取代的哌嗪和哌啶钙通道封闭剂的制作方法

文档序号:1114462阅读:232来源:国知局
专利名称:取代的哌嗪和哌啶钙通道封闭剂的制作方法
技术领域
本发明涉及用于治疗与钙离子通道功能有关的疾病的化合物。更具体的,本发明涉及含有取代或未取代的6-元杂环基团衍生物的化合物,用于治疗中风和疼痛等病状。
背景技术
已根据其电生理学和药物学性质将天然钙通道分成T、L、N、P和Q型(综述见McClesky,E.W.等,Curr Topic Membr(1991)39295-326和Dunlap,K.等,TrendsNeurosci(1995)1889-98)。T-型(或低电压激活的)通道描述了一大类分子,它们在负电势下瞬时激活,并对于静息电位高度敏感。L、N、P和Q型通道在更正的电势下激活(高电压激活)并显示多样的动态和电压依赖性的特性。高电压激活的通道生理性能有一些重叠,因此可用药物学特征进一步甄别它们。L-型通道对于二氢吡啶拮抗剂和激动剂是敏感的,N-型通道被地纹芋螺(Conus geographus)肽毒素、ω-芋螺毒素GVIA封闭,P-型通道被来自漏斗网蜘蛛(Agelenopsis aperta)毒液的肽ω-蜘蛛毒素IVA封闭。描述了第4种高压激活的钙通道(Q-型),虽然Q-和P-型通道是否是不同的分子还有争议(Sather,W.A.等Neuron(1995)11291-303;Stea,A.等,Proc.Natl.Acad.Sci.USA(1994)9110576-10580;Bourinet,E.等NatureNeuroscience(1999)2407-415)。几种类型的钙电导不完全复合上述类型,即使在一个类型内性能也有变化,这表明还有待于分出其它钙通道亚类。
生物化学分析显示神经元的高电压激活的钙通道是异寡聚复合物,由三种不同的亚基组成(α1、α2δ和β)(由De Waard,M.等综述,Ion Channels(1997)卷4,Narahashi,T.编,Plenum Press,NY)。α1亚基是形成孔的主要亚基,含有电压传感器与钙通道拮抗剂的结合位点。主要在胞外的α2与跨膜δ亚基通过二硫键连接,都衍生自相同的基因,并且在体内被蛋白酶解切割。β亚基是非糖基化、亲水性的蛋白质,具有与α1亚基的胞质区结合的高度亲和力。第4个亚基γ是在骨骼肌肉T-小管中表达的L-型钙通道特有的。编码γ亚基的cDNA的分离和表征在美国专利号5,386,025中有所描述,在此引入以供参考。
近来,克隆和表达出了这些α1亚型中的每一种,从而能够进行更广泛的药物学研究。这些通道命名为α1A-α1I和α1S,对应于之前列出的亚类。α1A通道是P/Q型;α1B代表N;α1C、α’1D、α1F和α1s代表L;α1E代表一类新型的钙电导,α1G-α1I代表T-型家族的成员,综述见Stea,A.等,Handbook of Receptors and Channels(1994),North,R.A.编,CRC Press;Perez-Reyes等,Nature(1998)391896-900;Cribbs,L.L.等,Circulation Research(1998)83103-109;Lee,J.H.等,Journal ofNeuroscience(1999)191912-1921。
公开了其它关于主要位于神经元中的N-型通道功能的更多细节,例如在美国专利号5,623,051中,其公开内容在此引入以供参考。如所述,N-型通道具有结合突触融合蛋白的位点,该蛋白锚定在突触前膜中。封闭该相互作用也就封闭了对钙离子流的突触前反应。因此,封闭突触融合蛋白与该结合位点之间的相互作用的化合物能用于神经保护和麻醉。该化合物还有增强突触前钙通道作用的专一性的优点。
美国专利号5,646,149描述了式A-Y-B的钙通道拮抗剂,其中B含有与Y直接连接的哌嗪或哌啶环。这些分子的基本成分由A代表,它必需是抗氧化剂;哌嗪或哌啶本身也是重要的。示范性化合物含有二苯甲基取代基,基于已知的钙通道封闭剂(见下文)。美国专利号5,703,071公开了生成能用于治疗缺血疾病的化合物。分子的必需部分是草酚酮残基;在允许的取代基中是哌嗪衍生物,包括它们的二苯甲基衍生物。美国专利号5,428,038公开了声称具有保护神经和抗过敏作用的化合物。这些化合物是香豆精衍生物,它们可包括哌嗪和其它六元杂环的衍生物。在杂环上的一个允许取代基是二苯基羟甲基。因此,在本领域中治疗各种可能与钙通道封闭活性有关的各种适应症的方法使用了偶然含有被二苯甲基取代,但用其它取代基来维持官能性的哌啶或哌嗪基团的化合物。
