳极,另一种是用惰性碳或不锈钢阳极,或两者为一个镉阳极和一个铂阳极,这被说成是中性阳极。
美国专利4,548,681公开了从含有Cd2+、HTeO2+和Hg+等离子的水溶液电淀积出碲化镉汞的过程。主阳极是Te阳极、但也设有石墨阳极。
通用的“惰性”、“中性”或“非消耗性”阳极有碳阳极或者以铂(例如铂金属)或镀铂的钛(覆以铂的钛金属)为主要原料。
虽然采用这些阳极时可以淀积出用以制造光生伏打电池的Ⅱ/Ⅵ半导体,例如CdTe,但我们发现,用这种薄膜制成的光电池器件,其性能受到损害。举例说,器件的开路电压(Voc)低,占空因数低,且性能反复无常,没有再现性。
我们发现,短期小规模生产时,制造电解液的原料,其纯度很重要。但在长期较大规模生产中,我们发现,阳极是半导体纯度产生问题的重要原因。
现在我们已找到了用电解法淀积半导体薄膜的一种方法,该方法能改善可用以制造器件,例如性能改善了的光生伏打电池的材料的性能。
本发明在阳极与阴极之间通电、从电解液电解淀积材料以制取半导体薄膜的工艺具有这样的特点用离子交换薄膜将阳极与淀积半导体用的电解液分离开来,从而形成阳极电解液室和阴极电解液室。
半导体最好是ⅡB/ⅥB半导体,即含至少ⅡB族的一个元素和至少ⅥB族的一个元素的半导体。本说明书中所述的ⅡB和ⅥB是指Cotton& Wilkinson出版社第四版《高等无机化学》中列出的元素周期表中的ⅡB和ⅥB族元素,其中ⅡB族包括Cd,ⅥB组包括Se和Te。较理想的半导体为Cd和Te的化合物,该化合物也可含Hg,如美国专利4,548,681中所公开的那样。除Sd、Te和Hg的化合物外,还可采用掺有小量Cu、Ag和Au的CdTe,如美国专利4,816,120和4,909,857中所公开的那种。也可以采用含氯化物的CdTe,如美国专利4,548,681和4,629,820中所公开的那样。
ⅡB/ⅥB半导体最好从电解液中直接淀积出来。但周知的一些制造ⅡB/ⅥB半导体的方法是交替淀积上例如Cd和Te层,在该交替层淀积之后,应用例如激光能淀积出ⅡB/ⅥB半导体。本发明的工艺可用于这样的制造方式先淀积出各元素层,然后将它们结合在一起形成一层或多层半导体层。
本发明也适用于象联硒化铜铟之类的半导体的电淀积制造过程。GaSb、GaAs、Sn1±xSe、InSb“、CuInSxSe2-x都是用电淀积法淀积成的。
阴极宜采用半导体器件(例如光生伏打电池)一部分的半导体和电淀积层一起制成。例如,阴极可以是透明材料(例如玻璃)制成的板,覆以透明导电层,例如氧化锑锡层,再覆以半导体层,例如CdS,制成的。
阳极可以是消耗式电极的例子有碳、铂或镀铂的钛阳极。消耗式阳极的例子有镉。通常是不能用镉阳极的,因为镉阳极在电淀积过程中为CdTe层所钝化。但本发明采用了不钝化的阳极液,因而可以使用镉阳极。
采用消耗式或非消耗式阳极时,在电淀积过程中有小量杂质折出。采用离子交换薄膜可以防止这些杂质到达电淀积成的材料。
浸渍阴极的电解液(阴极电解液)含有许多离子,这些离子淀积在阴极上形成半导体。适合这个用途的电解液是众所周知的。适宜电淀积CdTe的电解质水溶液其各成分的含量在下列数值之间CdSO40.1M(摩尔)与2M之间,Te20-100ppm之间,Cl0-2000ppm之间。电解液的pH值应在1.0-3.0的范围。
电淀积以在例如50°至90℃的温度范围内进行为宜。
