具有改进的偏转与操纵机构的基于射频的导管系统的制作方法

文档序号:889596阅读:313来源:国知局
专利名称:具有改进的偏转与操纵机构的基于射频的导管系统的制作方法
技术领域
本发明通常涉及射频(“RF”)或微波能量的医疗装置以及生物组织的消融术(ablation),且尤其涉及一种具有改进的可偏转与操纵性能的基于射频的导管系统。
背景技术
近年来医学界已经广为认同利用医疗装置作为心脏疾病以及其它严重疾病的重要治疗手段,而这些疾病通常是通过药物或外科手段进行治疗的。在心脏病治疗方面显现出了两个基本趋势。第一个趋势是,由采用打开心脏式的外科手术转变为采用对身体侵害较小且费用较便宜的基于导管的治疗,基于导管治疗较为安全且病人身体状况因此治疗而致衰弱的程度较小。
第二个趋势是,由采用抗心律失常药物转变为采用侵害程度最低的导管或其它基于医疗装置的疗法,从而减轻无法治愈的心律失常症状。例如,通常将自动心脏电复律器(cardioverter)-去纤颤器置入患有致命的心室心律失常的病人体内,从而可减少病人猝死的可能性。因此,射频(“RF”)导管消融术现在已经大量施用于深受心脏心律失常之患的病人。
尽管在技术上有这么多的优点,但心房纤颤(“AF”)仍然是一个严峻的挑战。AF是由不均匀电脉冲所诱发的心房或上心室的快速不规则的节律,它是中风(stoke)和心脏病发作的主要原因,且是健康护理的首要重点。到目前为止,治疗AF最有效的外科方法一直是在“打开心脏”手术中采用的梅兹(Maze)法。在Maze法中,沿着心房外部预先确定的线切开,术后再缝合起来。在康复过程中,沿切线形成瘢痕,因此构成了阻碍电脉冲传导的屏障。由于形成了这种屏障,所以AF就不再会持续存在从而恢复规律的心脏律动。然而,由于开心手术费用和死亡率都很高,所以Maze法尚未得到广泛施用,而只是做为其它主要手术(如二尖瓣置换手术)的附随手术。
效仿Maze操作的一种新方法由基于导管的射频消融技术代表,其中,作为外科切割的替代,采用导管天线用以破坏或消融房室内的心脏组织。如医学领域所通常实践的那样,导管天线穿过静脉抵达心房。在心房内对导管天线的顶端所进行的定位通常借助于x射线或荧光装置,并且使顶端在需要消融的理想位置或位点(spot)处接触心脏组织。在该位点处,通过导管天线产生的电阻性加热而使该组织遭受破坏。之后,导管天线被再定位至下一位点以进行消融。因此通过一系列的位点消融仿效Maze法形成线性伤痕以阻止电脉冲传导。
现有的基于导管的消融法,其侵害性被认为小于“打开心脏”式外科手术。另外,在消融过程中,降低了对心血管功能的损害。然而,成功的基于导管的射频消融术要求组织位点的消融在相邻位点之间的空间允许误差或邻近允许误差一般小于2毫米,以防止电脉冲通过。由于这种关系,对导管天线进行精确定位作业成为了消融手术成功的关键因素。
这种现有消融法的主要缺陷在于,在心室肌肉进行脉动的同时将导管天线定位到心房中所需的消融位点这一作业过程耗费时间长。心房壁或心脏肌肉的运动常常会让精确放置导管天线变得很困难,而导管天线滑移则趋向于损害那些不需要进行消融的心房部分。因此,由于导管放置问题而不能有效实现基于导管的射频(RF)消融,而可以预料手术时间会持续很久以超出12小时。另外,在处理过程中,通常采用x射线或其它辐射装置以用于导管天线的定位和放置,这就要求电生理学者(electro-physiologist)使用厚的铅防护装置。因此,这种不便通常因手术时间持续很长而倍感突出,这不利于将基于导管的天线作为有效的组织消融手段。
为了将滑移风险减低到最小程度,例如,第5,741,249号美国专利披露了一种基于导管的微波天线,其中,有一末端与天线合并成一体,用于将天线锚固到心房壁上。虽然这一设计减小了天线或导管天线在每一消融步骤过程中滑移的可能性,但却没有解决沿着所需的消融路径对每一消融步骤都要进行的确保天线精确放置这一耗费时间的作业过程。因此,在每一消融步骤之后,都不得不对天线进行精确的再定位和锚固,以将其定位、锚固于下一位点,所述下一位点必须位于消融路径上如上所述的空间允许误差或相邻允许误差之内。
因此,利用导管消融术对心房纤维性颤动进行有效治疗将需要在心房内表面上生成长的或重叠的直线或曲线形的消融伤痕。而后这些伤痕就可以用作阻碍电脉冲传导的屏障,因此避免心房纤维性颤动。
针对心房纤维性颤动的有效的基于导管的消融术的一项迫切要求是将导管和微波天线稳定并锚固到房室内的能力。需要有新的导管消融系统,它能够将导管和微波天线稳定并锚固到房室内,优选地能够产生长的或重叠的直线或曲线形的消融伤痕,从而开发出侵害程度最小的基于导管的治疗心房纤维性颤动的治疗方法。
2001年2月20日授权的第6,190,382号美国专利和2000年12月11日提交的第09/459,058号美国专利申请披露了一种用于对病人身体脉管内的生物组织进行消融的基于射频或微波能量的导管。该导管包括近端部分、具有远端开口的远端部分以及从近端部分延伸到远端部分的管腔。该导管包括细长的导管导向件,导向件被置于导管的管腔内并且其一端连接导管的远端部分、其另一端部分朝着近端一侧在导管的管腔内延伸并将连接到一定位机构。该导管导向件的主要优点是,它可超出导管的末端开口而展开以形成一个可与身体脉管内部轮廓起伏相适应的缓冲弯。该导管导向件使导管具有一个与导管远端部分相接的射频能量天线或微波能量天线。该天线包括螺旋线圈,螺旋线圈包绕容纳从中穿过的导管导向件。
该射频天线用于接收和辐射在电磁波谱中处于典型频率大于300兆赫(MHz)的微波波段内的射频能量,用以沿着生物消融路径消融生物组织。
发明简介本发明的导管与第6,190,382号美国专利和第09/459,058号美国专利申请中所述的导管相比,提供了更多的功效增强以及技术特征。其中,这些改进和特征包括可塑形天线,各种位于末端的预塑形天线,用于方便实现导管的偏转、操纵和控制的筋腱型天线偏转与操纵机构,以及用于监视消融过程中各种参数的传感器。