已知同时含有苯二甲基基团和哌啶或哌嗪的某些化合物是钙通道拮抗剂和安定药。例如,Gould,R.J.等Proc.Natl.Acad.Sci.USA(1983)805122-5125描述了抗精神分裂安定药,例如利多氟嗪、氟斯必灵、匹莫齐特、氯哌莫齐和五氟利多。还显示氟斯必灵与L-型钙通道上的位点结合(King,V.K.等J.Biol.Chem.(1989)2645633-5641),并封闭N-型钙电流(Grantham,C.J.等,Brit JPharmacol(1944)111483-488)。另外,Kanebo KK开发的洛美利嗪(Lomerizine)是已知的钙通道封闭剂,然而洛美利嗪对于N-型通道不是专一性的。关于洛美利嗪的出版物的综述可在Dooley,D.,Current Opinion in CPNS InvestigationalDrugs(1999)1116-125中找到。
本发明基于认识到含有至少一个氮(所述氮与二苯甲基基团通过接头连接)的六元杂环组合具有有效的钙通道封闭活性。在一些情况下,显示了N-型通道专一性的增强或L-型通道专一性的减少。这些化合物可用于治疗中风和疼痛,以及其它与钙通道有关的疾病,如下所述。通过关注这些基团,制备了用于治疗与钙通道活性有关的适应症的化合物。
发明公开本发明涉及用于治疗中风、头部创伤、偏头痛、慢性、神经性和急性疼痛、癫痫、高血压、心律不齐等病状,以及其它与钙代谢,包括突触钙通道介导的功能有关的适应症。本发明的化合物是哌啶或哌嗪的二苯甲基或部分饱和的二苯甲基衍生物,具有增强化合物钙通道封闭活性的取代基。因此,在一个方面,本发明针对治疗方法,它使用下式的化合物 其中Cy代表环己基;Y是CH=CHφ,CHφ2、φ或Cy,X当n是0,Y是φ2CH时,是三价直链亚烷基(3-10C)或被氧在邻接N的C上可任选取代的三价直链1-亚烯基(3-10C);还可以是三价直链亚烷基(5-10C)或被氧在邻接N的C上可任选取代的三价直链1-亚烯基(5-10C);Z是N、NCO、CHNCOR1或CHNR1,其中R1是烷基(1-6C);n是0-5;其中各φ和Cy分别可任选的被烷基(1-6C)或卤素、CF3、OCF3、NO2、NR2、OR、SR、COR、COOR、CONR2、NROCR或OOCR取代,其中R是H或烷基(1-4C),或两个取代基可形成5-7元环,条件是式(1)的化合物含有至少一个芳族基团。
本发明针对用式(1)的化合物拮抗钙通道活性,从而治疗相关病况的方法。应注意病况可以与异常钙通道活性有关,或个体可具有正常钙通道功能,但导致不良生理或代谢状态。在另一方面,本发明针对含有这些化合物的药物组合物。
本发明还针对含有式(1)的化合物的组合文库和在这些文库中筛选具有特别强的钙通道封闭活性的成员,或专一性拮抗一类这样的通道的成员。
附图简述

图1显示了本发明化合物的一些优选例与已知化合物洛美利嗪的比较。
图2表示图1所示化合物对于N-型、L-型和P/Q型通道的专一性。
图3表示图2所示的数据,基于从图2所示数据计算的IC50值。
图4显示MC-34D、39-1-B4和39-45-3在痛觉过敏模型中的作用。
图5显示MC-34D、39-1-B4和39-45-3在异常性疼痛模型中的作用。
实施本发明的模式用于本发明方法的式(1)所示的化合物,通过其拮抗钙通道活性的能力发挥了理想作用。这使得它们能用于治疗一些病况。在这些病状中有中风、癫痫、头部创伤、偏头痛和慢性、神经性和急性疼痛。钙流还参与其它神经性疾病,例如精神分裂症、焦虑、抑郁、其它精神病和一些降解性疾病。其它可治疗的病况包括心血管病况,例如高血压和心律不齐。
虽然式(1)的化合物通常具有该活性,但钙通道封闭剂的多样性使我们能够细微选择针对特定疾病的化合物。因此,这类化合物的存在不仅提供了一类在受过量钙通道活性影响的适应症中的通用性,也提供了大量化合物,它们可开发并操纵用于与特定形式的钙通道的特定相互作用。可重组产生上文列出的α1A-α1I和α1S型钙通道的可行性促进了该选择过程。Dubel,S.J.等,Proc.Natl.Acad.Sci.USA(1992)895058-5062;Fujita,Y.等,Neuron(1993)10585-598;Mikami,A.等Nature(1989)340230-233;Mori,Y.等Nature(1991)350398-402;Snutch,T.P.