具有可变支承件的管状结构的制作方法

文档序号:13482058阅读:231来源:国知局

相关申请的交叉引用

本申请是2015年1月20日提交的us62/125,294和2015年7月24日提交的us62/196,902的非临时申请,其公开内容通过引用并入本文中。



背景技术:

这些发明涉及柔性轴,包括具有内腔(lumen)的轴,且涉及轴管状结构,包括可适用于经过哺乳动物内腔(包括脉管系统和其它内腔,包括人的)的那些中的两者,涉及具有可变支承件的此类结构,以及涉及导管。



技术实现要素:

在内腔部件的一个实例中,一种柔性内腔部件包括内部件,且具有内部件外的外部件。中间部件在内部件与外部件之间,其中外部件可围绕中间部件套缩,且其中外部件和中间部件构造成使得外部件围绕中间部件的套缩增大组件的刚性。在一个构造中,内部件包括内腔,例如,内腔可收纳构件,包括但不限于导线、扩张器、治疗装置、介入装置和/或其它构件。在该或另一个构造中,中间部件可采用一定数目的构造。在中间部件的构造的一个实例中,中间部件可为支架,例如,在医疗行业中大体上理解为用于植入体内的支架,或医疗部件可为骨架或可动支承结构,例如,其可为可弯曲的、可挠曲的或以其它方式可动的,包括具有由开放空间分开的线性或弯曲节段的骨架或可动支承结构。线性和/或弯曲节段可具有重复图案或非重复图案。在前述和附加构造中的任何中,中间部件可包围在封壳内,例如,防止中间部件与组件可插入其中的脉管系统之间的接触的一种。在一个构造中,中间部件可密封在腔内,在一个实例中是环形腔,且在另一个构造中,中间部件可包围在腔内,其完全密封或闭合,但有允许流体进入和离开腔的一个或更多个流体通路。

在内腔部件的另一个实例中,包括任何前述实例和构造,柔性内腔部件包括内部件,中间结构部件在内部件的一部分上延伸。外部件在中间结构部件的至少一部分(且在本例中是全部)上延伸。在柔性内腔部件、中间结构部件和外部件的松弛状态中,中间结构部件具有第一外部大小(在至少一些实例中是外径),且外部件具有小于结构部件的第一外部大小的至少一个第二内部大小(在至少一些实例中是内径)。在此构造中,外部件可朝内部件偏压或压制中间结构部件。例如,外部件可具有压制中间结构部件的未充胀或未膨胀的构造。在一个构造中,松弛构造中的未组装的外部件具有内径,在外部件定位在内部件上时,内径小于中间结构部件的构造中的中间结构部件的外径。在未组装的外部件在外部件处于松弛构造中时具有小于中间结构部件的外径的内径的实例中,外部件可充分地膨胀或扩大,以在中间结构部件上滑动,且按期望定位,且然后释放,在此情况下,外部件朝松弛构造返回,压在中间结构部件上。例如,外部件是回弹柔性的。中间结构部件单独地或与内部件一起阻止外部件的进一步的松弛。就最终组件而言,且在设备准备使用时,中间结构部件在来自外部件的回弹的压缩下。

在内腔结构的另一个实例中,内腔元件或管状元件可与一个或更多个附加元件组合,以形成嵌套结构,其中至少两个构件可为同心的,其中至少两个构件可为管状的,且其中一个或更多个结构支承元件可位于内腔或管状元件和外元件的中间。在结构支承元件的一个构造中,结构支承元件具有骨架或框架构造,例如,由开放空间分开的多个互连的直的或弯曲的元件。在一个实例中,多个互连的直的或弯曲的元件可高度地互连,或稀疏地互连,或之间。直的或弯曲的元件可为支柱,其中的各个均可在相应端处与节点处的一个或更多个其它支柱互连。节点可具有两个支柱,从而有助于更稀疏的互连结构,具有三个支柱,从而有助于较大的互连结构,具有四个支柱,有助于朝更大的互连结构,以此类推。类似地,所有节点都可具有相同数目的支柱,或可存在具有不同数目的支柱的成组节点,其中给定的组具有相同数目的节点,其也有助于互连性的水平。结构支承元件可具有铰接部件,且/或可包括由一个或更多个连杆(例如,支柱)互连的蜂窝结构。在许多实例中,对于许多程序中的任何,结构支承元件可为支架,例如,在医疗行业中大体上理解为用于植入体内的支架。支架可为开室支架、闭室支架、混合室支架、开槽管支架,或其它支架构造,大体上包括网孔管。支架的实例包括us5,843,120中所示的柔性可膨胀支架构造。结构支承元件是柔性的,且可回到其原始形式,而不显著失去原始形式。它也可为可套缩和可膨胀的,而不显著失去原始形式。

在本文所述的中间结构部件的任何实例中,中间结构部件可定位在封壳内,例如,外管状元件,该封壳装固到内腔元件或管状元件上,使得中间结构部件在封壳与内腔元件或内管状元件之间。封壳可密封,同时仍允许与加压流体源的流体连通,以例如利用液体或气体来扩大或充胀封壳。在一个实例中,扩大通过外盖(例如,外管状元件)形式的封壳的膨胀发生。在一些实施例中,扩大释放了中间结构部件,允许其更自由移动。

在本文提到的中间结构部件、中部结构部件、支架或管状网孔的任何实例中,此结构部件可包括可摩擦地接合组件的相邻表面的内周表面和/或外周表面。例如,就在内管状元件和外管状元件之间延伸的结构部件而言,接触内管状元件中的一个或另一个的结构部件的表面可充分地压入表面或多个表面,以有助于限制其间的相对移动。在一些构造中,结构部件上的表面可足够良好地限定成具有可察觉的角或非圆形表面,其可有助于限制结构部件与相邻管状部件之间的相对移动。在其它构造中,结构部件上的表面精整可有助于增大使结构部件和相邻的接触表面或多个接触表面关于彼此移动所需的摩擦力。此结构部件可为金属,包括但不限于镍钛诺、不锈钢和抛光或未抛光相似的金属,或其它材料。

在可构造有任何前述实例或构造的另一个实例中,中间结构部件的实例可在变刚性导管中使用。在一个实例中,导管在一个状态中具有第一柔性,且在第二状态中具有第二柔性。一个状态可为围绕结构支承元件的充胀的外封壳、外管或外元件,该结构支承元件在导管的内腔元件上。外元件扩大或充胀来允许导管中的柔性增大。外元件可扩大或充胀足以减小外元件与结构支承元件之间的表面接触面积的量,这可留下从95%到0的任何位置的外元件与结构支承元件之间的表面接触面积。减小的表面接触表面可导致内腔元件(本例中是导管)的至少一部分的较大柔性。结构支承元件与外元件之间的减小的或零表面接触面积增大了结构支承元件的区域中的导管的移动自由度,例如,使得结构支承元件与外元件之间的摩擦接合的任何贡献减小或消除,其中对移动的其余阻力由结构支承元件自身、内腔元件和它们两者之间的任何表面接触面积带来。如果外元件受限、减小、泄放或以其它方式与结构支承元件更大接触(例如,通过取回流体或通过以其它方式施加真空或负压或通过外元件中的弹性张力),则内腔元件(本例中是导管)的至少一部分的柔性减小,例如,外元件与结构支承元件的相邻的表面或多个表面之间的较大摩擦接触引起。在前文的一个构造中,外元件的扩大或充胀通过介质(例如,流体,例如,液体如盐水)注入或灌入结构支承元件的区域中而发生。流体压力可用于增大或扩大外元件,例如,增大外元件的外部大小,使得外元件的内表面不再接触结构支承元件的一个或更多个相邻表面。在一个实例中,外元件充分地扩大或充胀来消除与结构支承元件的全部接触。流体可为盐水和对比物(气体,如,co2)或其它适合的流体的混合物。在一些构造中,外元件从结构支承元件的释放还有助于从导管的内腔元件释放结构支承元件,例如,减小或消除结构支承元件与导管的内腔元件的相邻表面之间的摩擦接合。

在可构造有任何前述实例或构造的另一个实例中,中间结构部件的实例可在可变刚性的导管中使用,由此导管的部分的刚性通过压制或接触结构支承元件改变,该结构支承元件收纳在腔内,或以其它方式不可在不破坏导管的情况下从导管除去,且又通过不压制或除去与结构支承元件的接触来改变。在一个实例中,导管具有导管的腔中的结构支承元件,且流体在腔中使用来按期望允许或除去与结构支承元件的接触。在一个实例中,流体用于加压腔且减小与结构支承元件的接触量,且减小压力会增大与结构支承元件的接触量。在减小压力来增大与结构支承元件的接触量的一个实例中,外元件中的固有回弹性可用于在流体压力减小时增大外元件与结构支承元件之间的接触。作为备选,取决于组件的设计,压力增大可用于增大与此结构支承元件的摩擦接触。

