治疗含有双微体dna的细胞的组合物及方法

文档序号:1077514阅读:1125来源:国知局
专利名称:治疗含有双微体dna的细胞的组合物及方法
技术领域
一般而言,本发明涉及用于治疗癌症等肿瘤病的新型治疗药物的筛选方法以及该药物在癌症治疗中的应用。
背景技术
引用出版物贯穿该申请的整个范围,其文献目录中的全部引文均可在该申请的正文或紧接权利要求书前的说明书结尾处找到。为了能更充分地描述与本发明相关的技术发展水平,这些出版物的公开内容和发表的专利说明书、著作以及发行的专利均在文中作为参考引入该公开内容中。
众所周知,在一种先导组分被发现之前和被发现之后,导致新药鉴定的药物研究通常涉及对极大量的待选物质进行筛选。这是导致药物研究投资大、周期长的因素之一,因此一种可辅助筛选的方法将会具有相当大的商业价值和实用性。
许多药物通过与细胞内DNA相互作用而发挥其疗效。一些药物则以矫正遗传异常为目标,遗传异常的积累可导致某种患病状态。例如,在癌症发展期间通常会产生基因突变,它会大大提高碱基替换或大规模染色体重排的频率。举例来说,涉及p53肿瘤抑制基因的细胞周期调控途径出现缺陷会形成一种允许环境,处在该环境中的细胞将对抗代谢物或癌基因过表达所造成的压力产生应答,从而高频率地出现非整倍性、染色体易位和基因扩增(Livingstone,et al.(1992);Yin,et al.(1992)and Denko,et al.(1994))。
修复及细胞周期调控功能有缺陷的细胞内所产生的异常染色体结构类型可能受核结构的限制。例如,具有很长的臂的染色体会倾向于产生核突起物,该突起物在不同情况下被称为“泡”或“芽”(Ruddle(1962);Lo and Fraccaro(1974);Toledo,et al.(1992)andPedeutour,et al.(1994))。最近在豌豆中进行的一项实验表明,单染色体臂内的过量DNA产生了一种核突起物,该突起物在末期后细胞分裂板形成时被切除(Schubert and Oud(1997))。在微核内经常会检测到该突起物所包含的序列,提示突起物可能是微核的前体(Toledo,et al.(1992)and Pedeutour,et al.(1994)),并且其包含的染色体序列可能从核中丢失。这些数据表明,特定细胞类型的核内的每个染色体臂存在一个最大容许长度。
癌细胞中还经常产生如双微染色体(DMs)等自主复制的环状DNA片段(Barder(1982);Cowell(1982)and Benner,et al.(1991))。由这些结构编码的蛋白可在体内提供生存优势,或在体外抵抗多种化学治疗药物(见Wahl(1989);Brison(1993);Von Hoff,et al.(1992);Shimizu,et al.(1994)and Eckhardt,et al.(1994))。DMs采用细胞起源的复制起点进行复制(Carroll,et al.(1993)),但它们缺乏着丝粒,不能利用与染色体相同的机制进行分离。因此,DMs在缺乏选择的情况下自然丢失。诸如羟基脲等药物可显著提高人类和啮齿类细胞系内DMs的丢失率(Snapka and Varshavsky(1983);Von Hoff,et al.(1991);Von Hoff,et al.(1992);Eckhardt,et al.(1994)and Canute,et al.(1996))。DMs的丢失可导致药物敏感性增加、致肿瘤性降低、或导致分化,这取决于DM编码基因所表达的蛋白(Snapka and Varshavsky(1983);Snapka(1992);Von Hoff,et al.(1992);Eckhardt,et al.(1994)and Shimizu,et al.(1994))。为此,确定DMs丢失的机制将能够发展出崭新的或更具选择性的化学治疗策略,因为DMs仅能够在癌细胞中发现,这种治疗将不会导致染色体丢失。
另有报导,DMs与异常长染色体臂一样,可被优先掺入到将从胞内去除的微核内(VonHoff,et al.(1992)and Shimizu,et al.(1996))。很明显,仅靠尺寸小是不能保证DNA片段被选择性封装在微核内的,因为具有典型DM大小的着丝点微染色体被选择性排斥在微核之外(Shimizu,et al.(1996))。这一观察结果与小核形成的经典机制相符,该过程涉及在有丝分裂末期核膜重组时封装滞后的无着丝点染色体片段(Heddle and Carrano(1977)and Heddle,et al.(1983))。由此,可认为DMs是在有丝分裂后被封装在微核内的,因为它们通常不具有功能性着丝粒(Levan,et al.(1976))。但DMs似乎能够与染色体或核仁结合,使它们大多能够逃避这种有丝分裂后机制。DMs这种通过与有丝分裂染色体或核仁结合而“搭便车”的能力可提供一种解释,来说明为何在含有大量DMs的细胞系内几乎检测不到中间体中有微核(Levan and Levan(1978)),而且它们在某些细胞系中能够以惊人的效率分配到子细胞中(Levan and Levan(1978)and Hamkalo,et al.(1985))。但正常染色体与DMs的间期行为可能不同,因为DMs缺乏着丝粒和/或端粒,而着丝粒和端粒能够使染色体定位于限定区域并产生一套设计好的S期染色体移动线路(De and Mintz(1986)and Cremer et al.(1993))。目前还未能确定间期时无着丝点DM DNA所占据的位置是否与染色体有所不同,以及这是否能使它们通过与异常长染色体的观测结果相类似的出芽过程而从核中去除(Ruddle(1962);Jackson and Clement(1974);Lo and Fraccaro(1974);Miele,et al.(1989)andToledo,et al.(1992))。