等Neuron(1991)745-57;Soong,T.W.等Science(1993)2601133-1136;Tomlinson,W.J.等Neuropharmacology(1993)321117-1126;Wil1iams,M.E.等Neuron(1992)871-84;Williams,M.E.等Science(1992)257389-395;Perez-Reyes等,Nature(1998)391896-900;Cribbs,L.L.等CirculationResearch(1998)83103-109;Lee,J.H.等,Journal ofNeuroscience(1999)191912-1921。
因此,虽然已知钙通道活性与多种疾病有关,与特定病状有关的通道类型是现在数据收集的目标。例如,N-型通道在与神经传递有关的病况中的关联将表明本发明针对N-型受体的化合物在这些病况中最有用。许多式(1)化合物类的成员显示对N-型通道的高亲和力;该类型的其它成员可倾向针对其它通道。
有两种不同的钙通道抑制类型。第一种称为“开放通道封闭”,可方便的证明,当显示时钙通道维持在约-100mV的人工的负静息电位(与典型的内源静息维持电位约-70mV不同)。当所示通道在这些条件下突然去极化时,导致钙离子流过通道,显示峰电流,然后衰减。开放通道封闭抑制剂减少最高流量下显示的电流,还可以加速电流衰减。
该类抑制与第二类封闭不同,在本文中称为“灭活抑制”。当维持在负得较少的静息电位,例如生理学上重要的电势-70mV时,一定百分数的通道可经过构形改变,使它们不能通过突然去极化被激活,即打开。因此,钙离子流引起的峰电流将下降,不是因为开放的通道被封闭,而是因为一些通道不能打开(灭活)。“灭活”型抑制剂提高了无活性状态的受体的百分数。
合成本发明的化合物可用常规方法合成。
流程1和2说明了这些方法流程1(Z是N) 另外,可首先合成含有二苯甲基(或φCyCH或Cy2CH)基团的羧酸,然后与哌嗪(或哌啶)基团反应,随后还原。为了合成所需的酸,就二苯甲基而言,将ω-溴代羧酸与三苯膦在甲基腈的存在下回流,然后用六甲基二氮硅烷锂在THF等溶剂中处理。得到含两个苯基取代基的不饱和羧酸,然后如流程1中在钯催化剂上用氢气还原,再与衍生的哌嗪(或哌啶)反应形成酰胺。然后如上所述还原酰胺。
流程2(Z是CHNR1)。 优选例式(1)所示化合物由各种取代基的实施例所限定式(1)化合物的特别优选例是那些其中X与两个苯基偶联的。差一些的优选例是其中X与一个苯基和一个环己基偶联的。最差的优选例是那些X和两个环己基偶联的。
如上所述,X可以是5-10C的三价直链亚烷基,它在与哌啶或哌嗪环氮的位置上可任选的被氧取代。优选亚烷基链是5-8C,更优选是5-7C,甚至更优选是5-6C。仅当亚烷基链长度是6-10C时,用氧取代是优选的。另外,X可以是直链1-亚烯基(5-10C),其中π键在哌嗪或嘧啶环氮的远端位置。在这些情况下,两个环基团可以通过亚烯基链融合,因为亚烯基链作为各环基团的乙烯基取代基。另外,当n是0,Y是φ2CH时,如上所述X的实施例还可以更短并可含有3-10C。
Z的优选例是N、NCO和CHNR1,其中R1优选是H,但还可以是烷基(1-6C),优选1-4C,更优选1-2C,甚至更优选甲基(或H)。
n的优选例是0-4,更优选是1-2。
式(1)化合物中所含的任何苯基或环苯基可以如上所述被取代。优选取代基包括卤素,特别是氟,NO2,烷基(1-6C)(优选甲基),OR(优选甲氧基),NR2(优选二甲基氨基、二乙基氨基、甲基氨基或乙基氨基)、乙酰氨基、CF3、OCF3等。两个取代的位置还可以形成环。优选当与X偶联的环基团都是苯基时,苯基同样取代。当一个这样的基团是苯基而另一个是环己基式,优选在苯基上存在取代基,而环己基不被取代。据信本发明化合物的卤化将帮助调节体内半衰期,对于在任何苯基上包括卤素取代基,例如氟取代基是特别有利的。
特别优选的是图1所示的化合物MC-34D、JM-G-10、39-1-B4和39-45-3及其各种取代的形式。
因此,还优选这些列出的化合物在苯基上或环己基基团上含有与所示不同的取代基的化合物形式。因此,还优选具有通式MC-34D的化合物,其中两个与X结合的苯基在对位含有氟。其它取代如下所示,其中φ1和φ2表示2个与X结合的苯基(数字是随意选择的,因为两个苯基是等价的),φ3代表Y所含的苯基。另外,还优选本文列出的实施例,其中MC-43D的Z是NCO,或其它X是CH(CH2)5-。