在可构造有任何前述实例或构造的另一个实例中,中间结构部件的实例可在具有内腔部件、结构支承元件(例如,支架)、管状网孔或其它结构部件的导管中使用,且导管还可包括结构支承元件的至少一部分上的外管状元件,其中外管状元件构造成处于常套缩状态。在一个构造中,常套缩状态是通过外管状元件的材料的弹性收缩而发生的一种,且在一个构造中,弹性收缩将压力施加到结构支承元件上。相对于结构支承元件的压力产生结构支承元件与外管状元件的材料之间的摩擦力,以阻止其间的移动。在一个实例中,外管状元件膨胀且放在内腔元件上的结构支承元件上,且然后允许释放或围绕结构支承元件套缩,例如,构造成将向内的压力施加在结构支承元件上。外管状元件可在其整个长度中在几何形状和材料上是大体上一致的,但也可具有在其长度和/或圆周上并入外管状元件中的不同特征,例如,硬度、厚度、几何形状和构造的变化(例如,单件对多件)。

可构造有任何前述实例或构造的另一个实例中,中间结构部件可在具有内腔部件、外管状部件和定位在内腔部件与外管状部件之间的结构支承部件的导管中使用,由此增大或减小结构支承部件的一个或更多个表面与内腔部件和外管状部件中的一个或两个之间的接触改变导管的一部分的刚性。增大或减小接触可通过充胀或扩大(例如,外管状部件和/或内腔部件的充胀或扩大)来完成,例如,足以减小一个或更多个元件与结构支承部件的一个或更多个表面的表面接触面积。在一个实例中,导管的柔性可通过关于结构支承部件扩大外管状部件来增大,例如,通过将流体注入结构支承部件周围的腔中。导管的柔性可通过减小扩大来减小,例如,通过从结构支承部件周围的腔除去流体。

在可构造有任何前述实例或构造的另一个实例中,导管具有管状网孔,其具有由多个连接支柱互连的多个沿纵向延伸的支柱。多个连接支柱中的独立一个可连接相应的沿周向或弧形地间隔开的纵向支柱。在一个实例中,一系列对准的纵向支柱沿周向或弧形地与另一系列的对准的纵向支柱间隔开,且沿纵向偏移。在另一个实例中,连接支柱与相应的纵向支柱之间的相应的角是锐角。锐角可为大于零和小于90°之间的任何位置的角。

在可构造有任何前述实例或构造的另一个实例中,中间结构部件可在内管状元件与外管状元件之间使用来用于提供组件刚性的变化。在一个构造中,中间结构部件是包括多个元件的柔性圆柱部件,其中柔性圆柱部件的横截面包括围绕圆柱布置的至少两个且在一些实例中是至少三个元件。在一个构造中,多个元件在中间结构部件内互联或互连。在另一个构造中,多个元件均具有离散的长度,且在另一个构造中,多个元件中的各个均具有小于结构支承部件的总体长度的长度,且在一个构造中,多个元件都不向近侧延伸至手动控制设备或近侧导管套节(hub)。在另一个构造中,多个元件是不同尺寸,且可包括不同的截面面积,且多个元件可在组中可识别,一组具有不同于另一组中的那些的相同特征,例如,不同的截面面积、不同尺寸、不同长度等。在一个实例中,中间结构部件中的一组中的元件数目大于另一组中的元件数目。在一个实例中,当处于松弛或中性状态中时,多个元件均匀地分布在圆柱上。在一个实例中,中间结构部件包括两组互连的元件,第一组以横截面布置成具有围绕圆柱大致均匀分布的第一数目的元件,且第二组具有大致均匀分布的第二数目的元件,在一个构造中,第一组中是六个,且第二组中是12个。在一个实例中,形成中间结构部件的多个元件在处于松弛或中性构造中时以大致对称形式布置。

在可构造有任何前述实例或构造的另一个实例中,可变刚性轴(例如,管状元件内腔元件、导管等)可包括关于轴布置的结构支承部件,使得轴可从第一形状构造(诸如制造的形状构造)变为不同的第二形状构造,且结构支承部件有助于将轴保持在第二形状构造。结构支承部件可有助于将轴保持在第二形状构造,即使施加一些外力,或甚至诸如原制造形状的制造记忆。在一个构造中,结构支承部件可处于第一构造,例如,释放或柔性的构造,且结构支承部件的位置中的轴可改变或再定形至第二形状构造,在该处,结构支承部件然后固定或加固、夹持或夹入来保持其构造。结果,结构支承部件的区域中的轴然后保持其第二形状构造,且阻止轴的该部分回到其第一形状构造,甚至存在轴上的外力或第一构造的固有记忆时。在一个实例中,导管可引入曲折体腔中,其中结构支承部件与释放或柔性构造的导管相关联。一旦导管处于体腔内的期望位置,在经过体腔的同时具有施加在其上的什么扭曲和转弯,则结构支承部件可加固、夹持或夹入其然后存在的第二形状,且与结构支承部件相关联的导管的该部分保持相同形状。在加固期间或在导管部分具有增大的刚性的同时,很少或没有力由导管施加到脉管壁上。因此,结构支承部件有助于在导管的该部分上施加定位于其中的体腔的形状,将导管的该部分给予了形状记忆,其甚至在外力存在和/或制造时灌注任何形状记忆时得到保持。在这些实例中,外管状元件还有助于固定、加固、夹持或夹住结构支承部件。因此,包括医疗导管的柔性轴元件可在较大数目的形状构造下加固和保持,而不管开始的形状构造或制造的形状构造。

如本文中所使用的,外管状部件、外部件、外元件、外盖、外封壳或外壁背景下的"外"是指关于结构支承部件的位置,且此背景下的"外"并非意指最外。

这些和其它实例连同随后简要描述的附图来下文中更完整阐释。

附图说明

图1为按照本发明的一个方面的导管组件的侧立面视图。

图2为图1的导管组件的纵截面。

图3为图2的组件的截面的详图。

图4为图3中所示的截面的详图。

图4a为图4在4a处截取的截面的一部分的详图。

图5为具有扩大或充胀的导管的一部分的图1中的导管组件的纵截面。

图6为图5中所述的导管组件的扩大或充胀部分的详图。

图7为图1中的导管组件的一部分的纵截面。

图8为导管组件的另一个实例的纵截面。

图9为具有扩大或充胀的导管的一部分的图8中的导管组件的纵截面。

图10为导管组件的一部分的等轴侧视图。

图11a为图10中的导管部分的横截面。

图11b为如图11a中所示的角处截取的图10的导管部分的截面的细节,但不一定在图11a中所示的轴向位置处。

图12为用作导管的结构支承元件的网孔图案的示意图。

图13为沿图12的线13-13截取的网孔图案中的两个支柱的横截面。

图14为使用图12的图案形成的管状网孔的简图。

图15为处于加载或弯曲构造的图14中的管状网孔的简图。

图16为用作结构支承元件的网孔图案的简图。

图17为用作结构支承元件的另一个网孔图案的简图。

图18为具有引导元件的脉管系统(例如,人体脉管系统)中的导管组件的简图。

图19为借助于引导元件前移的图18中的脉管系统中的导管组件的简图。

图20为具有就位的介入装置的图18中的脉管系统中的导管组件的简图。

图21为心轴和组装在其上的导管轴的简图。

图22为具有组装到其上的结构支承元件的图21中的示意图的简图。

图23为具有球囊充胀和组装设备的图22中的组件的简图。

图24为具有充胀的管状元件的图23中的组件的简图。

图25为具有插入充胀的管状元件中的心轴组件的图24中的组件的简图。

图26为具有插入充胀的管状元件的心轴和泄放的管状元件的图25中的组件的简图。

图27为具有组装在其上的导管的图21中的心轴组件的简图。

图28为构造成提供导管来与扩张器组件过盈配合的具有组装在其上的导管的另一个心轴组件的简图。

具体实施方式

结合附图的本说明书以一种方式提出了结合本发明的一个或更多个方面的设备和方法的实例,使得本领域的任何技术人员都可制作和使用本发明。实例提供了这对执行本发明构想出的最佳模式,但应当理解,在本发明的参数内可达成各种改型。

描述了内腔或管状结构以及制作和使用内腔或管状结构的方法的实例。取决于哪个或哪些特征并入给定结构或给定方法中,在结构或方法中可达成利益。例如,使用内管状元件和外管状元件(但其可不必是同心的)的管状结构可构造成在第一状态中具有一个刚度,且在另一个状态具有另一个刚度,例如,可构造成在处于松弛状态中时相对硬,且在触动管状结构中的一个或更多个元件时不太硬。内管状元件或外管状元件还可构造有中间结构框架,其可在处于支承构造中时提供更可靠的支承组件,例如,在内管状元件和外管状元件和结构框架压在一起时。内管状元件和外管状元件的构造也可用于在程序期间将管状元件更牢固地可释放地固定在期望的几何形状,例如,支承另一个元件(例如,介入装置或其它装置)的通路。