本发明可塑形天线能够实现对身体组织的精确消融,并且尤其适用于在心房内表面上产生直线或曲线形的消融伤痕。这些伤痕可随后用作阻碍电脉冲传导的屏障,因此避免心房纤维性颤动。可塑形天线装置能够使天线快速、方便且精确地实现对目标组织的最佳定位,并且在施加RF能量给目标组织以产生治疗作用期间保持其稳定性。
本发明的另一个方面涉及一种可塑形曲线射频天线装置,用于消融病人身体脉管内的生物组织。该可塑形曲线射频天线装置包括具有远端部分和细长管腔的柔性导管体。同轴对准的内、外导体在导管内延伸且与管腔共轴。柔性的可塑形曲线射频天线由柔性导管体的远端部分承载,并且与同轴对准的内、外导体电连接。柔性的可塑形曲线射频天线适于接收和发射用于消融生物组织的射频能量,并且可在笔直构型(straightconfiguration)和曲线构型(curvilinear configuration)之间进行塑形,用以在病人的身体脉管内的生物组织中产生曲线形消融图案。
本发明的再另一个方面涉及一种消融病人身体脉管内的生物组织的方法。该方法包括步骤提供用于消融病人身体脉管内的生物组织的可塑形曲线射频天线装置,该可塑形曲线射频天线装置包括柔性导管体,其包括远端部分和细长管腔;同轴对准的内、外导体,它们在导管内延伸且与管腔共轴;和柔性的可塑形曲线射频天线,其由柔性导管体的远端部分承载,并且与同轴对准的内、外导体电连接,所述柔性的可塑形曲线射频天线适用于接收和发射用于消融生物组织的射频能量,并且可在笔直构型和曲线构型之间进行塑形,用以在病人的身体脉管内的生物组织中产生曲线形消融图案;将所述可塑形曲线射频天线装置输送至病人身体脉管内的目标身体组织消融位点;将柔性可塑形曲线射频天线的构型从笔直构型改变为预塑形记忆曲线构型,因此使柔性可塑形曲线射频天线接近需要进行消融的身体组织;以及利用柔性可塑形曲线射频天线消融该身体组织。
在看了附图和下面展开的关于本发明优选实施例的说明之后,进一步的目的和优点对于本领域普通技术人员而言是显而易见的。
附图的简要说明

图1A和1B是RF消融导管的侧面视图,该RF消融导管包括具有用于操纵本发明所述可塑形天线装置的操纵机构的一个实施例的手柄。
图2A和2B是RF消融导管的侧面视图,该RF消融导管包括具有用于操纵本发明所述可塑形天线装置的操纵机构的另一个实施例的手柄。
图3A和3B是本发明所述可塑形天线装置处于笔直构型和塑造构型时的一个实施例的侧面剖视图。
图4A和4B是本发明所述可塑形天线装置处于笔直构型和塑造构型时的另一个实施例的侧面剖视图。
图5A和5B是本发明所述可塑形天线装置处于笔直构型和塑造构型时的又一个实施例的侧面剖视图。
图6A和6B是本发明所述可塑形天线装置处于笔直构型和塑造构型时的还一个实施例的侧面剖视图。
图7A-7C是图5A、5B和图6A、6B所示可塑形天线装置实施例的预塑形偏转件和偏转调整件的备选实施例。
图8是RF消融导管的侧面视图,该RF消融导管包括依照本发明另一实施例构造的可塑形天线装置。
图9A和9B是图8所示RF消融导管的可塑形天线装置的侧面剖视图。
图10是依照本发明实施例的具有可偏转和操纵能力的射频导管的立体图。
图11A是图10所示射频导管的远端部分的局部侧面剖视图,并且示出了可偏转导管导向件的一个实施例。
图11B是沿图11A中的线11B-2B获取的横断面视图。
图11C是沿图11A中的线11C-11C获取的横断面视图。
图12A是可偏转导管导向件的另一实施例的局部视图,其中导管导向件具有尺寸有变化的脊。
图12B是图12A可偏转导管导向件的同一实施例的局部俯视图。
图12C是沿图12B中的线12C-12C获取的横断面视图。
图12D是沿图12B中的线12D-12D获取的横断面视图。
图13是设置在图10所示射频导管的远端部分的管腔内的图12B的可偏转导管导向件的局部视图。
图14是图13所示射频导管的远端部分处于偏转构型时的局部视图。
图15是射频导管的远端部分的另一实施例的局部侧面剖视图,并且示出了具有局部管状构造的柔性脊和在柔性脊的管腔内延伸的拉线筋的可偏转导管导向件的实施例。
图16是图15所示射频导管的远端部分的局部侧视图,并且示出了具有朝着远端一侧向射频导管的远端部分延伸的导向件引导部分的可偏转导管导向件。
图17A和17B是射频导管的顺时针和逆时针预塑形的远端部分的示意图。
图18A和18B是射频导管的顺时针和逆时针预塑形的远端部分的示意图,该射频导管包括有助于对远端部分进行塑形的拉线。
图19是射频导管实施例的局部侧面剖视图,该射频导管结合采用了可偏转导管导向件的实施例,可偏转导管导向件连接于滑动控制器用以偏转和操纵射频导管的远端部分。
图20A是具有双向偏转能力的可偏转导管导向件的另一实施例的局部俯视图。
图20B是图20A可偏转导管导向件的同一实施例的局部正视图。
图20C是沿着图20A中剖线20C-20C获得的图20A的可偏转导管导向件的横截面视图。
优选实施例详细说明参看图1A和1B,其中示出了依照本发明一个实施例构造的包括可塑形天线装置110的射频(“RF”)消融导管100。导管100适用于插入病人的身体脉管内,而可塑形天线装置110包括用于将电磁能量传送给处置位点的射频天线。在说明本发明的可塑形天线装置之前,首先对导管100进行说明。
导管100包括柔软细长的管状体120,管状体120具有近端部分130和远端部分140。一个或多个腔内管腔150(图3A、3B)从导管100的近端部分130延伸到远端部分140。手柄底盘(handle chassis)160设置位于导管100的近端部分130,用于容纳所必需的操纵与定位控制机构,下面将进一步对此加以详细说明。连接头170结合形成在导管100的近端部分160,用于将导管100连接到一个或多个用以帮助实现消融处理的电子装置,如RF发生器和控制器(未示出)。