类似的,本发明的方法可使用在苯基和环己基上具有取代基的JM-G-10,优选实施例还包括那些其中X是-CH(CH2)-5的,合活的取代基如下所示

另外,在本发明的优选例中还包括式39-1-B4的取代的化合物。在下表中,φ1和φ2代表与X偶联的两个等价的苯基,φ3和φ4代表Y中所包含的两个等价的苯基。还优选39-1-B4的形式,其中X中的羰基被还原成亚甲基,包括具有下文所示的取代基的形式

类似的,可使用在化合物39-45-3上的各种另选的取代形式。包括实施例,其中羰基与X取代基中的哌嗪邻接。还包括n=0的同类物。特别优选的是Y中所包含的苯基上的两个基团形成环,特别是5-元环。因此,优选的取代形式是那些下文列出的,其中φ1和φ2代表与X结合的两个等价苯基,φ3代表Y所含的苯基。

取代形式将影响钙通道封闭能力的强度和专一性。
当结构允许,本发明的化合物可以药物学上可接受的盐的形式提供。药物学上可接受的盐包括酸加成盐,它可从无机酸,例如盐酸、硫酸和磷酸或从有机酸,例如乙酸、丙酸、谷氨酸、戊二酸等,以及酸离子交换树脂形成。
文库和筛选本发明的化合物本身可单独或作为组合文库的成员用本领域已知的方法合成。
组合文库的合成现在在本领域非常普遍。这些合成的合适描述可在例如Wentworth,Jr.P.等,Current Opinion in Biol(1993)9109-115;Salemme,F.R.等Structure(1997)5319-324中见到。文库含有具有各种取代基和各种不饱和程度,以及不同链长度的化合物。然后可从含有少至10,但通常几百到几千个成员的文库中筛选对钙通道的特定亚型,即对N-型通道特别有效的化合物。另外,用标准筛选方案,可筛选文库中封闭其它通道或受体,例如钠通道、钾通道等的化合物。
实现这些筛选功能的方法是本领域已知的。通常在重组宿主细胞,例如人胚肾细胞表面表达目标的受体。例如通过测量文库中化合物替换标记的结合配体,例如通常与通道或针对通道的抗体结合的配体的能力,测量文库成员与要测试的通道结合的能力。更通常在钙离子存在下测量拮抗受体的能力,用标准技术测量化合物干扰产生的信号的能力。
更具体的,一种方法涉及结合与钙通道反应的放射性标记剂,并随后分析平衡结合测量结果,包括但不限于结合速率,脱离速率,Kd值和其它分子的竞争性结合。另一种方法涉及用电生理学试验对化合物的效果进行筛选,其中用微电极刺穿单个细胞,在施用感兴趣的化合物前后记录通过钙通道的电流。在另一种方法中,高通量分光光度试验对细胞系加上对胞内钙浓度敏感的荧光染料,随后检测化合物对氯化钾的去极化能力,或其它改变胞内钙水平的作用。
如上所述,更确定的试验可用于辨别钙流的抑制剂,它作为一种开放通道封闭剂,与作为促进通道灭活的物质相反。区别这些类型的抑制剂的方法将在下文特别详述。一般,通过测定在候选化合物存在和不存在下,对约-100mV的背景静息电位进行去极化时测量峰电流水平,评估开放通道封闭剂。成功的开放通道封闭剂将降低观察到的峰电流,并可加速该电流衰竭。作为灭活通道封闭剂的化合物通常用其将灭活的电压依赖性朝更负的电位改变的能力来确定。这也反映了它们在去极化程度更大的静息电位(如约-70mV)下降低峰电流的能力,和更高的刺激频率,如0.2Hz对0.03Hz。
实用性和给药对用于人和动物个体的治疗,本发明的化合物可配制成药物或兽医学组合物。视要治疗的个体、给药模式和所需的治疗类型—例如预防、防治、治疗而定;化合物配制的方法要符合这些参数。这些技术的总结可参见Remington′s PharmaceuticalSciences,最新版,Mack Publishing Co.,Easton PA,在此引入以供参考。
通常,为了用于治疗,式(1)的化合物可单独使用,作为两种或多种式(1)的化合物的混合物使用,或联合其它药物使用。根据给药的方式,将化合物配制成合适的组合物,从而方便传递。
制剂可以适合全身性给药或外用或局部给药的方式制备。全身性制剂包括设计用于注射(如肌肉内、静脉内或皮下注射)的制剂或制备用于透皮、透粘膜或口腔给药。制剂通常包括稀释剂,以及一些情况下的佐剂、缓冲剂、防腐剂等。化合物还可通过脂质体组合物或微乳剂中给药。
对于注射,可以常规形式,例如液态溶液、悬液、乳液、或适用于注射前溶解或悬浮在液体中的固体形式制备。合适的赋形剂包括但不限于水、盐水、葡萄糖、甘油等。这些组合物还可含有一定量的无毒辅助物质,例如湿润或乳化剂,pH缓冲剂等,例如乙酸钠、去水山梨糖月桂酸酯等。