内和外的内腔元件或管状元件和中间结构框架的实例还可用于提供管状元件和结构框架的组件的每单位长度的更可靠支承结构。内管状元件和外管状元件和结构框架中的一个或更多个的元件可构造成结合每单位长度的期望柔性或刚性。在一个实例中,结构框架可在内管状元件与外管状元件中间使用,其提供每单位长度的给定柔性或刚性,且不同的结构框架可用于制造或组装具有每单位长度的不同柔性或刚性的另一个组合。在另一个实例中,结构框架可用于提供随结构框架附近的构件的充胀或泄放变化的给定柔性或刚性。在一个构造中,结构框架可在相邻构件压制其时提供增大的刚性,例如,在泄放使构件与结构框架接触时,且可在相邻构件具有与结构框架减少量的接触时提供减小的刚性。

在内腔或管状结构的一些构造中,也可在组件中达成改进,且在一些构造中,可产生具有带期望的刚性或柔性的组装或最终的构造的组件,且其中此类刚性或柔性可通过一个或更多个动作有选择地或间断地减小。例如,可产生一组件,其中在回弹性管状结构压制结构框架时,松弛或自然状态的构件压制结构框架。在另一个实例中,使用者可通过可释放地充胀或扩大管状结构中的至少一个来减小组件中的刚性或柔性,这可减小组件的至少一部分的刚性或柔性。

虑及本文的实例的描述,这些及其它利益将变得更清楚。然而,应当理解的是,参照特定实例所述的并非所有利益或特征都必须并入管状结构、构件或方法,以便达成由这些实例构想出的一个或更多个利益。此外,应当理解的是,实例的特征可并入管状结构、构件或方法来达成给定利益的一定测量,即使利益相比于其它可能的构造可能不是最佳的。例如,一个或更多个利益可不针对给定构造优化以便达成成本降低、效率或出于人们已知的其它原因选定特定产品构造或方法而优化。

许多管状结构构造与制作和使用管状结构的方法的实例在本文描述,且一些在一起使用时具有特定的利益。然而,即使这里一起考虑了这些设备和方法,但没有它们准确如所述那样组合,以准确组合一起使用,或一个构件或方法仅结合其它构件或方法或如所述的组合来使用的要求。此外,将理解的是,给定的构件或方法可与本文并未明确论述的其它结构或方法组合,同时仍达成期望的结果。

导管用作可结合一个或更多个特征和导出本文所述的一些利益的管状结构的实例,且具体是血管导管。用于导航和用于支承脉管中的其它构件的导管具有一定数目的构造,且此类导管可受益于本发明中的一个或更多个。除导管外的管状结构可受益于本发明中的一个或更多个。

如本文使用的,"大致"和"大约"应当意指指定参数或构造加或减10%。

内腔或管状结构可并入许多装置中,装置可包括用于改变此类内腔或管状结构的刚性或柔性或由其提供的支承的设备和方法。本文所述的实例涉及用于导管的内腔或管状结构,例如,用于横穿脉管系统(包括人体脉管系统)的导管。然而,应当理解的是,本文所述的构件和组件可在多种结构和应用中使用,包括用于其它应用的导管,以及其它内腔或管状结构。本例将包括血管导管,但其它结构也可适用。

在内腔或管状结构(图1-7)的一个实例中,导管组件100包括具有轴102的导管。导管组件100构造成有足够柔性以经过人体脉管系统。导管组件还包括导管套节104。导管套节可采用一定数目的构造,且可在导管的使用和应用中用于收纳和提供一定数目的结构和构件和/或流体,且可结合一定数目的其它仪器和/或构件使用,这将是本领域的普通技术人员理解的。在本例中,导管套节包括充胀或注入端口106,以用于收纳注入或充胀装置,在本例中,其表示为具有注射器本体或筒110和柱塞112的注射器108,例如,用于将流体注入筒110或从筒110抽出流体。注射器将用于保持和注入盐水到导管套节104或内腔或者从导管套节104或内腔抽出盐水(在下文更完整描述的图8-9的实例中)。注射器以常规方式安装或装固到充胀端口106中。

导管套节104包括主体114,其沿纵向延伸,且部分地限定导管的近侧部分处的导管套节的主轴线。导管套节本体114包括内壁,其限定从导管套节的近端118延伸至导管套节的远端120的开孔116,且以常规方式构造成用于收纳装置和材料,且在本例中可收纳如图所示的扩张器122。扩张器可省略,或由盖或由其它构件替换。在本例中,扩张器122包括安装或装固在导管套节的近端118上的扩张器套节124,以及在壁116内侧和导管轴102内的导管套节的沿纵向延伸的扩张器轴126。在本例中,扩张器轴126延伸穿过导管轴的远端部分128,且包括扩张器末梢130。在本例中,扩张器末梢延伸超过导管轴的远端表面132,例如,通常对于导管和扩张器组件有一定距离。扩张器122是常规扩张器,其构造成结合导管(如本文所述那些中的任何)使用。在一个实例中,扩张器构造成收纳穿过扩张器的中心内腔的导线或其它引导装置(未示出)。

充胀端口106包括限定延伸至导管套节的中心开孔116的开孔的内壁134。充胀开孔134与中心开孔116流体连通,且来自充胀端口106的流体可利用注射器108的操作,且在任何其它力的影响或导管的设计中的影响下围绕扩张器轴流入和流出中心开孔116。扩张器远端与导管轴远端之间的过盈配合将流体保持在中心开孔116中。

导管轴102包括内腔部件,在本例中是管状部件150。管状部件150的近侧部分152以常规方式安装、装固和密封在导管套节的远侧部分120中。管状部件从导管套节沿纵向延伸至导管轴的远端部分128,且在本例中具体终止于远端表面132处。管状部件形成为以便有足够柔性,以经过人体脉管系统和体腔,包括可能很曲折的心脏、外周和大脑脉管系统。在本例中,管状部件150具有大致圆形截面,但可具有其它截面轮廓。在如图1和2中所示的形状中,管状部件与导管套节104的中心轴线大致同轴。

管状部件150在大致其整个长度上是大致圆柱形。管状部件还具有在大致其整个长度上的大致一致的壁厚,例如,0.003''到0.020'',且其还在从导管套节的内侧直到远端部分128的近侧的其整个长度上具有大致一致的内径,例如,0.025''到0.100'',这将在下文中更完整描述。然而,将理解的是,可使用其它管状几何形状,且导管轴可形成为具有其它截面轮廓。作为备选,导管轴102可具有不同于本文所述那些的其它构造和几何形状,且此类其它构造和/或几何形状可包括如期望的内腔,例如,以用于设备或流体(如导线、管状装置、仪器、盐水、对比物和其它装置和材料)的通路。

管状部件150由可由预期应用确定的适合材料形成。在本例中,管状部件150由通常用于血管导管的弹性体材料形成,例如,peba、聚氨酯或类似的。管状部件的内表面和外表面构造成具有用于其预期目的的期望精整。在本例中,外侧表面154(图3)允许穿过其它装置和穿过脉管系统按需要的容易移动。内侧表面156允许管状部件内的流体流和扩张器轴126和任何其它装置或材料(诸如介入装置/仪器)按期望的容易移动。

在所示实例中,管状部件150包括增强元件。在本例中,增强元件包括一个或更多个螺旋线圈结构158(图3和4)。在本例中,螺旋线圈158是从导管套节104内侧延伸至管状结构的远端部分128附近的点的单个连续螺旋线圈。螺旋线圈可采用用于常规导管的常规增强物的形式,且可为不锈钢,例如,304或316不锈钢,其具有0.001''到0.007''的直径和0.003''到0.020''的节距。此外,线圈可由具有非圆形截面的线形成,诸如矩形或椭圆截面。线圈可由其它材料形成,具有其它线圈和线直径和/或具有其它节距,以提供期望的强度、增强和/或刚性。作为备选或此外,可使用其它增强装置。例如,可使用编织结构。在本例中,例如,将按惯例,增强元件嵌入管状部件150中或与管状部件150共挤。

管状部件150向远侧延伸至线圈158终止于该处的远端部分128。弹性体管状部件在会聚部分160处向远侧继续,这然后终止于圆柱或环形壁部分162处。远端部分128形成有一定直径,以便提供与扩张器末梢130的过盈配合,其两者都构造成提供期望的过盈配合。

在本例中,除一个或更多个孔口或流体开口164(图3-4)外,管状部件150的几何形状和结构从近端部分到远端部分不间断延伸。孔口164完全延伸穿过线圈的线之间的管状壁,且在开口的位置处提供管状部件内侧与外侧之间的流体通路,其在本例中是在下文更完整描述的外管状部件内。流体开口允许流体从管状部件150内的内腔穿过,例如,流体从充胀端口106到管状部件150外的腔或凹口或球囊。在本例中,存在穿过管状导管部件的壁的两个流体开口。

使容纳结构支承元件的腔的容积膨胀和/或收缩的流体的使用允许了改变管状结构的状态。例如,充胀和泄放或压力或真空施加的减小可改变结构的刚性或柔性。在一个实例中,充胀容纳结构支承元件的腔可增大结构支承元件的区域中的导管的柔性,且减小压力,施加真空或允许腔泄放可减小导管的柔性。以此方式,导管可具有其刚性或柔性的选择性调整性。