导管100的尺寸适合特定医疗手术所用,这是医学领域所公知的。在优选实施例中,导管100用于消融心脏组织;但是,导管100也可以用于消融其它类型的身体组织。导管的管状体120通常是由可在人体脉管环境中不会引起排斥反应的聚合体材料构造的。这些材料的例子包括但不局限于,来自德国的奥托凯姆(Autochem Germany)的Pebax、聚乙烯、聚氨酯、聚酯、聚酰亚胺和聚酰胺,这些材料的辐射不透过度、硬度和弹性各不相同。
导管100可以形成为采用一种或多种上述材料的多个片段,以便使得管状体120越是靠近其远端就具有越好的柔韧性。各段可通过热接、对接或粘接而结合到一起。还可以将编织层(braiding reinforcement)附加到管状体120的周边表面,以便使导管100达到所需的刚度和抗扭强度要求。这就使得导管100能够向前行进并成功地穿入病人的身体脉管,从而能够沿着导管长度将转动力矩从近端部分传送到远端部分。
另外参看图3A、B,管状体120的远端部分140可包括与近端部分130相比较软的聚合体化合物,带有一点编织套或不带有编织套,从而提供所需柔韧性以适应可塑形天线装置110的远端偏转和塑形。可塑形天线装置110的偏转和塑形可以通过使用预塑形偏转件180和偏转调整件190来实现。预塑形偏转件180和/或偏转调整件190可以从手柄底盘160延伸到导管体140的远端部分140。
预塑形偏转件180和/或偏转调整件190可以就近固定到偏转控制手柄或拇指滑动触头(thumb slide)200(图1A、1B),偏转控制手柄或拇指滑动触头200可以沿着手柄底盘160的轴向缝隙可滑动地啮合。沿着轴向隙缝对拇指滑动触头200进行轴向位移,使得医师能够对可塑形天线装置110进行塑形或偏转,形成为直线构型(图1A)以及偏转构型(图1B)、或者介于两者之间的任意其它构型。可在拇指滑动触头200中结合形成摩擦保持机构(未示出),用以保持手柄在轴向隙缝中的位置。许多这种装置都可以从市场上获取到。这种装置的例子包括擒纵装置(set-release)、压力操纵开关或自锁机构。
图2A和2B显示了RF消融导管210,其与前述RF消融导管100相似,但是带有偏转控制机构220的可选实施例,偏转控制机构220用以对可塑形天线装置110进行塑形或偏转。偏转控制机构220可包括可转动卡圈(collar)230,可转动卡圈230沿圆周环绕着手柄底盘160的手柄杆240并且可旋转地与手柄杆240耦合连接,用以控制预塑形偏转件180和/或偏转调整件190的轴向位移。手柄底盘160可容纳有转换机构,用以将卡圈230的转动转换为预塑形偏转件180和/或偏转调整件190的轴向位移。卡圈230相对于手柄杆240的转动使得医师能够以直线构型(图2A)和偏转构型(图2B)或介于其间的任意形状对可塑形天线装置110进行塑形或偏转。
参看图3A和3B,现在将对可塑形天线装置110的一个实施例进行详细说明。导管体140的远端部分包括RF天线250,RF天线250具有用于身体组织消融的柔性螺旋形线圈状的RF辐射天线元件255。在一个代表性的实施例中,RF天线250包括呈螺旋状环绕形成螺旋线圈绕组的电导材料或导线条。线圈绕组的适当的直径、节距和长度,以及电导材料或导线条的选择,都是设计选择因素,可根据特定手术和柔韧性要求来改变这些因素。
RF天线250适合用于接收和辐射来自射频能量源(未示出)的电磁能。例如,合适的射频谱是通常大于300MHz的微波频段。RF天线250能够沿RF天线250施加基本上均匀分布的电磁场能量,其与RF天线250和待消融组织之间的接触无关。发射的电磁场基本上垂直于RF天线250的纵轴,且因此产生环绕RF天线250分布并由RF天线250限定的均匀能量场。
RF天线250可与一个或多个电导体260电接触,电导体260又可与RF能量源电连接。例如,该一个或多个电导体260可以,但不局限于,由柔性网或编织线结构制成,或者由薄膜电导材料制成,其近似地从RF天线250延伸到手柄底盘160。如下面参照图11A-11C所进行的详细说明,该一个或多个电导体260优选地包括细长的、共轴的、周边对准的内导体640和外导体660。内导体640可包括或周边环绕同轴套件630。套件630的内表面限定出管腔150。
RF天线250和该一个或多个电导体260可以沿着它们的长度走向涂覆聚合体电介质密封剂、涂料、或层,以确保结构的完整性,从而保护其不受生物环境影响,隔离电部件,且有助于将电磁场限制在可塑形天线装置110之外。该密封剂、涂料、或层可以由合适材料制成,例如硅或聚合物基材料或者橡胶化合物。
偏转调整件190可以是与预塑形偏转件180共轴、并且可滑移地安装在预塑形偏转件180之上的鞘套。偏转调整件190优选地具有细长的、笔直的管状构型,并且可由塑料或金属柔性材料制成。偏转调整件190可以预先塑形为所希望的构型。
预塑形偏转件180可以是预先塑形成所需构型的细长的、柔韧的线或脊。预塑形偏转件180可由金属材料(例如双金属或形状记忆合金(“SMA”)材料)或者具有适当程度的记忆、生物适应性以及类似于弹簧的结构特性的聚合体材料。这种材料例如是,但不局限于,镍-钛合金(以镍钛诺(nitinol)商标售卖)、不锈钢、聚酰胺、以及聚四氟乙烯(“PTFE”)。所用金属材料也可以根据需要做加热处理或冷却,以提供理想的结构特性,如刚度和柔韧性。只有远端部分270或整个预塑形偏转件180可以被预先塑形或由预塑形材料制成。使用预塑形材料能够对预塑形偏转件180或偏转调整件190进行预塑形,以使可塑形天线装置110与所需的直线或曲线轮廓相一致,因此,有助于优化可塑形天线装置110结构和沿循目标位点处的内部轮廓线或几何结构来放置可塑形天线装置110。
在如图3A、3B所示的可塑形天线装置110实施例中,通过向远端滑动预塑形偏转件180而使预塑形偏转件180滑出偏转调整件190(经由手柄底盘160处的偏转控制机构)并进入管腔150,就可使可塑形天线装置110的形状由预塑形偏转件180规定。