薄膜为离子交换薄膜。这些薄膜是众所周知的。用这种薄膜分离两种含离子的液体时,它们能让离子从薄膜的一侧通过,同时基本上防止液体通过。阳离子交换薄膜让阳离子通过,阴离子交换薄膜让阴离子通过。本发明的工艺既可采用阳离子交换薄膜,也可采用阴离子交换薄膜,但最好采用阳离子交换薄膜。
合适的阳离子交换聚合物薄膜的例子有含全氟磺酸基的聚合物制成的那一种薄膜,例如美国杜邦公司以“Nafoin”商标销售的作为电化学用途中的隔板的材料。该材料是四氟乙烯与含磺酸盐基的乙烯基醚共聚单体共聚制成的。
阳离子交换聚合物薄膜将电解池分隔成阳极电解液室和阴极电解液室,防止各溶液混合起来。阳极电解液室的容积可能变化。在薄膜直接敷到阳极上的情况下,阳极电解液室的容积可以忽略不计。
阴极电淀积法制造ⅡB/ⅥB半导体的一些周知方法通常是将阴极和阳极放在同一个电解槽中的。本发明是以这样的认识为基础的,即该已知的作法对半导体的性能有有害影响,这可从装有这种半导体的光生伏打电池的性能看出来。在本发明的工艺中,阳极用薄膜与阴极电解液隔离开来。阳极电解液的组成不一定非要与阴极电解液的相同不可。最佳的阳极电解液取决于阳极的性质。阳极含Pt时,阳极电解液可以是例如稀HCl水溶液,但最好采用象稀H2SO4水溶液之类的不含氯化物的阳极电解液。至于阳极为最理想的Cd时,阳极电解液最好是稀HCl水溶液,因为H2SO4往往使阳极钝化。
工艺较理想的形式是每隔一段时间或不断地从阳极电解液室除去阳极电解液,并给阳极电解液室补充新鲜的阳极电解液。这有助于保持从阳极析出的任何杂质处于低浓度的水平。
上面说过,本发明的工艺可以采用镉阳极来进行。不然,阳极也可以是一般叫做“惰性”电极的阳极,即在阳极过程中没有消耗掉的阳极。但我们发现,在已知的电淀积法中,“惰性”电极能以我们不希望有的形式与电淀积液中的内含物相互反应,同时有杂质析出,进入电解液中。本发明采用了镀铂的钛、氧化铱和碳阳极,因而结果令人满意。
用这种半导体薄膜制造出来的器件,其性能有所改进,从这一点可以看出这种半导体薄膜的性质得到了改进。各种已出版的文献中公开了光生伏打电池的制备过程。例如,这种光电池可以用淀积法将CdS淀积在象(采用电淀积、化学淀积或真空淀积法)敷有氧化锡的玻璃之类的透明导电基片上,再在CdS层上电淀积上ⅡB/ⅥB半导体。
ⅡB/ⅥB半导体可加热以改变其导电形式,使其从n型改变到P型导电形式,如美国专利4,388,483中所公开的那样。
在所处理的半导体表面上淀积上一个导电触点。淀积导电触点的方法是众所周知的,因此这里不再详述。导电触点可以是例如两种或多种金属(例如Cu/Au)组成的Ni、Cu、Au多层金属层,碳、或透明导电氧化物,例如SnO2(TO)或In2O3Sn(ITO)。
现在参照下面的一些实验说明本发明的内容,其中用数字表示的实验是本发明的实例,用字母表示的实验是不按本发明进行的比较性试验。
比较性试验A这个试验显示出采用碳阳极、但无阳极交换薄膜时的结果。
将玻璃基片浸渍在含镉络合物([Cd(NH3)4]2+)和硫脲的碱性温溶液中,由此将CdS薄膜化学淀积到敷有SnO的玻璃基片上。N R Pavaskar、CA Menezes、ABP Sinha在(1967)年第124卷《电化学协会杂志》(J.Electrochemical Soc.)第743页上发表的文章中公开了这个方法。淀积出来的薄膜用DIW(去离子水)清洗,用氮干燥。然后将淀积有CdS层的基片在400℃下在空气中加热10分钟。
将玻璃基片浸渍在作为侵蚀剂的冰醋酸中,以除去CdS上的表面层。用水合胼代替冰醋酸,结果也同样令人满意。