药物的各种缓释系统也已被发明。见例如美国专利号5,624,677。
全身性给药还可包括相对非侵袭性的方法,例如用栓剂、透皮贴片、透粘膜传递和鼻内给药。口腔给药也适合本发明的化合物。合适的形式包括糖浆、胶囊、片剂,如本领域所理解的。
为了用于动物或人个体,本发明的化合物的剂量通常是0.1-15mg/kg,优选0.1-1mg/Kg。然而,剂量水平高度依赖于病况的性质,病人的情况和实践者的判断,以及给药的频率和模式。
下列实施例是为了说明,不是为了限制本发明。
实施例1钙通道封闭活性的评估用全细胞膜片法在稳定或瞬时表达大鼠α1B+α2b+β1b通道(N-型通道)的人胚肾细胞上测量拮抗剂活性,用5mM钡作为电荷载体。
对于瞬时表达,在补充了2mM谷氨酰胺和10%胎牛血清的标准DMEM培养基中培养宿主细胞,例如人胚肾细胞HEK293(ATCC#CRL1573)。用标准磷酸钙-DNA共沉淀方法,用脊椎动物表达载体(例如见Current Protocols in MolecularBiology)中的大鼠α1B+β1b+α2δN-型钙通道亚基转染HEK293细胞。
培养24-72小时后,除去培养基,重新替换外部记录溶液(见下文)。用与装有pCLAMP软件的IBM兼容的个人电脑连接的Axopatch 200B放大器(AxonInstruments,Burlingame,CA)进行全细胞膜片钳试验。抛光(Microforge,Narishige,Japan)硅酸硼玻璃膜片吸管(Sutter Instrument Co.,Novato,CA),当用甲磺酸铯内部溶液(MM组分109CsCH3SO4、4MgCl2、9EGTA、9HEPES,pH7.2)填充时,电阻约4MΩ。细胞浸在5mM Ba++(mM5BaCl2、1MgCl2、10HEPES、40四乙基氯化铵、10葡萄糖、87.5 CsCl,pH7.2)。所示的电流数据用一列0.066Hz的100ms测试脉冲,从-100mV和/或-80mV到各种电位(最小-20mV,最大+30mV)引起。用微量灌注系统直接将药物脉冲到细胞附近。
用Hill等式拟合标准的剂量-反应曲线(Sigmaplot 4.0,SPSS Inc.,Chicago,IL)以确定IC50值。稳态灭活曲线绘成增加+10mV的5s灭活预脉冲后标准化的测试脉冲。灭活曲线用Boltzman等式拟合(Sigmaplot4.0),I峰(标准化)=1/(1+exp((V-Vh)z/25.6)),其中V和Vh分别是调节和半灭活电位,z是斜率因子。
实施例2式(1)的说明性化合物的合成A.6,6-二苯基己酸的合成在无水CH3CN(40毫升)中混合6-溴己酸(7.08克,36.3毫摩尔)和三苯膦(10克,38.2毫摩尔),加热至回流,过夜,并使其冷却至室温。减压浓缩溶液,得到粘性凝胶。在反应混合物中加入约75毫升THF,并用刮勺刮烧杯壁,引发结晶。得到的固体在真空下过滤,用THF洗涤并减压干燥,不经进一步纯化使用。
将该产物(1.5克)悬浮在无水THF(10毫升)中,并用N2对烧瓶通气,冷却到-78℃。在搅拌的反应物中加入六甲基氮硅烷锂(LiHMDS)(10毫升,1M的THF溶液)。-78℃搅拌黄色溶液1小时,在此过程中反应物稍变暗。除去冷却浴,使反应物温至室温。将反应物保持在室温1小时,在此过程中溶液变成暗红色,大部分固体进入溶液。在反应物中加入二苯酮(0.54克,THF溶液),然后反应过夜。减压浓缩黄色溶液,得到黄色固体。得到的固体在乙醚和10%HCl之间分配。用水(2x)洗涤有机层,并用10%NaOH(3x)抽提。用浓盐酸将合并的水相酸化到pH4。用醚(3x)提取水层,用(Na2SO4)干燥有机组分。
减压蒸发乙醚至干,得到无色油,放置结晶得到蜡状固体,6,6-二苯基己-5-酸,它溶于30毫升MeOH,并与5%Pd-C混合,置于氢化罐中。反应容器通氢气,并加压到60PSIG,室温反应4小时。采集反应混合物样品,用TLC分析。如果当用KMnO4染色时TLC显示对烯烃的阳性测试结果,重新将反应混合物调节到反应条件。然后将溶液滤过硅藻土栓,真空浓缩含6,6-二苯基己酸的甲醇滤液。
B.与取代的哌嗪的反应将6,6-二苯基己酸(0.4mmol)与所需的单取代的哌嗪(0.35毫摩尔)在干燥THF(7毫升)中混合。加入EDC(0.5毫摩尔)和DMAP(cat),加热混合物至40℃,振摇过夜。用乙酸乙酯稀释反应物,用水(4x)和10%NaOH(3x)洗涤,用硫酸钠干燥,蒸发至干。用柱层析(二氧化硅凝胶,1∶1己烷∶EtOAc)纯化得到的剩余物,用HPLC-MS确定产物的特征。
