一种钙钛矿太阳能电池结构及其制备方法

文档序号:9580863阅读:872来源:国知局
一种钙钛矿太阳能电池结构及其制备方法
【技术领域】
[0001]本发明涉及太阳能电池技术领域,具体指一种钙钛矿太阳能电池结构,本发明还涉及上述1丐钛矿太阳能电池结构的制备方法。
【背景技术】
[0002]随着全球化石能源的枯竭以及温室效应和环境污染的日益加剧,清洁能源及低碳经济已经成为世界各国的重要研究课题。太阳能电池技术受到极大的关注。其中目前市面上的硅基太阳能电池等器件作为原材料、制备工艺要求苛刻,导致利用成本居高不下,人们把目光转向低成本的太阳能电池材料和技术。新型薄膜太阳能电池由于低廉的成本和大面积的制备技术越来越受到人们的重视。具有钙钛矿型层状结构的有机金属材料作为一种高光吸收系数以及良好电学性能的材料,受到科研工作者的关注。近两年来基于钙钛矿材料的太阳能电池技术发展迅速。目前实验室里最高的钙钛矿电池的效率已经突破20%,完全达到了商业化的要求。
[0003]传统的钙钛矿电池结构为:衬底/导电层/致密层/支架层/吸光层/空穴传输层/电极。对于此结构的钙钛矿太阳能电池而言,多孔二氧化钛支架层的首要作用并不是传导电子,而是在制备器件时起到支撑钙钛矿、促进钙钛矿生长的作用,完全可以由绝缘的多孔S12或者Al2O3等代替。近期的理论研究发现钙钛矿是双极性半导体,可以同时充当吸光层、电子传输层或空穴传输层。基于无支架层的N-1-P型结构的钙钛矿太阳电池迅速发展,其效率甚至超过具有多孔层结构的电池;至于无电子传输层或无空穴传输层结构的钙钛矿太阳电池,虽然有文献报道基于无T12的器件结构(J.Am.Chem.Soc.136(2014) 17116-17122.Nat.Commun.6 (2015) do1: 10.1038/ncomms7700),但是电池的效率远低于有电子传输层的器件结构(Science 345 (2014) 542-546.Science348 (2015) 1234-1237.) ο电子传输层亦即致密层一般由高温烧结(500度)的T12构成。1102可以起到传输电子作用,最重要的是可以减少空穴与电子的复合几率,从而大大提高电池的效率。然而,高温烧结技术使得电池的制备工艺复杂化,成本上升,在钙钛矿薄膜电池极具商业化的前景下,严重限制了钙钛矿太阳能电池的发展。