可以通过可塑形天线装置110带有的一个或多个射频不透过标记(未示出)来实现可塑形天线装置110的正确塑形和放置。利用一个或多个射频不透过标记,可塑形天线装置110在用x射线或荧光检测时变得不透明,因此有助于在塑形和放置用以组织消融的可塑形天线装置110的过程中识别其位置。
此外,可塑形天线装置110可以携带一个或多个心脏内部心电图(“ECG”)电极(未示出),用以帮助医师获取最佳的组织接近度并获取组织消融前后的电导活性,以及获取它们动作的反馈。这些电极可以固定在可塑形天线装置110的长度方向上。
参看图4A,其中显示了可塑形天线装置280的另一实施例,与图4A相类似,可塑形天线装置280的形状由预塑形偏转件180规定。但是,在这个实施例中,通过可滑移地朝着近端一侧方向缩回偏转调整件190从而使偏转调整件190远离预塑形偏转件180远端部分270,使预塑形偏转件180对可塑形天线装置280进行塑形以达到理想构型。这就使得远端部分270呈现为预先设定形状,而后使得可塑形天线装置280达成理想构型。
图5A、5B和图6A、6B还分别描述了可塑形天线装置290、300呈现为直线形状时和塑型形状时的各个实施例。在图5A、5B中,可塑形天线装置290与上述图3A、3B所示的可塑形天线装置110类似之处在于,可塑形天线装置290通过轴向滑移预塑形偏转件320的远端部分310而远离偏转调整件330的远端从而达到所期望的构型。在图6A、6B中,可塑形天线装置300与上述图4A、4B所示的可塑形天线装置280的类似之处在于,可塑形天线装置300通过轴向滑移偏转调整件340以使其接近预塑形偏转件360的远端部分350从而达到所期望的构型。
参看图7A-7C,其中示出了可以用于图5A、5B和图6A、6B所示的可塑形天线装置290、300的偏转调整件330、340和预塑形偏转件320、360的一些典型实施例。
在图7A中,预塑形偏转件320、360具有窄的通常为矩形的截面,而相邻的偏转调整件330、340则具有较宽的通常为矩形的截面。在这个实施例中,预塑形偏转件320、360和偏转调整件330、340彼此平行,并且可以沿它们的长度而彼此接触。预塑形偏转件320、360和/或偏转调整件330、340可以可滑动地容纳于套件(未示出)中,以确保在对可塑形天线装置290、300进行塑形之前由偏转调整件330、340将预塑形偏转件320、360保持为直线构型(或者其它所希望的构型)。
在图7B中,偏转调整件330、340具有通常为方块C-形的截面,而相邻的预塑形偏转件320、360具有通常为矩形的截面。在这个实施例中,预塑形偏转件320、360可滑动地容纳于偏转调整件330、340中。
在图7C中,偏转调整件330、340具有通常为曲线C-形的截面,而相邻的预塑形偏转件320、360具有通常为圆形的截面。在这个实施例中,预塑形偏转件320、360可滑动地容纳于偏转调整件330、340中。
以下将参照图8对依照本发明另一实施例构造的包括可塑形天线装置410的RF消融导管400进行说明。RF消融导管400与上面图1A、1B和2A、2B所示导管100相类似,只是可塑形天线装置410的形状是由液压的或气动的流体压力调整而非由偏转调整件190调整的。在导管400的近端,可使用锁闭开关420连接导管400和液压的或气动的流体压力源430。在所示实施例中,流体压力源430是充有流体(例如盐水)的注射器,但是,在另选实施例中,流体压力源430可以是泵或其它另选的流体压力源。
另外参看图9A、9B,诸如上述图4A、4B所示的预塑形偏转件180的预塑形偏转件可以被完全配置或集成到可塑形天线装置410中,因此可塑形天线装置410可以呈现出如图9A所示的预塑形偏转件180的形状。预塑形偏转件180可以设置在导管400的一个或多个管腔150中,可以设置在天线250中,可以设置在导管体120的壁中,或者导管体120可以被预先塑形。为了使可塑形天线装置410变直为如图9B所示的形状,可以由流体压力源430将流体压力给送到导管400的远端部分140的内部。例如,在锁闭开关420的阀处于打开位置的情况下,可以压按注射器流体压力源的柱塞,致使流体从注射器注入到导管体120的远端部分140。这就使得施加到可塑形天线装置410中的压力通常沿着图示压力箭头方向分布,使得预塑形的可塑形天线装置410伸直。通过关闭锁闭开关420上的阀以使导管体120中的流体不能逸出导管体120,就可使可塑形天线装置410保持如图9B所示的伸直形状。为了使可塑形天线装置410回复到如图9A所示的形状,可以打开锁闭开关420上的阀以使注射器流体压力源430的柱塞缩退回来。这样就消除了导管体120远端部分140中的流体,而可塑形天线装置410就回复了预塑形偏转件的形状。因此,可塑形天线装置410中的流体压力起到了与上述偏转调整件同样的作用,而对可塑形天线装置的流体压力控制(例如,通过注射器流体压力源430和锁闭开关420)相当于偏转控制机构。
在另一实施例中,其中预塑形偏转件180设置在天线250上,设置在导管体120的壁中,或导管体120是预塑形的,诸如偏转调整件190的偏转调整件能够可滑移地容纳在细长管腔150中用以对可塑形天线装置的偏转进行调整。
现在将对可塑形天线装置的使用情况进行大致介绍。通过开口将导管插入病人身体脉管中,伸入到要消融的目标组织附近。在插入之前,可塑形天线装置设置为笔直形状。一旦插入,操纵导管的远端部分140以抵达需要消融的位置附近。可以使用导管的操纵装置来操纵导管通过病人的脉管系统到达目标消融位点,并且/或者可以利用上述的可塑形天线装置和偏转控制机构来实现操纵导管的远端部分140到达目标消融位点。利用拇指滑动触头200、可转动卡圈230,或通过控制给可塑形天线装置的流体压力(例如,利用导管400),来实现方向控制。