上述方法中所用的哌嗪包括苯基哌嗪、苄基哌嗪、二苯甲基哌嗪和在1-位被φ-CH=CH2-取代的哌嗪。
得到的化合物含有与哌嗪的环上氮邻接的羰基。这些化合物是式(1)的化合物,显示钙通道封闭活性。
C.CO的还原B段制备的化合物溶于无水THF(5毫升),并与LiAlH4(1M THF溶液)反应,并反应6小时。用EtOAc(15毫升)淬灭反应,用水(5x)、10%NaOH(10x)、盐水(1x)抽提,并用硫酸钠干燥,减压浓缩。该阶段大部分产品纯度都大于80%。那些小于80%纯度的经过短柱(硅胶,1∶1hex∶EtOAc)纯化。
实施例3从二苯甲基哌嗪衍生物制备式(1)的化合物。
将N-(二苯基甲基)哌嗪(0.5毫摩尔)溶于无水THF(10毫升)中。在各反应烧杯中加入粉末状K2CO3和式Y-CO-Cl(0.7毫摩尔)的酰氯。室温搅拌反应物2小时,用10%NaOH(10毫升)淬灭,并用EtOAc(10毫升)萃取。用10%NaOH(4x)洗涤有机层,在硫酸钠上干燥,浓缩,柱层析纯化(硅胶,1∶1hex∶EtOAc),得到所需的酰胺。用于该方法的酰卤包括环己基COCl、φCOCl和φCH=CHCOCl。
为了还原得到的酰胺,将上述产物溶于无水THF(5毫升),并与LiAlH4(1M的THF溶液)反应,反应6小时。用EtOAc(15毫升)淬灭反应物,并用水(5x)、10%NaOH(10x)、盐水(1x)萃取,用硫酸钠干燥,并减压浓缩。该阶段的大部分产物纯度大于80%。那些小于80%纯度的经过短柱(硅胶,1∶1己烷∶EtOAc)纯化。
实施例4各种本发明化合物的通道封闭活性用实施例1中列出的方法,测试了本发明的各种化合物封闭N-型钙通道的活性。得到的结果列于下表,其中以μM(微摩尔)给出IC50。


实施例5其它方法遵循实施例1和2的方法,但如下所述有一些轻微改变。
A.HEK细胞的转化在用大鼠大脑N-型钙通道亚基(α1B+α2δ+β1bcDNA亚基)稳定转染的人胚肾细胞HEK293中测定N-型钙通道封闭活性。另外,在HEK293细胞中瞬时转染N-型钙通道(α1B+α2δ+β1bcDNA亚基)、L-型通道(α1C+α2δ+β1bcDNA亚基)和P/Q-型通道(α1A+α2δ+β1bcDNA亚基)。简单说,在补充有10%胎牛血清、200U/ml的青霉素和0.2mg/ml的链霉素的的Dulbecco改良eagle培养基(DMEM)中,在37℃下,5%CO2中培养细胞。在85%汇合时,用0.25%酪蛋白/1mM EDTA分裂细胞,以10%汇合铺在玻璃盖片上。12小时后,更换培养基,用标准磷酸钙法和合适的钙通道cDNA瞬时转染细胞。补充新鲜DMEM,将细胞转移到28℃/5%CO2中。培养细胞1-2天,全细胞记录。
B.抑制的测量用与装有pCLAMP软件的IBM兼容的个人电脑连接的Axopatch 200B放大器(Axon Instruments,Burlingame,CA)进行全细胞膜片钳试验。外部和内部记录溶液分别含有5mM BaCl2、1mM MgCl2、10mM HEPES、40mM TEACl、10mM葡萄糖、87.5mM CsCl(pH7.2)和108mM CsMS、4mM MgCl2、9mM EGTA、9mMHEPES(pH7.2)。电流通常用Clampex软件(Axon Instruments)从-80mV到+10mV的静息电位引发。通常,首先用低频刺激(0.03Hz)引起电流,使得在施加化合物前稳定。然后在2-3分钟的低频脉冲列中施加化合物,来评估音障,随后将脉冲频率提高到0.2Hz,来评估依赖于频率的封闭。用Clampfit(Axon Instruments)和Sigmaplot4.0(Jandel Scientific)分析数据。
下表1列出了N-型通道得到的具体数据。如表1数据所表明的,在更高频率下最强的抑制剂是MC-34D、JM-G-10、39-1-B4和39-45-3,如图1所示。然而,所有测试的化合物看来在该频率是合理的良好封闭剂。
表1

表2和3显示用在HEK293细胞中表达的P/Q型和L-型通道进行的类似实验的结果。一般MC-34D、JM-G-10、39-1-B4和39-45-3的IC50值比关于N-型通道显示的要高。
表2


表3