【发明内容】

[0004]本发明所要解决的技术问题是针对现有技术的现状,提供一种能促进钙钛矿层的吸光作用的钙钛矿太阳能电池结构。
[0005]本发明所要解决的另一个技术问题是针对现有技术的现状,提供一种上述钙钛矿太阳能电池结构的制备方法,该方法在低温下完成,制备工艺简单、制备成本低,制备的钙钛矿太阳能电池结构对光具有更好的吸收功能。
[0006]本发明解决上述技术问题所采用的技术方案为:一种钙钛矿太阳能电池结构,其特征在于包括:
[0007]阴极透明导电衬底,
[0008]电子传输层,制作在所述阴极透明导电衬底上,
[0009]钙钛矿层,制作在所述电子传输层上,
[0010]空穴传输层,制作在所述钙钛矿层上,以及
[0011]金属阳极,制作在所述空穴传输层上;
[0012]所述的电子传输层为二氧化钛包覆金属粒子核壳层。
[0013]所述的二氧化钛包覆金属粒子核壳层以金属粒子Ag或Au为核,以1102为壳层。
[0014]作为优选,所述金属粒子Ag或Au的直径为5?50nm,T12壳层的厚度为5?50nm。
[0015]优选地,所述钙钛矿层为CH3NH3PbIJ^膜层,该薄膜的厚度为400?500nm。
[0016]—种上述钙钛矿太阳能电池结构的制备方法,其特征在于包括以下步骤:
[0017](I)先清洗阴极透明导电衬底,然后将清洗后的阴极透明导电衬底浸入聚二烯丙基二甲基氯化铵的水溶液中,浸泡10?30min ;浸泡完毕后取出阴极透明导电衬底并用去离子水反复冲洗去除多余的聚二烯丙基二甲基氯化铵;
[0018](2)常温下,将步骤⑴所得阴极透明导电衬底置于(Au/Ag)@T1^纳米溶液中,浸泡5?24h,浸泡完毕后取出阴极透明导电衬底并于50?60°C下干燥处理20?24h,置于无水环境中备用;此时,阴极透明导电衬底的表面即形成了一层T12包覆Au/Ag的核壳层,该T12包覆Au/Ag的核壳层即为电子传输层;
[0019](3)在步骤(2)所得电子传输层表面形成一层钙钛矿层;
[0020](4)在步骤(3)所得钙钛矿层表面旋涂空穴传输层;
[0021](5)在步骤(4)所得空穴传输层上蒸镀形成金属阳极。
[0022]作为优选,所述聚二烯丙基二甲基氯化铵水溶液的体积浓度为I?5%。
[0023]优选地,所述(Au/Ag) @1102纳米溶液的摩尔浓度为0.01?0.05M,溶剂为乙醇或乙醚。
[0024]优选地,步骤(3)中,在形成钙钛矿层时,先在Au/Ag的核壳层表面旋涂浓度为0.5?1.5mol/L的PbI2溶液,该溶液的溶剂为二甲基甲酰胺,旋涂完毕并干燥后放入浓度为8?10mg/mL的CH3NH3I溶液中,浸泡0.5-30分钟形成钙钛矿层。
[0025]优选地,步骤(3)中,在形成钙钛矿层时,先按照摩尔比例1:3将PbCljP CH 3NH3I混合于丁内酯中配置成质量浓度为40%的CH3NH3I溶液,然后将该溶液旋涂在电子传输层上,于90?100°C加热30?60min,形成钙钛矿层。
[0026]优选地,当所述电子传输层为T12包覆Au的核壳层时,所述金属阳极为Ag电极;当所述电子传输层为T12包覆Ag的核壳层时,所述金属阳极为Au电极。
[0027]与现有技术相比,本发明的优点在于:本发明在阴极透明导电衬底上制作了T12包覆Au/Ag的核壳层,并将该T12包覆Au/Ag的核壳层直接作为电子传输层使用,无需另外制作专门的电子传输层,简化了制备工艺,且将该核壳层作为电子传输层使用,利用纳米粒子的等离子体激元增强效应促进了钙钛矿层对光的吸收,提高了太阳能电池的吸光效果;本发明的制备方法采用溶液低温工艺制备了电子传输层,避免了现有技术中高温烧结等步骤的使用,进一步简化了制备工艺,降低了生产成本;且由于二氧化钛包覆金属粒子核壳层作为电子传输层在溶液中直接形成于阴极透明导电衬底上,而不是经过旋涂工艺制作,结构更加紧凑,电子传输效果更好。
【附图说明】
[0028]图1为本发明实施例中钙钛矿太阳能电池的结构示意图;
[0029]图2为本发明实施例1中AgOT12核壳层的透射电镜图;
[0030]图3为本发明实施例1中AgOT1dS壳层的吸收光谱图。
【具体实施方式】
[0031]以下结合附图实施例对本发明作进一步详细描述。
[0032]如图1所示,本发明的钙钛矿太阳能电池结构包括:阴极透明导电衬底1,电子传输层2、钙钛矿层3、空穴传输层4及金属阳极5,电子传输层2制作在阴极透明导电衬底I上,钙钛矿层3制作在电子传输层2上,空穴传输层4制作在钙钛矿层3上,金属阳极5制作在空穴传输层4上。电子传输层2为二氧化钛包覆金属粒子核壳层,该二氧化钛包覆金属粒子核壳层以金属粒子Ag或Au为核,以T12为壳层;金属粒子Ag或Au的直径为5?50nm,T12壳层的厚度为5?50nm。钙钛矿层为CH禪种13薄膜层,该薄膜的厚度为400?500nmo
[0033]实施例1:
[0034]本实施例中钙钛矿太阳能电池结构的制备方法包括以下步骤:
[0035](I)先用洗涤剂清洗FTO导电玻璃衬底,然后将清洗后的FTO导电玻璃衬底浸入体积浓度为I %的聚二烯丙基二甲基氯化铵水溶液中,浸泡30min ;浸泡完毕后取出FTO导电玻璃衬底并用去离子水反复冲洗去除多余的聚二烯丙基二甲基氯化铵;
[0036](2)常温下,将步骤(I)所得FTO导电玻璃衬底置于摩尔浓度为0.01M、溶剂为乙醇的AuOT12的纳米溶液中,浸泡24h,浸泡完毕后取出阴极透明导电衬底并于50°C下干燥处理24h,置于无水环境中备用;此时,FTO导电玻璃衬底的表面即形成了一层T12包覆Au的核壳层,该T12包覆Au的核壳层即为电子传输层,如图2所示;
[0037](3)先在Au的核壳层表面旋涂浓度为0.5mol/L的PbI2溶液,该溶液的溶剂为
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1