作为内层或内管状元件,管状部件150的构造可以以许多方式构造。通过改变随其长度变化的材料的硬度和/或调整随从导管套节的长度或距离变化的管状部件的壁厚,柔性可沿长度加强,包括在管状元件的远侧部分中。作为备选和/或此外,增强物可随离导管套节的距离变化而改变,例如,通过改变材料的几何形状或间距。在螺旋线圈的实例中,线圈的节距可改变,或嵌入管状部件的线圈或线元件的直径可改变。增强材料可为金属或非金属,且可为不锈钢、镍钛诺、聚合物纤维、具有辐射不透性质的金属丝、钽、钨或这些材料或其它材料的合金。

导管100还包括导管管状部件150外侧的可调整部件,其在管状部件150的外表面的至少一部分上延伸。在可调整部件的区域中,导管管状部件150是关于外可调整部件的内管状部件。在一些构造中,可调整部件用于有选择地建立或改变导管的一部分的柔性或刚性,例如,可调整部件围绕其定位的导管的部分。可调整部件可用于将一个或更多个下覆构件夹在可调整部件在其上或围绕其延伸的封壳、腔或区域内。可调整部件可用于增大相邻元件之间的表面接触面积,且建立或增大必须克服来移动或改变导管的一部分的几何形状的内力。可调整部件还可用于将其自身与下覆构件的一部分或全部有效分离,这可允许附加构件与彼此分离,且还可允许一个或更多个下覆构件的位置调整或其它调整。可调整部件可构造成一般在第一状态或一般在第二状态(例如,具有记忆特征),例如,一般产生与下覆构件的接触或一般与下覆构件分离,或一般施加压力或一般从施加压力中释放。作为备选,可调整的部件可构造成保持在给定状态,直到起作用,例如,没有任何记忆特征。在本文所述的实例中,可调整的部件构造成一般在套缩、减小或施加模式中,其中压力或力由可调整部件施加到一个或更多个下覆构件上。可调整部件由主动动作调整,以将可调整部件从其套缩、减小或施加模式至少部分地改变,例如,减小了可调整部件与下覆构件之间的表面接触面积。在本例中,可调整部件可沿径向移动。另外,在本例中,可调整部件沿下覆构件的整个长度大致同时地施加压力到下覆构件上。

可调整部件(图1-9和11a-b)的实例是管状部件200。在本例中,管状部件200在导管轴102的一部分上延伸。管状部件200形成外管状部件(外管)达到其在导管轴102的相邻部分外侧的程度。然而,将理解的是,一个或更多个其它构件可在外管状部件200外侧。沿周向围绕外管的近端202的整个部分,外管的近端202装固到导管管状部件150的相邻部分上。近端可密封、焊接、结合(例如,热地或粘性地)或以其它方式装固到导管管状部件150的外表面上,例如,以类似于同心导管可在常规导管中装固到彼此上的方式。就本外管而言,外管以一种方式在外管状元件的两端处装固到导管管状部件150上,使得接合处可经得起外管状部件与导管管状部件150之间形成的预期内部流体压力。

外管200在导管管状部件150上从近端部分202远侧延伸至外管状部件的远端部分204,包绕导管管状部件150的远端部分128。远端部分204以与近端部分202相同的方式密封、焊接、结合或以其它方式装固到导管管状部件的相邻远端部分上。外管200在近端部分与远端部分之间形成外管200的内侧表面208与内管状部件150的相对或面对的外表面154之间的腔、封壳或环形空间206。在本例中,腔206形成球囊,其可随外管状部件200的柔性和强度变化而扩大或充胀。在一些构造中,内管状部件的相邻部分也可有足够柔性,以提供朝导管的中心轴线向内的附加充胀或扩大的手段,但本构造具有带嵌入的线圈158的内管状部件150,使得内管状部件的壁在腔206内的当前构想的压力下不会显著改变直径,且在外管状元件的充胀或扩大之前、期间和之后以及在外管状元件的充胀或完全套缩之前、期间和之后保持恒定直径。

在本例中,外管200是整体结构,且由柔性的材料形成,且可在内压力(例如,大约1到200psi之间)施加到外管200与内管150之间后增大直径(即,在外管大致为圆柱形或圆形的情况下增大直径)。外管状元件用作球囊,其可在内部压力施加后向外膨胀,例如,由流体(在一个实例中是相对不可压缩的流体)形成的压力。外管管状元件200构造成例如通过选择可固有地膨胀或伸展至选择或优选的直径且即使在可能的预期较高压力下也保持该直径的材料而在正常操作状态下具有最大可膨胀直径。

在本例中,外管状元件200由聚氨酯形成,且具有大约0.003''的壁厚。在本例中,当外管状元件内的其它构件如本文所述确定大小时,外管状元件200在原来形成时和在组装到大约0.100''的导管上之前具有松弛的内径。它具有0.118''的预期充胀内径。材料优选为耐磨的,且高度抗刺穿。本例中的外管状元件200具有类似于球囊导管的结构,但没有任何折叠或褶皱,且可以以类似于球囊吹气模制过程来生产。在本例中,外管状元件200在组件构造成在组装到导管中时一般套缩之前形成。一旦安装且如果外管状部件扩大或充胀,则外管状部件的材料构造成在压力减小或除去时产生弹性再卷绕。外管状部件可以以许多方式改变,但在本例中,构造成在其整个长度上是一致的。在其它实例中,外管状部件可构造成具有沿其长度的不同位置处的不同特征,例如,基于硬度、厚度、原来或松弛或恢复形状和/或直径、材料和厚度,以及周向构造。然而,在本例中,外管状部件对来自内部流体的充胀或扩大压力的响应在整个外管状部件上相对一致,且达到预定外径,其即使在较高压力下也保持,直到除去压力,且外管状部件泄放、收缩或回到结构支承元件。以此方式,外管状元件的充胀或膨胀允许层解除接合,而不过度伸展外管状元件。外管状元件可构造成具有非线性压力对直径的关系,使得外管状元件的直径可随压力增大到预定直径,此后不会发生进一步膨胀。

在本例中,导管管状元件150和外管状元件200形成同心的嵌套管状结构,且它们一起限定腔。作为备选,它们可不是同心的,且它们可具有除圆柱形或圆形截面的几何形状。

内腔结构和管状结构(包括管状导管100)可包括支承结构,例如,中部或中间支承结构,其可向内腔和管状结构提供刚性,且在本例中,可向内腔和管状结构提供可选择的或可变的可调整刚性或柔性。支承结构可置于整个长度或在沿内腔和管状结构的长度的一定数目的位置处,且在本例中,支承结构定位在导管的远端附近。在支承结构和内腔或管状结构的一个构造中,支承结构可具有可调整的刚度或可改变的刚度的构造,该构造可由其几何形状和其如何与内腔或管状结构组合影响。在一个构造中,支承结构夹在或介入两个结构之间,其中一个或两个可关于支承结构调整来改变组件的刚度。在该或另一个构造中,支承结构具有接触内腔或管状结构中的一个或更多个相邻表面,该接触导致了摩擦力(如果支承结构弯曲或以其它方式改变其构造)。摩擦力抵抗构造变化,至少部分地有助于组件增大刚性或减小柔性,例如,在支承结构的区域中。

支承结构可采用一定数目的构造,且在置于内腔或管状结构上时,支承结构也可为管状支承结构。支承结构可采用管状网孔的形式,包括非随机网孔构造、管状骨架结构、管状框架、管状编织物、支架(例如,诸如医疗可植入支架的结构),以及其它结构。如本文在结构支承元件的背景下使用的"非随机"是包括以选择或受控方式构造的结构支承元件的端部之间的元件的一个。在一些构造中,例如,支承结构是管状网孔、骨架结构、框架或支架的情况下,构成支承结构的元件可具有相对高程度的互连,同时仍提供一定移动自由度。然而,相比于支架,本支承结构在一旦导管组装就大致不会沿径向膨胀或沿纵向延伸,在导管且因此支承结构弯曲时可能发生支承结构沿径向膨胀或沿纵向延伸。在支架领域中,相对低程度的互连性将称为开室构造,且相对高程度的互连性将称为闭室构造,或相比开室构造更趋近闭室构造的一种。管状网孔、骨架结构或框架的较高水平的互连可具有比较少互连更多的元件之间的互连。互连性有助于支承结构能够或不能移动或改变其几何形状的能力,其中移动在较少互连的情况下更容易,且在较多互连的情况下更难。

除支承结构允许或抵抗移动或改变几何形状的固有特征外,支承结构与相邻表面的相互作用也影响对移动或改变几何形状的阻力。例如,支承结构与相邻表面之间的较大表面接触面积比较小表面接触面积引起更大程度的抵抗移动或几何形状改变的摩擦力。具有带可接触相邻表面的表面面积的较大数目的构件的支承结构将比具有较少数目的构件的一种呈现出对几何形状改变或移动的较高阻力,所有其它事物是相同的。类似地,支承结构的构件的表面特征还可影响对几何形状变化或移动的阻力。例如,当与可阻抗几何形状变化或移动的相邻表面接触时,表面纹理或表面边缘可有助于较高摩擦力。