表4总结了这些数据,显示P∶N和L∶N通道的IC50值之比。如所示,特别是对L-型通道的专一性,上面提到的4种化合物对于N-型和P/Q型的亲和力比对于L-型通道高得多。
表4


图2和3显示了这些结果。
实施例5体内疼痛模型为了测试本发明的化合物对神经性疼痛的作用,在年轻的成年雄性大鼠(约300克)中进行了脊神经结扎。在麻醉的情况下。在脊根神经节远端,紧紧结扎大鼠背侧根神经节(L5/L6)产生的脊神经,然后从手术中恢复(S.H.Kim和J.M.Chung,Pain(1992)50353-363)。对于鞘内给药,麻醉动物,并用Yaksh,T.L.和Rudy,T.A.Physiol.Behav.(1976)171031-1036基本所述的脊柱导管植入。手术后,大鼠回到笼中,并使其恢复。在恢复期内,受到L5/L6结扎的动物产生热痛觉过敏,在后腿中产生由受伤神经支配的触觉。
通过植入导管,以5微升剂量体积,传递溶于10%DMSO(39-45-3)或100%DMSO(MC-34D和39-1-B4)的测试化合物,然后用10微升盐水冲洗。在三个浓度测试各药物,每组研究5-6只大鼠。
为了测试热刺激(痛觉过敏),将大鼠置于可升降的玻璃地板上的Plexiglass盒中,自由居住10分钟。将红外辐射源聚焦在非损害和损害的后脚掌上,记录脚掌的潜伏态。为了防止组织损伤,如果未注意到反应,在45秒后终止测试。对于触觉刺激(痛觉异常),对未受伤和受伤的后掌施加电子Von Frey探头的尖端,记录诱导后爪缩回所需的力量。该方法进行3次,计算每个脚掌的平均力量来提供每只动物的基本评分。
如图4和5所示,全部三种化合物在大鼠模型中显示对于神经性疼痛显著的抗痛觉过敏和抗痛觉异常的作用。
图4显示了痛觉过敏模型。在21秒界限内,39-45-3在30分钟时间内用100微克药物显示100%的抗痛觉过敏作用,和传递30微克药物达到95%的最大效果。在30分钟内,MC-34D用100微克药物显示100%的抗痛觉过敏作用,传递30微克显示96%的最大作用。在30分钟内,39-1-B4用100微克药物显示96%的抗痛觉过敏作用,传递30微克显示55%的最大作用。总的说,39-45-3显示的A50反应=7.98微克/动物;MC-34D显示的A50反应=3.05微克/动物;39-1-B4显示的A50反应=6.95微克/动物。
图5显示了痛觉异常模型。化合物39-45-3在10分钟内用100微克药物显示52%的最大抗痛觉异常作用,在30分钟内传递30微克药物显示37%的最大作用。化合物MC-34D在10分钟用100微克药物显示62%的最大抗痛觉异常作用,在60分钟内传递30微克药物显示57%的最大作用。化合物39-1-B4在30分钟内用100微克药物显示50%的最大抗痛觉异常作用,在60分钟内传递30微克药物显示46%的最大作用。总的说来,39-45-3显示的A50反应=104微克/动物;MC-34D显示的A50反应=60微克/动物;39-1-B4显示的A50反应=70微克/动物。
权利要求
1.一种治疗个体内与钙通道活性有关的病况的方法,其特征在于,该方法包括对需要所述治疗的个体施用下式的化合物 或其盐,其中Cy代表环己基;Y是CH=CHφ,CHφ2、φ或Cy,X当n是0,Y是φ2CH时,是三价直链亚烷基(3-10C)或被氧在邻接N的C上可任选取代的三价直链1-亚烯基(3-10C);还可以是三价直链亚烷基(5-10C)或被氧在邻接N的C上可任选取代的三价直链1-亚烯基(5-10C);Z是N、NCO、CHNCOR1或CHNR1,其中R1是烷基(1-6C);和n是0-5;其中各φ和Cy分别可任选的被烷基(1-6C)或卤素、CF3、OCF3、NO2、NR2、OR、SR、COR、COOR、CONR2、NROCR或OOCR取代,其中R是H或烷基(1-4C),或两个取代基可形成5-7元环,条件是式(1)的化合物含有至少一个芳族基团。
2.如权利要求1所述的方法,其特征在于,所述式(1)的化合物具有式 其中X、Y、Z和n如上定义,各φ可任选的如权利要求1中所述取代。
3.如权利要求2所述的方法,其特征在于,Y是CH=CHφ。
4.如权利要求3所述的方法,其特征在于,X是CH(CH2)mCO或CH(CH2)m+1,其中m是4-10。
5.如权利要求4所述的方法,其特征在于,m是4。
6.如权利要求3所述的方法,其特征在于,Z是N,n是1-3。
7.如权利要求6所述的方法,其特征在于,式(1)的化合物是MC-34D或其取代的形式。
8.如权利要求2所述的方法,其特征在于,Y是Cy。