设置在导管的远端部分140上的一个或多个射频不透过标记可有助于可塑形天线装置的放置、塑形和偏转。如本领域所公知的那样,通过适当的x射线或荧光装置可以检测出该一个或多个射频不透过标记的位置。在将导管的远端部分140放置到组织消融位点附近之后,可以通过上述任意对可塑形天线装置的塑形方法将可塑形天线装置塑形为所希望的形状(例如,朝着偏转调整件的远侧方向展开(deploying)预塑形偏转件由此使可塑形天线装置呈现为预塑形偏转件的远端部分的形状,向着预塑形偏转件远端部分的近侧方向收撤缩回预塑形偏转件由此使可塑形天线装置呈现为预塑形偏转件的远端部分的形状,释放消除导管远端部分140的流体压力由此使可塑形天线装置呈现为预塑形偏转件的远端部分的形状)。操纵可塑形天线装置以达到所希望形状,从而使对目标体组织的消融达到最佳效果。使用心脏内ECG电极可进一步有助于使RF天线250对准目标消融位点。
举个例子,在对象为心房的情况下,可以调整可塑形天线装置的形状以适合心房内壁的轮廓起伏,以便让至少一部分可塑形天线装置搁放到心房壁上,形成心房和可塑形天线装置之间的线接触。可塑形天线装置足够柔韧,以便让至少一部分可塑形天线装置适合身体脉管的内部轮廓并且搁放抵靠其内壁。当心房壁脉动时,与心房壁接触的可塑形天线装置也将一齐移动,因此与希望进行处理的身体脉管部位形成贴附且稳定的关系。
一旦当可塑形天线装置已达成所希望的塑造外形并且平行对准所希望消融路径,则可塑形天线装置的形状就会被在适当的位置稳固下来(例如,利用擒纵装置、压力操纵开关、自锁机构,将锁闭开关420的阀移到关闭位置上)。之后,通过施用射频能量可实现组织消融。根据特定的方法步骤要求,可通过在施用RF能量之后随即沿着各种目标组织位置对RF天线进行定位来调整消融的长度。因此,易于形成长而连续的消融线,从而消除了在已消融的组织路径之间电脉冲泄露的危险。
上述这些过程可以对心房内其它位置或特定手术要求所需的身体其它部位进行重复或加以执行。
通过上述说明,显而易见,本发明的可塑形天线装置能够使电极快速、便捷而准确地到达目标组织上的最佳位置,并且在施加RF能量给目标组织实施治疗期间保持稳定。
以下将参照图10-11C对用于消融身体脉管(例如但不限于病人的心脏)的生物组织的射频导管500的另一实施例进行说明。导管500适合插入到身体的脉管内,且包括可偏转的导管导向件510,导向件510设置位于导管管腔520内。除了上述可塑形天线装置之外可将可偏转导管导向件510设置位于导管500内。另选地,导管500可包括可偏转导管导向件510而不包括可塑形天线装置。射频或微波天线530设置在导管500的远端部分540。天线530接收并发射用于组织消融的射频(微波)能量。
导管导向件510规定了用于组织消融的天线530的消融路径。在本发明的典型实施例中,导管导向件510包括与导管手柄570的滑动控制机构560相连接的细长部分,导管手柄570的滑动控制机构560处于身体脉管的外面,用于偏转、操纵、定位与展开(deployment)控制。
连接缆线580从导管手柄570的近端590延伸而出,且包括电接插件或电连接件600,用于连接导管500与一个或多个集成的和/或分立的电子装置,例如但不限于RF发生器、ECG系统以及用于消融处理的控制器(未示出)。
导管位置控制器610可从导管手柄570的近端590延伸而出,用于操纵导管500进入病人的脉管和/或用于控制导管导向件510的轴向移动。
RF天线530可包括以螺旋形式盘绕形成柔性螺旋线圈620的导电材料或导线条带。线圈绕组的适当的直径、节距和长度以及电导材料或导线条的选择,都是设计选择因素,可根据特定手术和柔韧性要求来改变这些因素。
为了提高其外形的完整性,RF天线530设置有内管、管状衬套或套件630,其具有从螺旋线圈620朝着近端一侧向导管500的手柄570延伸的柔性的延伸体。套件630由电介质材料构成,其降低了螺旋线圈620金属表面和管腔520内体液之间短路的风险,并且有助于将电磁场限制在管腔520之外。
螺旋线圈620与第一导体或内导体640电连接,第一导体或内导体640又通过电连接件600与RF能量源连接。内导体640由柔性网或编织线结构制成,或者由薄膜导电材料制成,其外接于套件630的外表面,且从螺旋线圈620朝着近端一侧向手柄570延伸。在这个实施例中,内导体640呈现为细长的管状结构形状。套件630的内壁限定了管腔520。
内导体640沿其外周缘表面涂覆有聚合体电介质保护涂料或层650,并向近端一侧延伸到手柄570。电介质层650用做第二导体或外导体660的衬底,且将内导体640和外导体660电隔离。
螺旋线圈620缠绕在电介质层650的外周缘表面上,且电连接到外导体660。而后,外导体660电连接到RF能量源。
在图示的实施例中,外导体660由导电材料制成,其外接于电介质层650周围,且从螺旋线圈620朝着近端一侧伸向手柄570延伸。外导体660可由编织线结构或薄膜导电材料制成。
螺旋线圈620可沿其外周缘表面涂覆聚合体电介质密封剂,用以确保螺旋线圈620的结构整体性,并且用以保护其不受生物环境的侵害。该密封剂由合适材料制成,例如硅或聚合体基材料或者橡胶化合物。
类似地,由相同材料制成的外壳670被提供用于包裹螺旋线圈620和外导体660,从而提供与生物环境之间的电磁隔离和热隔离。
因此,导管500的远端部分540包括一组电导体,每个电导体都构造为细长管状形状,并且彼此以基本上共轴且周边对准的方式排列,从而形成从螺旋线圈620朝着近端一侧向手柄570延伸的用以传送RF能量的空心电缆。这种结构的优越性在于,因为管状导体640、660(其可为螺旋缠绕形式)和螺旋线圈天线530使导电表面面积最大化,且因此,使微波能量传送效率最大化,而且具有容纳导管导向件和/或可塑形天线装置的中心共轴管腔。尽管图示给出的管腔520是与导体640、660共轴的,但在另选实施例中,管腔520可以包括一个或多个管腔,该一个或多个管腔可以不与导体640、660共轴。