导管100包括中间或中部支承结构300(图2-9)。在本例中,支承结构300是具有由与彼此互连的圆材、支柱、或线性或弯曲分支302构成的具有管状形状的整体结构,其中开放空间303在它们之间,以形成支承结构300,且图2-9的截面示出了与线圈158的节距不成比例的支承结构300的元件的截面,其中理解到支承结构300的实例参照图10-13更详细示出和描述。支承结构是圆材、支柱、或线性或弯曲分支和中间腔或开口的三维构造,其构造可有选择地调整或改变,且按期望可释放地固定就位。相邻结构可有选择地联接和断开来按期望提供支承或跟踪。在本例中,三个构件机械地或摩擦地断开到较大或较小的程度,以允许有选择地改变或调整支承结构的构造,此后三个构件可再联接,例如,机械地,且具有用于摩擦接合的增大的表面接触面积。

在本例中,支承结构300定位在管状部件150和外管状部件200中间,在形成于内管状部件与外管状部件200之间的腔或环形空隙206中。另外,在本例中,支承结构300从外管状元件200的近端部分202大致延伸至远端部分204,且支承结构的构造在其长度上大致一致。然而,支承结构可构造成具有随轴向位置和/或周向位置变化的不同构造。支承结构300可装固到内管状部件150的外表面158上,例如,通过钉住、粘合或其它手段,如在支承结构的近端和远端处的一个或若干端点处。此装固可有助于组装,且此装固可在最终组装之前消除(如果期望)。相反,导管的远侧部分的柔性可随结构支承件300沿轴向和/或沿周向装固到内管状部件150上变化而减小。然而,此类减小大体上将是不可逆的,且可减小基准柔性,或增大导管的远侧部分的刚性,且可能难以使柔性增大到高于基准或减小刚性。

结构支承件300的构件(诸如分支302)可具有一定数目的几何形状。在本例中,各个分支302均具有大致矩形的截面,其具有平行于导管的主轴的长轴线,以及垂直于其的短轴线。使长轴线平行增大了可接触内管状部件的相邻表面158和外管状部件200的内表面208的各个分支的表面面积。然而,可使用其它几何形状。在本例中,支承结构300的各个分支302在图4和4a中示为从内管状元件150的外表面158略微向外间隔开。支承结构可构造成在松弛状态中具有比外表面158的外径更大的内径,这然后可在首次组装时产生结构支承件300与内管状部件150之间的有限表面接触。作为备选,支承结构可构造成在松弛状态中具有与外表面158的外径相当或大致相同的内径,使得较大表面接触在结构支承件与内管状部件之间发生。在另一个备选方案中,结构支承件300可构造成在松弛状态中具有较小的内径,例如,通过支承结构的固有偏压,以在松弛状态中具有与内管状元件的较高表面接触面积。较高表面接触面积相比于支承结构300与内管状元件150之间的较低表面接触面积促进了刚性。

如图4中所示,结构支承件300的各个分支302均具有从一侧到相邻一侧的相对限定成组的转角或角过渡304。转角304其尖锐度扩大,但围绕分支的圆周的表面之间的过渡的曲率可影响通过分支和相邻表面与内管状元件的外表面154或与外管状元件的内表面208之间的接触引起的摩擦力。分支与其相邻表面之间的边缘接触的量或程度和质量将对该组合的刚性或柔性贡献更大或更小。在所有其它事物相同的情况下,表面之间的较尖锐或更大角的过渡产生较高的摩擦力,以及增大的刚性或减小的柔性。因此,当结构支承件接触相邻表面时,结构支承件300上的非圆形分支轮廓可提高导管的远侧部分的刚性或减小柔性。类似地,接触管状元件的相邻表面的支承结构的表面上的纹理也可增大摩擦和刚性或减小柔性。例如,由于与内管状元件和/或外管状元件的相邻表面的表面接触,故不是电抛光的镍钛诺结构支承件300可提高导管的远侧部分的刚性或减小柔性。

结构支承元件可由一定数目的材料形成,包括不锈钢、镍钛诺、聚合材料和其它适合的材料。结构可具有光滑或成角的截面几何形状,且可精整或未精整,蚀刻或未蚀刻,磨蚀或未磨蚀(例如,喷砂),且例如具有镍钛诺,电抛光或未电抛光。结构支承元件(如支架)将构造成具有此类支架(诸如用于医疗植入的延伸)的结构、材料和特征。

图1-9中的导管的图示示出了直线延伸的导管轴,这认作是中性构造。在此构造中,且如图4中所见,外表面158沿轴向大致直线延伸,且支承结构300的分支302的相邻表面大致平行于外表面延伸。相对小的摩擦接合发生在转角304与外表面154之间的此构造中,直到诸如导管弯曲的时间。当导管弯曲时,弯头的凹入部分可具有与相邻分支的转角304的相对较高的接触和摩擦接合,例如,在分支的两个转角处,而在弯头的凸出部分,较少转角304可接触相邻的外表面154。

外管状元件200比内管状元件150柔性相对更大。在外管状元件200受限、泄放或以其它方式压制支承结构300的构造中,外管状元件200的柔性允许内表面208略微遵循支承结构的相邻表面。具体而言,内表面208在分支302上延伸,且围绕其接触的相邻转角304挠曲或弯曲。此外,外管状元件200延伸到支承结构的相邻分支之间的间隙或空间210中。因此,如图4a中所见的分支302到左侧(或朝外管状元件200向外)的可能移动将趋于增大转角304与相邻表面208a之间的摩擦接合,以增大对分支移动的阻力。在其它分支和外管状元件的其相邻表面中发生类似的动作,从而累积抵抗移动的力,且还增大刚性或减小导管的该部分的柔性。由导管的弯曲引起的结构支承件300的分支与外管状元件200和/或内管状元件150的相邻表面之间的摩擦接合的任何增大将取决于弯曲的位置和方向。

对导管的远侧部分中的弯曲或刚性的阻力可通过减小支承结构300的一个或更多个分支302与一个或更多个相邻表面之间的表面接触面积的量而减小。此接触可减小的程度可取决于哪个或哪些表面释放或解除与支承结构的接触,以及多少表面释放或解除接触。在一个构造中,支承结构与一个或更多个相邻表面之间的接触可通过使导管移动而简单地发生,使得内管状结构150的相邻表面154和/或外管状结构200的相邻表面208在相应的分支表面上滑动或滑移。在包括本文所示那些的另一个构造中,内管状结构和外管状结构的相邻表面中的一个或两者变为与支承结构的相应表面或多个表面分离,从而减小或消除其间的表面接触,且从而减小或消除那些表面抵抗导管的移动的贡献。

在一个实例(图5-6)中,外管状元件200可释放,移离或与支承结构300的一个或更多个相邻表面分离。例如,注射器108中的流体可注射到充胀端口的内腔134中,且注射到导管套节和导管的内腔中。当导管的内部中的压力增大时,流体经由孔口164流入内管状部件与外管状部件之间的环形腔206中。在环形腔中的压力增大的情况下,外管状元件膨胀或扩大,且内壁208开始沿径向向外移动,且与结构支承件300的相邻表面解除接触,或与其机械地和摩擦地解除接合。解除接合的量或程度将随压力和孔口164的位置或多个位置变化。在不可压缩流体和沿腔206分布的足够孔口164的实例中,大致所有外管状元件将从结构支承件300沿周向和沿纵向释放。当外管状元件的外部或任何部分从分支302的相邻表面释放时,外管状元件的区域中的导管的柔性同量地增大,且刚性同量地减小。相反,在更多外管状元件与分支302的相邻表面接触时,该区域中的导管的柔性同量地减小且刚性同量地增大。

在图5-6中所述的实例和本文的其它实例中,可变的刚性并入导管的一部分中。例如,当外管状元件处于松弛状态时,诸如在多余的流体从环形腔206和导管内腔除去(诸如通过取回注射器108的柱塞112或通过施加真空)时,导管的该部分具有增大的刚性。相反,当外管状元件膨胀或充胀时,诸如通过将流体注入导管内腔或腔206中,则导管的该部分具有减小的刚性。因此,在使用充胀和泄放的本文的实例中,充胀和泄放可用于影响管状元件的刚性或柔性。在本例中,充胀增大了柔性。类似地,外管状元件的松弛或自然状态减小了柔性,且提供了较大刚性的构造。此外,增大或减小刚性或柔性的能力部分地取决于封装或包围的结构部件300,其独立于外管状元件外的结构或扩张器内的结构。中间或中部结构支承件300夹在相对的连续表面之间,其中的一个或两个例如可沿径向移动,诸如在外管状元件200可关于结构支承件300沿径向向外膨胀的情况下。