9.如权利要求8所述的方法,其特征在于,X是CH(CH2)mCO或CH(CH2)m+1,其中m是4-10。
10.如权利要求9所述的方法,其特征在于,m是4。
11.如权利要求8所述的方法,其特征在于,Z是CHNH和n是1。
12.如权利要求11所述的方法,其特征在于,式(1)的化合物是JM-G-10或其取代的形式。
13.如权利要求2所述的方法,其特征在于,Y是φ2CH。
14.如权利要求13所述的方法,其特征在于,X是CH(CH2)1CO或CH(CH2)l+1,其中l是1-10。
15.如权利要求14所述的方法,其特征在于,l是1。
16.如权利要求13所述的方法,其特征在于,Z是N。
17.如权利要求16所述的方法,其特征在于,式(1)的化合物是39-1-B4或其取代的形式。
18.如权利要求2所述的方法,其特征在于,n是0或1,Y是φ。
19.如权利要求18所述的方法,其特征在于,X是CH(CH2)m+1或CH(CH2)mCO,其中m是4-10。
20.如权利要求19所述的方法,其特征在于,m是4。
21.如权利要求20所述的方法,其特征在于,式(1)的化合物是化合物39-45-3或其不同的取代或未取代的形式。
22.一种用于治疗由钙通道活性为特征的病况的药物组合物,其特征在于,该组合物含有与药物学上可接受的赋形剂混合的一定剂量的下式的至少一种化合物 或其盐,其中Cy代表环己基;Y是CH=CHφ,CHφ2、φ或Cy,X当n是0,Y是φ2CH时,是三价直链亚烷基(3-10C)或被氧在邻接N的C上可任选取代的三价直链1-亚烯基(3-10C);还可以是三价直链亚烷基(5-10C)或被氧在邻接N的C上可任选取代的三价直链1-亚烯基(5-10C);Z是N、NCO、CHNCOR1或CHNR1,其中R1是烷基(1-6C);n是0-5;其中各φ和Cy分别可任选的被烷基(1-6C)或卤素、CF3、OCF3、NO2、NR2、OR、SR、COR、COOR、CONR2、NROCR或OOCR取代,其中R是H或烷基(1-4C),或两个取代基可形成5-7元环,条件是式(1)的化合物含有至少一个芳族基团。
23.如权利要求22所述的组合物,其特征在于,所述式(1)的化合物具有式 其中X、Y、Z和n如权利要求1中定义。
24.一种化合物,其特征在于,该化合物具有式 其中Y是CH=CHφ、φ或Cy,其中各φ和Cy分别可任选的被烷基(1-6C)或卤素、CF3、OCF3、NO2、NR2、OR、SR、COR、COOR、CONR2、NROCR或OOCR取代,其中R是H或烷基(1-4C),或两个取代基可形成5-7元环;n是0-5;和Z是N或CHNR1,其中R1是烷基(1-6C);其中X是CH(CH2)mCO或CH(CH2)m+1,其中m是4-10。
25.如权利要求24所述的化合物,其特征在于,Y是CH=CHφ。
26.如权利要求25所述的化合物,其特征在于,m是4。
27.如权利要求24所述的化合物,其特征在于,Z是N,n是1-3。
28.如权利要求27所述的化合物,其特征在于,式(1)的化合物是MC-34D或其取代的形式。
29.如权利要求28所述的化合物,其特征在于,该化合物是MC-34D。
30.如权利要求24所述的化合物,其特征在于,Y是Cy。
31.如权利要求30所述的化合物,其特征在于,m是4。
32.如权利要求30所述的化合物,其特征在于,Z是CH2NH和n是1。
33.如权利要求32所述的化合物,其特征在于,该化合物是JM-G-10或其取代的形式。
34.如权利要求33所述的化合物,其特征在于,该化合物是JM-G-10。
35.如权利要求24所述的化合物,其特征在于,n是0或1,Y是φ。
36.如权利要求35所述的化合物,其特征在于,m是4。
37.如权利要求36所述的化合物,其特征在于,该化合物是化合物39-45-3或其不同的取代或非取代的形式。
38.如权利要求37所述的化合物,其特征在于,该化合物是39-45-3。
全文摘要
式(1)的化合物及其盐,其中Cy代表环己基;Y是CH=CHφL、CH=CHφ
文档编号A61K31/4545GK1411374SQ00817436
公开日2003年4月16日 申请日期2000年12月20日 优先权日1999年12月20日
发明者T·P·斯诺切, G·W·赞波尼 申请人:神经医药技术股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1