导管导向件510可以从位于身体脉管中的导管500纵向展开并且可以柔性地顺应身体脉管的轮廓起伏。利用一个或多个射频不透过标记以及沿导管导向件510安设的心内电极,可有助于将导管导向件510对准所希望的组织消融路径。在一个另选实施例中,可以使导管导向件500相对于导管500固定。
导管导向件510包括细长柔性脊(spine)680,该细长柔性脊680具有包含远端防损端头(atraumatic tip)700在内的远端部分690。远端部分690可连接到位于导管500远端的天线530的远端部分,使得防损端头700与天线530相邻。在一个另选实施例中,导管导向件510可固定到导管500,以使得防损端头700从导管500端部延伸一段距离。
端头700是防损的,从而减少了刺戳身体组织的可能性。任选地,由不透过辐射的材料制成防损端头700,从而有助于在实施消融术期间识别天线530的位置。
脊680由一个或多个类似于弹簧的柔性材料制成。举例来说,在本发明的一个实施例中,脊680由不锈钢制成。在本发明的另一个实施例中,脊680是由多个细长元件构成的,这些细长元件具有预先设定的尺寸大小并且连接形成一个整体。可将脊680的近端部分固定至滑动控制机构560。
在脊680的另一个实施例中,脊680的远端部分690比脊680的其余部分更为柔韧,即,脊680至少在其部分长度上具有可变的刚度。这种柔韧性的差异可以通过改变脊680的横截剖面的形状和大小来获取。
在脊680的另一个实施例中,至少脊680的远端部分690是由双金属或形状记忆合金(“SMA”)材料制成的,例如以镍钛诺(nitinol)商标售卖的镍钛合金。另选地,整个脊680或者与远端部分690相比更大的一部分脊680是由这种SMA材料制成的。使用SMA材料能够确保导管导向件510或导管500的远端部分540的预塑形与导管体一致从而达到所希望的曲线轮廓,因此有助于根据身体脉管的内轮廓或几何结构来导引和放置导管500。SMA材料预塑形的装置和方法是本领域所公知的,因而不在此进行详细讨论。
图17A和17B显示了导管导向件510预塑形的应用实例。在图17A中,脊680如图所示具有预塑形的逆时针方向的钩或弯。在图17B中,脊680如图所示具有预塑形的顺时针方向的钩或弯。
下面将参照图12A-19对导管导向件710的另一实施例进行说明。导管导向件710包括脊680、防损端头700以及第二细长条带或拉线筋(pullwire tendon)720,拉线筋720在导管管腔520内沿着脊680长度方向延伸分布。拉线筋720由弹性的类似弹簧的材料构成。拉线筋720也可以由SMA材料构成,其任选地可被预先塑形为适合内部身体脉管的特定几何形状要求的样子。拉线筋720的远端部分固定于防损端头700。脊680的远端部分690也固定在此位置上。拉线筋720的近端部分730(图19)可通过接合件760固定于滑动控制机构750的拇指滑动触头740。拇指滑动触头740可以沿着手柄570的手柄套780的纵向隙缝770滑动地啮合。拇指滑动触头740沿纵向隙缝770的纵向移动可确保医师能够偏转导管导向件的远端部分690。可在拇指滑动触头740中结合形成摩擦保持机构(未示出),用以保持手柄在纵向隙缝770中的夹持位置。许多这种装置都可以从市场上获取到。这种装置的例子包括擒纵装置、压力操纵开关或自锁机构。
脊680的近端部分790在电接点800处连接到手柄570。电接点800设置在电导体810的远端部分。ECG导体820从电接点800起延伸穿过连接缆线580,用以在外部ECG系统和位于导管500远端部分540的一个或多个ECG电极之间传送ECG信号。一个或多个附加导体可延伸穿过连接缆线580,用以连接导管500的电学特征和一个或多个外部电学系统。连接缆线580包括有绝缘外壳830并且终止于电连接件600,电连接件600用于连接导管500和一个或多个外部电学系统。
特别参看图12A-14,脊680的远端部分690可比脊680的近端部分840更为柔韧。这种柔韧性的差异可以通过改变脊680的横截剖面的形状和大小来获取。例如,脊680的远端部分690可具有横截面宽度W1和厚度T1,而脊680的近端部分840可具有横截面宽度W2和厚度T2。在所示实施例中,远端部分690的横截面宽度W1宽而远端部分690的厚度T1窄,而近端部分840的横截面宽度W2窄而近端部分840的厚度T2宽。这种结构连同如图所示的拉线筋720的定向可致使脊680的远端部分690与近端部分840相比更为柔韧。
图13和14分别显示了导管500的远端部分540处于笔直构型和偏转构型时的情形。在图13所示的笔直构型中,拉线筋720没有拉拽防损端头700。在图14所示的偏转构型中,在拉线筋720拉拽防损端头700的作用下导管导向件710被偏转或者弯曲。
如上文结合图17A和17B所述,脊680的远端部分690可由双金属或形状记忆合金(“SMA”)材料制成,以确保导管导向件710或导管500的远端部分540的预塑形与导管体一致从而达到所希望的直线轮廓。图18A和18B显示了导管导向件710的预塑形结构的应用实例。在图18A中,脊680如图所示具有预塑形的逆时针方向的钩或弯。在图18B中,脊680如图所示具有预塑形的顺时针方向的钩或弯。通过滑动控制机构750使拉线筋720纵向移动,可让导管导向件710和导管500的远端部分690呈现出预塑形构型或笔直构型。
参看图15和16,其中示出了导管导向件845的一个另选实施例。在这个实施例中,导管导向件845包括细长的管状体850,管状体850在其大部分或整个长度上环绕并包裹了脊680和拉线筋740。细长管状体850的远端部分860可具有近于环状的剖露出脊680和拉线筋720的横截面。细长管状体850包括管状管腔870,脊680和拉线筋720从中延伸穿过。