在本例中,外管状元件壁可利用流体压力移动,随增大的流体压力向外移动,以及随减小的流体压力向内移动。增大流体压力分别分离或加宽外管状元件208与内管状元件154的面对的壁之间的间距。减小流体压力会减小外管状元件和内管状元件的面对的壁之间的间距,且最终使外管状壁与结构支承件300的一个或更多个分支接触。在压力除去时,外管状元件将施加压力至结构支承件300,以在外管状元件与内管状元件之间加压结构支承件,从而改变导管的该部分的机械性质、刚性和柔性。在流体用于充胀外管状元件的情况下,可看到结构支承件300在闭合流体系统中,且在除与用于流体压力的流体源流体连通外都闭合的腔中。使支承结构在导管中的包围的腔中提供了导管的刚性或柔性的可调整性的更大可预测性。此外,当外管状元件由材料形成且构造在组件上来沿结构支承部件回弹性地偏压时,外管状元件的回弹性在压力减小或除去时有助于保持压力到支承结构上的夹持或施加。导管的柔性可通过改变结构支承元件300如何捕集在外管状元件200和内管状元件150的层或同心管状元件之间来调整。柔性可通过操纵导管内腔和腔206中的流体系统中的流体来调整,且流体可用于分开或增大同心管状元件之间的间距。类似的效果可通过减小腔中的流体压力达成,例如,在外管状元件具有松弛或未偏压的构造的情况下,使得与支承结构有很小或没有接触。通过减小腔206中的压力,外管状元件可拉入来与结构支承件的更大表面面积进一步接触,从而增大表面接触面积,以及导管的该部分的刚度或刚性。作为备选,在外管状元件在其自然或松弛状态中构造成压制结构支承元件的本文所示的实例中,例如,其中在松弛状态,外管状元件具有小于结构支承元件的外径的内径,组件的自然构造在于具有压制结构支承元件的外管状元件,而没有腔206中的增大的压力。此外,组件可构造成使得流体压力自然减小(如果没有主动压力由使用者施加到注射器112上)。

导管组件使用成使得导管100可定位在期望位置,例如,在脉管系统内,例如,通过使用引导装置来将导管引导期望地点和位置。例如,导线(未示出)延伸到扩张器的中心内腔中,且引导到适合的脉管系统中,且具有充胀或扩大的外管状元件的扩张器或导管穿过导线,直到按期望定位。一旦就位,则外管状元件泄放或减小来将导管几何形状固定就位。扩张器122然后除去,且具有固定的可调整柔性的元件的其余导管在随后的程序中保持就位。如图7中所示,扩张器已经除去,且注射器108已从注射端口106除去。导管然后准备经由导管套节104收纳介入装置、材料或其它构件。在程序完成时,流体利用就位的介入装置或扩张器、附接到注射端口106上的注射器和充胀来允许除去导管100的外管状元件200而再引入内腔中。

在导管(图8-9)的备选实施例中,导管100a具有包围结构支承件300的外管状元件200,且除本文所述的外还具有上文参照图1-7的实例所述的结构和功能。在本例中,导管100a包括等同于导管轴102的导管轴102a,但省略了孔口164,但导管轴的近侧部分进一步延伸到导管套节104a中而超过注射端口106的开口,且除了一个或更多个充胀内腔170外。示例性导管轴102a的构造、几何形状和大小大致等同于导管轴102的,只是导管轴包括充胀内腔170,其由从导管套节104a中的充胀内腔134延伸至外管状元件200的近侧部分202a的内壁172限定。充胀内腔170具有构造成允许外管状元件的期望充胀的内腔,这允许了在没有用于充胀或扩大外管状元件200的扩张器的情况下使用导管。近侧部分202a围绕充胀内腔170的导管轴和远侧部分密封,且经得起外管状元件的内腔和腔206内的预期任何流体压力。如将在常规导管中完成那样,导管的近侧部分由导管套节104a支承和密封。图8中示出了导管,其具有泄放或处于套缩构造,压制结构支承件300,夹住或压制外管状元件和内管状元件之间的结构支承件300的外管状元件200。将流体注入内腔170和增大从注射端口106经由内腔170且进入外管状元件200内的腔206的流体系统中的压力扩大或充胀外管状元件200,使得压力不再施加到结构支承元件300的一部分或(在所示实例中)全部,且减小导管的该部分(图9)的刚性和增大柔性。

在本例中,结构支承元件300包括重复图案(图10-13)。图10示出了从第一端306到第二端308沿着和围绕内管状元件150的相邻部分延伸的结构支承元件300。由于结构支承元件由管状网孔设计形成,故第一端部和第二端部是其间的图案的末端,且并非以加到内部图案中不存在的端部的额外结构终止。

具有重复图案的结构支承元件可具有隔离成重复组或单元的重复图案,同时将理解,不具有可识别的重复图案的结构支承元件将具有更复杂的结构,其可能不符合重复组或单元的识别。本支承结构300(图12)包括单元310,在本例中,单元310沿周向重复来提供六个单元,且在图10中所示的实例中,沿纵向重复来提供11个单元加末端边界结构,其取决于如何产生支承结构而等于大致半个单元。由于支承结构在本例中用于导管中,故期望的是排除任何自由端的分支302。在所示实例中,各个分支在相应的一个或更多个其它分支处终止于两端。

在结构支承元件300中,各个单元310均包括第一支柱312,其在本构造中是沿纵向延伸的支柱,该支柱在管状支承结构纵向延伸,且平行于内管状部件150的轴线。如图10中所示,支承结构和管状内元件150在结构支承元件300的长度上同心且同轴。单元310还包括相邻的纵向支柱312a和312b的部分。纵向支柱312平行于彼此延伸,且沿周向围绕管状支承结构分布。在本构造中,纵向支柱312关于相邻的纵向支柱312a和312b沿周向和轴向两者偏移。

各个纵向支柱均包括第一端314和第二端316。第一端和第二端中的各个均连结或联接到从纵向支柱的相对侧延伸的一对蛇形支柱上。第一端314连结或联接到纵向支柱的一侧上的第一蛇形支柱318上,且在纵向支柱与第一蛇形支柱318的相对侧上连结或联接到第二蛇形支柱320上。纵向支柱的第一端314形成三个支柱连结或会聚的节点。类似地,纵向支柱312的第二端316连结或联接到纵向支柱的一侧(第一蛇形支柱318的同一侧)上的第三蛇形支柱322上,以及纵向支柱上与第一蛇形支柱318和第三蛇形支柱322的相对侧上的第四蛇形支柱324上。第一蛇形支柱和第二蛇形支柱远离纵向支柱314且朝向第三蛇形支柱和第四蛇形支柱延伸,第三蛇形支柱和第四蛇形支柱也分别远离纵向支柱314且朝向第一蛇形支柱和第二蛇形支柱延伸。

第二蛇形支柱和第四蛇形支柱的相对端在其相应端处连结或联接到相应纵向支柱312b和312a上,其端部形成其相应节点。第二蛇形支柱320连结或联接到相邻纵向支柱312b的第二端328上,且第四蛇形支柱324连结或联接到相邻纵向支柱312a的第一端330上。第五蛇形支柱332联接到纵向支柱312b的第二端上,且联接到纵向支柱312'的第一端上。第六蛇形支柱334联接到纵向支柱312a的第一端330上,且联接到纵向支柱312'的第二端上。因此,在本构造中,单元310包括两个纵向支柱,因为绘制的轮廓由整个纵向支柱和两半部分形成,且单元包括由两个完整蛇形支柱与四个部分蛇形支柱的和形成的四个蛇形支柱。各个单元均包括四个节点,且各个节点均是三个支柱的接合处。如可在所示实例中所见,所有支柱都联接或连结到至少另外两个支柱上,且纵向支柱联接到四个蛇形支柱上,且各个蛇形支柱均联接到两个纵向支柱上。该布置提供了中等程度的互连性,允许了自由形式的径向膨胀和收缩(在支承结构与任何其它结构组合之前),且允许自由形式的纵向膨胀和收缩。当支承结构首先形成时,膨胀和收缩的量由角336的起始角部分地限定。例如,当支承结构首先形成有相对小的角336时,由于起始角小,故允许比径向收缩更大的径向膨胀。相反,当第一支承结构首先形成有相对大的角时,其余的径向膨胀较小,且可用的径向收缩大于较小起始角336中的。

在任何给定横截面下的结构支承部件300构造成具有截面中的至少两个支柱,且在一些设计中将具有至少三个支柱,因为三点限定平面。在示例性结构支承部件300中,横截面将交叉至少六个支柱312(图11a)。六个纵向支柱312围绕圆形支承部件300大致均匀分布。此横截面可在图12中在单元310的侧向侧(如图12中所见)处看到。然而,在沿结构支承部件的其它轴向的横截面处,附加支柱将可见,例如,当横截面交叉诸如328的节点时是12个,且例如,当横截面交叉蛇形支柱的中间部分时是24个。此外,如横截面中将可见,纵向支柱尺寸不同于蛇形支柱,且具有较大的截面面积。较小的支柱比较大的支柱更多,且在本例中,在给定单元中,较小支柱是较大支柱的两倍。还如图12中可见,所有支柱都连接,且在本例中,互联或互连,使得各个支柱均连接到至少另外两个支柱上。还如图10和12中可见,没有单个纵向支柱在不弯曲或过渡至另一个纵向支柱的情况下延伸结构支承部件的整个长度。此外,在所示实例中,没有结构支承部件的单个元件(在本例中,没有单个支柱)在不弯曲或过渡至另一个元件/支柱的情况下延伸结构支承部件的整个长度。