美国专利5,110,420中公开了适用的电淀积装置。
所用的电淀积装置有一个塑料(例如聚丙烯)容器。阴极是上述那种先敷以掺氟的氧化锡再敷以CdS层的玻璃板。阳极是个碳棒,且平行于玻璃板的中心线相隔大约50毫米配置。电触点用导电条在阴极的边缘形成。适用的电触点为覆有自粘式聚酰亚胺带的镉金属条。
电淀积条件与美国专利4,400,244和4,456,630中所述的一样,只是Te离子以TeO2的形式加入。
电解槽的电解液是含0.5M Cd2+、50ppm的Te、300ppm的Cl-、pH值约为1.7的水溶液。Te离子以TeO2粉料的形式加入。电解液温度为70℃。
为电阻性损耗而校正的电极电位保持在相对于Ag/AgCl参考电极为-.05伏的水平。
CdTe电淀积到板上的过程中,搅拌着电解液,电淀积是在大约0.14毫安/平方厘米的电镀电流密度下进行的。淀积过程持续大约4.5小时。
这时按美国专利4,388,483所公开的方法对现已敷有CdS和CdTe层的玻璃基片进行热处理,以便将导电型式从n型改变到P型。然后按美国专利4,456,630所述的那样进行刻腐。
接着按一般方法淀积背部触点。然后用一般的方法(即真空蒸发法)将由许多金点(厚70毫微米)组成、面积各为2平方毫米的背部金属触点蒸发到CdTe层上。
诸金点在共用的基片上形成一个个的光生伏打电池,这些光电池的特性在室温下用带二向色性色反射器的NEH型石英卤素光源在100毫瓦/平方厘米照度下测定出来的。一系列这种金点的平均效率和电池参量如下Voc为0.69伏;Jsc为19毫安/平方厘米;FF为0.52;效率为7%。
比较性试验B按试验A进行实验,只是用直径4毫米的镀铂钛棒代替碳阳极,且阴极电解液含0.82M(摩尔)的Cd2+、49ppm的Te和610ppm的Cl-,pH值为1.74。
测定一系列各有9个点的金属条的光生伏打电池的特性平均值,其结果示于表1中。
实例1
按试验B进行实验,只是将电化学电解槽分成两部分,因而用美国杜邦公司购得的NAFION324阳离子交换薄膜将阴极与阳极分隔出来。阳极周围的阳极电解液为pH值约1.5的硫酸水溶液。
Voc为0.80伏,Jsc为21毫安/平方厘米,FF为0.68,效率为11.3%本发明的工艺提高了Voc、Jsc、效率和占空因数。
实例2按实例1进行实验,只是阳极为高纯度(99.99%)的Cd棒。阳极电解液为pH值约1.5的HCl水溶液。
Voc为0.80伏,Jsc为21毫安/平方厘米,FF为0.72,效率为13%。
比较性试验C按比较性试验A(即采用碳电极)进行实验,阴极电解液含0.43M Cd2+、305ppm的Cl-和34ppm的Te,pH值为1.88。
测定一系列各有9个点的金属条的光生伏打电池的特性平均值。其结果示于表2中。
实例3按实例1进行实验,阳极采用镀铂的钛,阴极电解液含0.80M Cd2+、600ppm的Cl-和50ppm的Te,pH值为1.78,阳极电解液为pH值约1.6的稀H2SO4。
结果示于表3中。
实例4按实例2进行实验,阳极为Cd阳极,阴极电解液含0.86M Cd2+、636ppm的Cl-和50ppm的Te,pH值为1.81,阳极电解液为pH值1.6的HCl。结果示于表4中。
表1金属条VocJscRsFFEff毫伏毫安/平方厘米欧%A66720.402940.557.5B69824.12160.5910.0C67321.72710.547.9上表中,Rs为片材的电阻,Eff为效率百分比。