在图16中,导管导向件845的远端部分向远侧延伸超出导管体的端部以限定出导向件引导部分(guide leader)880。导向件引导部分880的长度L可根据由RF天线530和防损端头700之间的相对位置或距离定义的具体应用而变化。防损端头700用于锚固导管500。可预先确定导向件引导部分880的长度L并在制造导管500的过程中使长度L固定。另选地,可对导向件引导部分880的长度L进行调整,并且一旦达到所希望的长度L,则锁定滑动控制机构以防止导向件引导部分长度L改变。在一个典型实施例中,导向件引导部分880具有大约3厘米的长度L。
在应用中,导管导向件845用于建立与身体脉管表面的定位和接触。通过防损的远端端头700将导管500(和螺旋天线530)锚固到身体脉管上,减小了刺穿的风险。导管导向件845的柔韧性使其能够挠曲以适应身体脉管的轮廓起伏,从而确保射频天线或微波天线530的消融路径安全可靠。可偏转导管导向件845设置位于管腔520中,导管500的远端部分540与导管导向件845的直线构型适应一致。拉线筋720与导管导向件845的防损端头700相连,进一步提供了对导管导向件845的操纵能力。在滑动控制机构750处单独对脊680和拉线筋720进行操控或者成对(或远端或近端地)操控,进一步提供了对导管导向件845的形状改变(且因此导管500地远端部分540形状改变)和操纵方向改变。因此,除了提供对导管导向件845的预塑形(且因此,导管500的远端部分540被预塑形)之外,导管100还提供了在身体脉管中的基本性能和通用性。
任选地,可将一个或多个心内心电图(“ECG”)电极安设在导管导向件845之上或之中,以帮助收集使用导管100时的心内电信号。
下面将参照图20A-20C对采用双向偏转控制的导管导向件900的实施例加以说明。导管导向件900与上述导管导向件710相类似,只是导管导向件900包括有一对相对设置的拉线筋930、940,拉线筋930、940是沿着导管导向件900的长度方向延伸设置,用以提供对管腔950中的脊915的双向偏转或操纵。拉线筋930、940可滑动地设置在细长筋槽(tendon grooves)960中。可将拉线筋930、940的远端可固定至防损端头970。脊915包括塑形的半柔性脊920和平的柔性脊910,半柔性脊920延伸占据了脊915的大部分长度,而平的柔性脊910则位于脊915的远端部分且从塑形的半柔性脊920的远端980延伸。平的柔性脊910和塑形的半柔性脊920可由上述针对脊680的任意材料以及适于本文所述应用的所有其它材料或材料混合物(例如,金属、聚合物)制成。拉线筋930、940的近端可与滑动控制机构相连接,用以控制拉线筋930、940的移动,且因此控制导管导向件900的偏转。
使用中,滑动控制机构的驱动可导致一个拉线筋930拉拽防损端头970。这就导致脊915朝筋930的方向弯曲或偏转。同样,滑动控制机构的驱动还可导致相对的侧拉线筋940以相反方向拉拽防损端头970。导管导向件900的双向偏转控制给医师提供了更多对导管远端部分构型的控制。尽管前面描述的是单向偏转控制和双向偏转控制,但可对导管导向件900进行构造以实现其它数目个方向的控制(例如三个方向的偏转控制,等等)。
由上述说明,显而易见本发明不仅有效减少了(若不能避免的话)对消融导管天线的重复性精确定位的高精度放置要求(如现有技术的做法),而且还为在身体脉管中使用天线530提供了基本导引能力。本发明方便地沿着限定出组织消融路径的导管导向件轨迹来放置射频天线530。同时,本发明确保消融路径连续并且实际上减少了消融位点之间电脉冲泄露(如现有技术所表现的那样)的风险。因此,本发明实质上是无须进行开心手术就实现了梅兹(Maze)法获取曲线伤痕的目的。本发明的这些和其它方面的特征以及优点通常下面的详细说明和附图将变得更加明晰,这些附图通过示例说明了本发明的技术特征。
对本领域普通技术人员而言显而易见的是,可以容易地对本发明所述实际思路做进一步的改变或变型,但这不会背离本发明如后面的权利要求书所限定的精神和范围。
权利要求
1.一种用于消融病人身体脉管内的生物组织的可塑形曲线射频天线装置,包括a)柔性导管体,其包括远端部分和细长管腔;b)同轴对准的内、外导体,它们在所述导管内延伸并且与所述管腔共轴;以及c)柔性的可塑形曲线射频天线,其由所述柔性导管体的所述远端部分承载,并且与所述同轴对准的内、外导体电连接,所述柔性的可塑形曲线射频天线适于接收和发射用于消融生物组织的射频能量,并且可在笔直构型和曲线构型之间进行塑形,用以在病人的身体脉管内的生物组织中产生曲线形消融图案。
2.如权利要求1所述的天线装置,还包括预塑形偏转件和偏转调整件,所述预塑形偏转件由所述柔性可塑形曲线射频天线承载,并且适合于产生预塑形记忆构型,所述偏转调整件与所述预塑形偏转件操作性关联,用以调整所述预塑形偏转件的偏转,其中可对所述预塑形偏转件和所述偏转调整件中的至少一个进行控制以在笔直构型和预塑形记忆曲线构型之间改变所述柔性可塑形曲线射频天线的构型。
3.如权利要求2所述的天线装置,其特征在于,所述预塑形偏转件是细长、柔韧的脊,其由形状记忆合金制成并纵向设置在所述细长管腔内。
4.如权利要求1或2所述的天线装置,其特征在于,所述偏转调整件是细长、刚性的元件,其与所述细长管腔内的所述预塑形偏转件纵向地相邻。
5.如权利要求2-4中任意一个所述的天线装置,其特征在于,所述预塑形偏转件和所述偏转调整件中的至少一个是可移动的,用以使所述柔性曲线射频天线的构型在笔直构型和预塑形记忆曲线构型之间改变。
6.如权利要求2所述的天线装置,还包括流体压力源,并且所述偏转调整件是在所述细长管腔内来自所述流体压力源的流体压力。
7.如权利要求1-6中任意一个所述的天线装置,还包括可偏转导管导向件,所述可偏转导管导向件设置在所述细长管腔内并朝着远端一侧终止于所述导管的末端,从而限定出生物消融路径。