在支承结构的本例中,支承结构由具有恒定壁厚的实心管状元件形成(从而提供所有支柱的大致恒定厚度),且以类似于形成支架的方式激光切割来形成如图10中或图16和17中所示的管状网孔。在支承结构300的实例中,在支承结构的形成期间形成的角336可为小锐角,例如,小到几度(1到2°),或大锐角,例如,大到85到89°。较大的角(钝角)也是可能的,且提供结构支承,但一旦并入导管组件中,并未提供与在最初形成时具有锐角336的支承结构300的构造相同的结构支承。

在使用图12中所示的图案产生的结构支承的构造中,角336选择成大约8°。在图10中所示的结构支承件的最终组装的构造中,由336代表的角在膨胀支承结构之后是大约24°。

在本例中,支承结构300由具有0.003英寸的壁厚的实心管状元件形成。结构支承件300然后通过激光切割以类似于形成支架的方式形成,使得所有支架都具有等于实心管状元件的初始壁厚的厚度338。在本例中,纵向支柱的宽度340为大约0.004英寸,其是蛇形支柱的宽度346(在本例中,大约0.002英寸,且大于厚度)的大约两倍,而厚度为大约0.03英寸,其大于蛇形支柱的宽度346。因此,纵向支柱比蛇形支柱更能抵抗弯曲。单元的几何形状、支柱的壁厚、支柱的宽度和角336有助于确定与导管组件成自由形式分离或分开的支承结构的刚性、柔性或抗弯性。支承结构的此刚性、柔性或抗弯性执行到导管中的组件中,且将在导管组件中呈现出相似特征。支柱的厚度和宽度可选择为在大约0.0005英寸到0.0100英寸之间。此外,支承结构300的区域中的导管组件的刚性、柔性或抗弯性由支承结构本身的刚性、柔性或抗弯性,以及组件的构件与彼此的接合和相互作用(包括结构支承件与相邻表面之间的表面接触面积)部分地确定。当减小或消除此表面接触面积时,诸如通过外管状元件的充胀或扩大,对刚性、柔性或抗弯性的各种贡献减小,但支承结构本身的固有刚性、柔性或抗弯性不变。因此,支承结构的设计或图案不但确定支承结构本身的刚性、柔性或抗弯性,而且基于支承结构与相邻构件的相互作用而确定对导管的刚性、柔性或抗弯性的贡献。在图10-13中所述和所示的构造中,结构支承部件具有带面对外管状部件的表面的单元,其中各个单元均具有大约0.00075824in.的面对表面面积,且同样其中的各个单元的表面面对内管状部件。

支承结构300与任何相邻构件之间的相互作用的效果由支承结构的径向位置部分地影响。就具有从中心r1的内半径和从r2的中心的外半径的柔性内管状部件150而言,支承结构300将在内管状元件的外表面154上或紧邻内管状元件的外表面154。在本例中,支承结构300的内径由从中心r3的半径代表,其大致等于半径r2,使得支承结构接触内管状部件的外表面154。支承结构300的外半径r4然后由支承结构的壁厚确定。此外,外管状部件200的内径由从中心r5的半径代表,且外径由半径r6代表,其中两者都在外管状元件扩大或膨胀或充胀的同时给定。处于松弛或套缩状态的外管状元件的最大内径大致对应于r4,即,支承结构的外径,且处于松弛或套缩状态中的外管状元件的最大外径为大致r4加外管状元件的壁厚。在处于套缩或未充胀状态中时的外管状元件的最小内径将取决于外管状元件的材料的柔性,以及将允许外管状元件的材料在支柱之间延伸的支柱之间的开放区域的相对表面面积。结构支承件300的半径值在以下的表1中提出:

表1

诸如导管的管状结构中的抗弯性大体上在管状结构的外表面上出现。如图11a中所示,支承结构和外管状元件定位在组件的外到达范围处,且用于本例中提供可变刚性的结构支承件形式的机构位于内管状部件的区域或外表面上,例如,其中结构支承件的机械性质可具有强的效果。如图11a中所示,结构支承件在导管的最大外径的大约95%的区域中。因此,通过将结构支承件关于中心轴线施加到导管的外区域处,例如,导管的部分的总体外径的50%到100%之间,结构支承件对其所处的导管的该部分的柔性或刚性的效果。此外,诸如结构支承件与内管状部件150的外表面154之间和/或结构支承件300与外管状元件200之间的表面接触面积的作用通过将结构支承元件定位在较高的径向位置而非较低径向位置处来改善,因为可用的表面面积随半径的平方增大。因此,将结构支承元件置于内管状元件150外提高了结构支承件与任何相邻表面之间形成的表面接触面积和摩擦阻力的贡献。

图14示出了大致中性状态中的结构支承件300的一部分,例如,在组装到内管状元件上且形成到导管组件中之后,但在一些剩余移动之后准备使用,因为并非所有纵向支柱312都精确平行,且大体上标为348的蛇形支柱相应地调整。纵向支柱并未在压缩或张力下,且与彼此大致规则间隔开,且蛇形支柱348也未在张力或压缩下,但此状态将取决于支承结构最初产生时的角336(图12)的初始大小和定位在内管状元件上时的其状态。

由于其相对小的厚度和宽度,故支柱在处于未受限状态中时(诸如当外管状元件200扩大或充胀时)以最小的施加力关于彼此自由弯曲。如图15中示意性所示,在结构部件300在其未受限的状态中基于施加的弯曲负载弯曲时,支柱重新布置其自身,以适应改变的机械状态。在图15中,纵向和蛇形支柱重新布置其自身至具有施加的弯曲下可用的最低能量构造,保存了支柱的长度和互连。在支承结构的凹形部分中,使纵向支柱在一起更近,该途径由放在张力下的蛇形支柱限制,且角336变得更尖锐。在它们重新布置自身时,相邻的纵向和蛇形支柱之间的锐角有助于纵向支柱之间的力传递。在弯头的凸形侧上,纵向支柱趋于在一些区域分离,受到附接的蛇形支柱和附近的纵向支柱的限制。

当如本文所述将支承结构并入导管中时,支柱的重新布置在结构支承元件未受限时所需的相对低的力下,或在跟踪模式(诸如在外管状元件扩大时,膨胀或与结构支承元件分开)发生。当结构支承件受限时,诸如在导管处于支承模式中时,诸如在外管状元件套缩或压制结构支承元件时,支柱的重新布置并未发生,或在相比于未受限状态高得多的施加力下发生。支柱之间的相对高程度的互连允许支承结构弯曲的柔性,但支柱之间的互连点限制支柱可重新布置其自身的自由度。这些因素可通过增大或减小每单位长度的节点数量、增大或减小节点处的支柱数量、将支柱分成多组支柱,以及具有在更多节点处连接的一组支柱和较少节点处连接的另一组支柱,以及类似变化来改变。

在一个示例性导管构造中,导管套节远侧的导管的长度为大约36英寸或大约90cm,且具有支承结构300和外管状元件200的可变柔性部分的长度是大约8英寸或20cm。可包括可变柔性部分的导管轴的部分可大于或小于本例。

结构支承元件可采用许多构造,尤其是考虑到已经发展的许多支架构造。作为备选结构支承元件的一个实例(图16),支承元件400包括形成沿纵向和周向延伸的重复图案的基础的单元402。单元402形成螺旋图案的一部分,其中单元包括具有四侧且限定开口406的矩形框架404。各个单元通过激光切割分离来与纵向相邻的单元分开,以形成螺旋卷绕带。开口406在套缩或压制结构支承元件时收纳外管状元件的柔性部分,从而有助于通过机械接合或摩擦阻力来限制或约束移动。在备选构造中,单元402可采用非螺旋构造,例如,具有如图16中所示的连接在一起的两个或更多个周向相邻的单元,或连接在一个或更多个节点(未示出)处,以提供周向相邻的单元之间的较大柔性。在受限和未受限的状态中,纵向相邻的单元还随期望的柔性变化而连接在一个或更多个节点(未示出)处。

在结构支承元件的另一个实例中(图17),结构支承元件410由螺旋切割的管或螺旋卷绕的带形成。结构支承元件包括在延伸到互补的沿纵向延伸的腔(相邻绕组中是14)中的绕组的一部分中的沿纵向延伸的凸起412。窗口或孔口(未示出)可提供在螺旋的绕组边缘表面内部,以提供与外管状元件的摩擦接合表面。

导管100/100a的一部分的柔性或刚性的调整用于允许导管跟踪中的路径,例如,在导线或其它引导装置上,且作为备选在期望时提供脉管内的结构支承,例如,支承介入装置等的通路。在跟踪模式中,内管状部件是柔性的而能够容易跟踪,且抗扭结来最小化使用期间的破坏,且提供沿导管的长轴线的适合的力传递,以推动和前移穿过脉管。在结构支承元件是柔性的且未受限的跟踪模式中,结构支承元件的支柱受制于相邻支柱的定位而自由弯曲、调整和重排且自由移动。支柱对准到可能的最低能量构造。当导管按期望定位时,结构支承元件压在外管状元件与内管状元件之间,从而变为受限的,且支柱在无显著量力的情况下不再关于彼此或关于相邻表面自由移动。在受限或支承构造中,结构支承件抵抗导管的弯曲,减小其柔性且增大其刚性。该构造类似于离合器,由此使外管状元件与结构支承元件且进一步与内管状元件解除接合允许结构支承元件和其中的支柱的自由运动,这可由结构支承元件自身中的弯曲限制来限制。施加真空或负压或从外管状元件内除去充胀流体接合离合器结构,以机械地联结外管状元件、结构支承元件和内管状元件,致使结构支承元件的区域中的导管结构柔性更小,且更好能够支承待穿过导管内腔的装置。