表2金属条VocJscRsFFEff毫伏毫安/平方厘米欧%A59415.65150.474.3B61915.47050.424.1C6101545870.454.3D60215.95640.464.5E54114.88620.393.2
表3金属条VocJscRsFFEff毫伏毫安/平方厘米欧%A77021.81980.6811.4B76620.32420.6510.2C76120.52060.6710.4表4金属条VocJscRsFFEff毫伏毫安/平方厘米欧%A75923.01830.6711.7B78824.41610.7013.5C77321.41940.6811.4我们观察那些与本发明不同的光电池,结果发现,本发明的光电池在使用的过程中的性能更能始终如一,再现性更好。阴极电解液的寿命大大延长了。
权利要求
1.在阳极与阴极之间通电、从电解液电解淀积材料以制取半导体薄膜的一种工艺,其特征在于,用离子交换薄膜将阳极与淀积半导体用的电解液分离开来,从而形成阳极电解液室和阴极电解液室。
2.根据权利要求1所述的工艺,其特征在于,所述半导体为ⅡB/ⅥB化合物。
3.根据权利要求2所述的工艺,其特征在于,所述半导体是含Cd和Te的化合物。
4.根据以上任一权利要求所述的工艺,其特征在于,所述半导体用电解法淀积到阴极上。
5.根据以上任一权利要求所述的工艺,其特征在于,所述阳极为消耗式电极。
6.根据权利要求5所述的工艺,其特征在于,阳极为镉阳极。
7.根据1至4任一权利要求所述的工艺,其特征在于,阳极为非消耗式阳极。
8.根据权利要求7所述的工艺,其特征在于,阳极为铂或镀铂的钛。
9.根据以上任一权利要求所述的工艺,其特征在于,阴极是玻璃板覆以透明导电层,再覆以CdS层。
10.根据以上任一权利要求所述的工艺,其特征在于,离子交换薄膜为阳离子交换薄膜。
11.根据以上任一权利要求所述的工艺,其特征在于,离子交换薄膜为含全氟磺酸基的聚合物。
12.根据权利要求11所述的工艺,其特征在于,聚合物为四氟乙烯与含磺酸盐基的乙烯基醚共聚单体共聚生成的共聚物。
13.根据以上任一权利要求所述的工艺,其特征在于,阳极电解液室中的阳极电解液其组成与阴极电解液室中的阴极电解液的不同。
14.根据权利要求13所述的工艺,其特征在于,阳极为非消耗式电极,阳极电解液为稀硫酸水溶液。
15.根据权利要求13所述的工艺,其特征在于,阳极为Cd电极,阳极电解液为稀HCl水溶液。
16.根据以上任一权利要求所述的工艺,其特征在于,在电淀积过程中不断地除去阳极电解液室中的阳极电解液,并用新鲜的阳极电解液补充。
17.一种光生伏打电池,包括一层CdS层;一层ⅡB/ⅥB半导体,由在阳极与阴极之间通电、从含有ⅡB和ⅥB元素的离子的电解液淀积成,其特征在于,ⅡB/ⅥB半导体是从这样的电解液中淀积出来的,在该电解液中离子交换树脂将阳极与电解液隔离开来。
全文摘要
用离子交换薄膜将阳极与阴极隔离开来,以此来改善半导体的电解淀积过程。本工艺可用于制造光生伏打电池过程中淀积IIB/VIB半导体的工序。
文档编号H01L21/368GK1071977SQ9211235
公开日1993年5月12日 申请日期1992年10月17日 优先权日1991年10月18日
发明者J·巴克, R·J·马歇尔, M·沙德吉 申请人:英国石油太阳能有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1