8.如权利要求7所述的天线装置,其特征在于,所述可偏转导管导向件的所述远端部分包括防损端头。
9.如权利要求7或8所述的天线装置,其特征在于,所述可偏转导管导向件从所述远端开口朝着远端一侧延伸以限定出导向件导引部分。
10.如权利要求9所述的天线装置,其特征在于,所述导向件导引部分具有可手控调整的长度。
11.如权利要求9所述的天线装置,其特征在于,所述导向件导引部分具有预先设定的固定长度。
12.如权利要求7-11中任意一个所述的天线装置,其特征在于,所述可偏转导管导向件在沿其至少一部分长度上具有可变的刚度。
13.如权利要求7-12中任意一个所述的天线装置,其特征在于,所述可偏转导管导向件还包括拉线筋,所述拉线筋可滑动地设置在所述导管管腔内用以使所述导管导向件偏转。
14.如权利要求1-13中任意一个所述的天线装置,其特征在于,所述射频天线适用于在高于300兆赫兹的频率下接收和发射微波能量。
15.一种消融病人身体脉管内的生物组织的方法,包括步骤a)提供用于消融病人身体脉管内的生物组织的可塑形曲线射频天线装置,该可塑形曲线射频天线装置包括柔性导管体,其包括远端部分和细长管腔;同轴对准的内、外导体,它们在所述导管内延伸并且与所述管腔共轴;以及柔性的可塑形曲线射频天线,其由所述柔性导管体的远端部分承载,并且与所述同轴对准的内、外导体电连接,所述柔性的可塑形曲线射频天线适用于接收和发射用于消融生物组织的射频能量,并且可在笔直构型和曲线构型之间进行塑形,用以在病人的身体脉管内的生物组织中产生曲线形消融图案;b)将所述可塑形曲线射频天线装置输送至病人身体脉管内的目标身体组织消融位点;c)将所述柔性曲线射频天线的构型从笔直构型改变为预塑形记忆曲线构型,从而使所述柔性曲线射频天线接近需要进行消融的身体组织;以及d)利用所述柔性可塑形曲线射频天线消融所述身体组织。
16.如权利要求15的方法,其特征在于,所述可塑形曲线射频天线装置还包括预塑形偏转件和偏转调整件,所述预塑形偏转件由所述柔性曲线射频天线承载,并且适合于产生预塑形记忆构型,所述偏转调整件与所述预塑形偏转件操作性关联,用以调整所述预塑形偏转件的偏转,并且对所述柔性曲线射频天线的构型的改变包括对所述预塑形偏转件和所述偏转调整件中至少一个进行控制以将所述柔性曲线射频天线的构型从笔直构型改变为预塑形记忆曲线构型,从而使所述柔性曲线射频天线接近需要进行消融的身体组织。
17.如权利要求16所述的方法,其特征在于,所述预塑形偏转件是细长、柔韧的脊,其由形状记忆合金制成并纵向设置在所述细长管腔内。
18.如权利要求16或17所述的方法,其特征在于,所述偏转调整件是细长、刚性的元件,其与所述细长管腔内的所述预塑形偏转件纵向地相邻。
19.如权利要求16-18中任意一个所述的方法,其特征在于,对所述预塑形偏转件和所述偏转调整件中的至少一个的控制包括移动所述预塑形偏转件和所述偏转调整件中的至少一个,以将所述柔性曲线射频天线的构型从笔直构型改变为预塑形记忆构型。
20.如权利要求16或17所述的方法,还包括流体压力源,并且所述偏转调整件是在所述细长管腔内来自所述流体压力源的流体压力,而且控制所述预塑形偏转件和所述偏转调整件中的至少一个包括从所述流体压力源提供流体压力给所述细长管腔以将所述柔性曲线射频天线的构型从笔直构型改变为预塑形记忆构型。
21.如权利要求16-20中任意一个所述的方法,其特征在于,所述可塑形曲线射频天线装置包括设置在所述细长管腔内的可偏转导管导向件,所述导管导向件包括末端;并且该方法还包括通过将所述导管导向件的末端锚固到身体脉管中并且使所述导管导向件偏转以使导管的射频天线接近需要进行消融的身体组织,从而将导管的射频天线定位到需要进行消融的身体组织附近。
22.如权利要求21所述的方法,其特征在于,所述可偏转导管导向件的远端部分包括防损端头,并且将所述导管导向件的末端锚固到身体脉管中包括将所述导管导向件的防损端头锚固到身体脉管中。
23.如权利要求21或22所述的方法,其特征在于,所述可偏转导管导向件从所述导管体的端部朝着远端一侧延伸以限定出导向件导引部分,并且使所述导管导向件偏转包括至少使所述导向件导引部分偏转。
24.如权利要求21-23中任意一个所述的方法,其特征在于,所述可偏转导管导向件还包括拉线筋,所述拉线筋可滑动地设置在所述细长管腔内,并且使所述导管导向件偏转包括利用所述拉线筋来使所述导管导向件偏转。
25.如权利要求21-24中任意一个所述的方法,其特征在于,所述导向件导引部分具有可手控调整的长度,而且该方法还包括在使所述导管导向件偏转之前手控调整所述导向件导引部分的长度。
26.如权利要求21-24中任意一个所述的方法,其特征在于,所述导向件导引部分具有预先设定的固定长度。
27.如权利要求15-26中任意一个所述的方法,其特征在于,所述射频天线适用于在高于300兆赫兹的频率下接收和发射微波能量。
全文摘要
一种用于消融病人身体脉管内的生物组织的可塑形曲线射频天线装置(110),包括具有远端部分(140)和细长管腔(150)的柔性导管体(120)。同轴对准的内、外导体(640、660)在导管(120)内延伸并且与管腔(150)共轴。柔性的可塑形曲线射频天线(250)由柔性导管体(120)的远端部分承载,并且与同轴对准的内、外导体(640、660)电连接。柔性的可塑形曲线射频天线(250)适于接收和发射用于消融生物组织的射频能量,并且可在笔直构型(190)和曲线构型(180)之间进行塑形,用以在病人的身体脉管内的生物组织中产生曲线形消融图案。
文档编号A61B18/14GK1625371SQ02826148
公开日2005年6月8日 申请日期2002年11月27日 优先权日2001年11月29日
发明者西奥多C·奥士比, 罗铭勋, 乔治L·梁 申请人:麦迪威公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1