在操作中,完全组装的导管组件100/100a通过将流体注入外管状元件200内的腔206中或以其它方式增大腔中的压力来置于跟踪构造。管状元件膨胀或扩大,使得外管状元件从结构支承元件300释放或机械地解除接合,从而以结构支承元件300减小或消除弯曲摩擦阻力。压力保持在腔206内,或外管状元件以其它方式保持在充胀或扩大构造。导管组件引入本体内腔中,例如,经由套管针、插管器或其它结构,且移动穿过脉管系统500(图18-20),例如,借助于导线502。当导线502移动到如图18中所示的新位置时,导管100/100a在导管跟踪模式中在导线上前移。当导管到达诸如图19中所示的期望位置时,导管组件可通过抽取流体或将负压施加至与腔206流体连通的内腔,或通过允许充胀外管状元件200的重绕或记忆来朝其松弛状态返回,收缩到与结构支承元件的机械接合或接触,以及施加压力至结构支承元件且将结构支承元件夹在外管状元件与内管状元件之间来置于支承模式。外管状元件的柔性壁还可突入结构支承元件300的支柱之间的开口303中(且可能接触内管状元件的外表面154),从而增大结构部件关于相邻表面的机械接合或抵抗移动的摩擦力,且从而增大导管组件的刚性和支承。增强物(例如,内管状元件中的线圈158)抵抗内管状部件的变形,例如,由于单独的或与任何弯曲负载组合的来自外管状部件的任何压缩负载。在本例中,内管状元件对于在一般操作状态下将经历的压力负载大致不可压缩。导线然后可取回且由介入装置或其它装置504(图20)替换,以执行期望的程序,其还可具有其自身的结构支承元件和柔性外管状元件来用于可调整的支承。导管组件然后可在导管组件回到跟踪模式之后取回,这可包括再插入扩张器,且然后按照常规方法取回。

在导管引入内腔中之前,以及如图18中所示的在导管经过体腔时,导管可在结构支承部件的区域中在跟踪或柔性模式。在该构造中,导管采用许多形状构造,例如,在制造之后,导管可为直的,包括结构支承部件的区域中的可变刚性区域,且在导管经过体腔时,包括可变刚性区域的导管将采用符合体腔的形状构造。在那些形状构造中,尽管结构支承部件释放或自由调整其形状,但结构支承部件可具有一定数目的构造。一个构造在图15中示出,其中支柱将其自身重新布置成由内管状部件的壁施加到其上的最低能量构造。然而,当结构支承部件的一部分或全部采用固定形状构造时,例如,通过夹入、压制或挤压在内管状元件与外管状元件之间,结构支承部件和周围的导管结构保持固定形状构造,这也是包绕的内腔壁的构造。结果,导管的可变形状部分采用包绕内腔的形状,且并未大致改变该形状,直到释放。例如,一旦导管在跟踪、柔性或释放模式(如图19中)的同时如期望那样定位,则在导管经过内腔时,导管的可变形状的部分采用不同于之前的形状构造的第二形状构造。当结构支承元件夹持、层叠或固定在第二形状构造时,由于在第二形状构造中从跟踪或柔性模式过渡到支承或固定模式,故导管的可变形状部分施加很小(如果有)的力506或压力到内腔壁上。如果导管理论上能够从体腔升高而不必再经过内腔通路,故将看到的是,导管保持其采用的内腔的形状而如同其具有形状记忆。换言之,从跟踪或柔性模式到支承或固定模式的导管的可变形状的部分将很小(如果有)的力施加到相邻的内腔壁上。此结果可利用三点弯曲测试来示出,其中导管的可变形状的部分布置在第二形状构造,且在固定或压制结构支承部件之前和之后测得的力将是非常不同的。例如,力差可为大约20%到25%,且可在15%到25%的范围中,且在图10-13中所示的结构支承部件300的构造下,可小于10%(固定或压制结构支承部件之后的力减去固定或压制结构支承部件之前的力除以之前的力)。

跟踪模式与支承模式之间的差异可通过比较用于偏转由可变刚性的区域处的直导管组件的力而示出。就大致直的导管而言,可变刚性区域的中部或其它选择部分可通过施加法向力和测量移动选择距离所需的力而弯曲一英寸或其它选择的距离。当导管在跟踪模式中或更大柔性的状态中时,以及当导管在支承模式或更大刚性或刚度或较小柔性的状态中时,测量力。在外管状元件与下覆的结构支承部件完全间隔开且导管弯曲1英寸的一个实例中,测得的力为大约0.38磅的力(lbf.)。导管然后回到直的构造,且置于支承模式,或其中外管状部件压制结构支承部件,且弯曲1英寸。测得的力为大约0.54磅的力。在本例中,支承模式力除以跟踪模式力的弯曲力比是大约1.42。大于一的比率提供期望的导管构造,且大约1.2和更高的比是更期望的。

导管组件以一定数目的方式组装,包括用于组装导管的部分常规的方法。在一个方法(图21-28)中,使用了类似于常规组装设备的心轴组件600。心轴组件选择成具有心轴602,以向期望尺寸的导管提供选择的内径。在一个过程中,内管状部件150通过使聚四氟乙烯衬套滑到心轴602上且在衬套上施加编织物或线圈来组装。挤压施加在编织物或线圈增强物上,此后层牢固地层叠在可除去的热缩管内来将所有构件一起合并到内管状部件150中。在将定位结构支承元件的区域中,一个或更多个孔或孔口164形成在叠层中,完全延伸穿过。结构支承元件例如通过根据期望图案聚焦激光切割整体金属管来形成。结构支承元件300置于管状部件150上且如期望那样定位。它可在其远端和近端处卡钉结合来将其装固到内管状部件上组装。

具有内管状部件组件的心轴然后利用加载工具的筒606内的结构支承元件而插入管状负载工具604(图23-26)。筒606可包括多个部分,例如,分开来用于插入心轴和内管状部件。加载工具包括远侧部分处的o形密封件608,以用于围绕内管状部件和心轴提供不透空气的密封。加载工具604还包括密封件608近侧的加压端口610,以用于围绕朝管状元件的远端延伸的内管状元件的外侧提供加压空气或其它加压流体。筒606包括远端处的环形唇部或凸脊612,以用于收纳可充胀的管状元件614的一端来利用o形环密封件或其它密封元件616围绕筒密封。筒的部分可分开,且近侧部分置于心轴和内管状元件的近侧部分上,且远侧部分置于结构支承元件上,且两个部分放到一起且密封。可充胀的管状元件614施加到筒的远侧部分上,且以密封件616密封。如图23中所示,可充胀的管状元件614的松弛状态小于结构支承元件300的外径,且图23为了易于图示而示出了示意性关系,以及可充胀的管状元件与心轴602之间的更大空间。可充胀的管状元件的相对端闭合,例如,利用闭合结、夹子、套扎等。充胀压力然后施加到充胀端口610处,以使可充胀部件614如图24中那样充胀,例如,大约40psi,且可能达到80到100psi。施加的压力使可充胀部件在直径上充胀或膨胀。当可充胀部件稳定时,心轴和内管状部件的组件在外管状元件614内滑动(图25),使得可充胀部件适当地定位在结构支承部件和下覆的组件上。压力然后从可充胀部件除去,例如,通过加压端口,且充胀部件围绕结构支承部件和内管状部件的相邻部分套缩(图26)。组件然后从加载工具604除去(图27),且可充胀部件围绕结构支承部件修剪至期望的长度。外管状元件200然后在618和622处结合内管状元件,且如果需要则进一步修剪(图28)。心轴602然后由较小的心轴622替换,且导管的末梢再流动来将其直径减小至较小心轴的直径,以提供与适合的扩张器末梢的期望过盈配合。然后除去心轴622,且管状组件结合或以其它方式在其近端处装固到近侧套节上,例如,导管套节104(图1-2)。

在选择用于外管状元件200的适合材料的情况下,回弹性或压力记忆可并入组件上的外管状部件中,例如,通过使用松弛管状元件,其在松弛状态中具有小于结构支承部件且甚至可能小于内管状元件的内径。可充胀材料的充胀允许外管状元件容易组装到导管组件上,以提供期望的回弹性,使得外管状部件可将适合的压力施加至结构支承元件。

因此描述了若干示例性实施方式,将清楚的是,可制作出各种改型和变型而不脱离本文所述的原理。此类改型和变型尽管上文并未明确描述,但旨在和隐含在本发明的精神和范围内。因此,前述描述旨在仅为示范性的。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1