发明内容
本发明涉及从待选物质中筛选潜在的药学制剂。更详细而言,本发明提供一种方法,通过该方法可就测试物通过微核形式而抑制、增强或消除细胞内双微体DM或额外染色体DNA的能力而对其进行筛选。
本发明还提供一种方法,用于诱导具有DM DNA或额外染色体DNA的细胞的成熟或死亡。将适当细胞与文中定义的一种药剂相接触,从而利用微核形成的方法将DM DNA或额外染色体DNA从细胞内消除。
本发明进而提供一种治疗方法,通过将文中定义的一种药剂以有效剂量向受试者给药来治疗受试者所患的疾病。
本发明还进一步提供一种检测细胞内染色体DNA及额外染色体DNA的方法。本方法需要将一种经可检测标记的蛋白插入细胞,其中该蛋白能够与细胞内染色体DNA特异结合,然后检测标记,从而检测细胞内的染色体DNA和额外染色体DNA。
附图简述

图1A-D”显示选择性包载DMs的核出芽过程。经甲醇/醋酸固定的COLO 320DM细胞用RNAse处理,用来自纯化微核的生物素标记DNA杂交,再用偶联FITC的抗生蛋白链菌素检测杂交探针。细胞核用碘化丙锭(PI)复染。图1A为前中期图,说明DM着色探针的特异性并证明前中期染色体周围的DMs周边定位。箭头指明一个与染色体整合的HSR区域。这些DMs被选择性掺入间期核形成的核芽内(图1B至1D,箭头所示)。核芽似乎以很高的选择性俘获DM,因为核芽内明显有三个强烈的PI阳性信号(图1D),它们均被FITC FISH探针强烈标记(图1D’),以及合并图像(图1D”)。
图2A-2F显示COLO 320DM细胞同步培养物中微核及核芽的形成。利用下文所述的两步法将COLO 320DM细胞同步于G1/S交界。将培养物分为两部分,并在不加入任何药物(图2A、2C和2E),或加入0.4mg/ml诺考达唑(图2B、2D和2F)的情况下释放。分别测定[3H]胸腺嘧啶掺入(实心圆)和有丝分裂细胞指数(空心圆)以分别监控同步穿越S期和M期的进程(图2A和2B)。在经DAPI染色的玻片上测定总微核数(实心圆)和总核芽数(空心圆)(图2C和2D)。在经纯化微核探针杂交的玻片上测定DM+微核数(实心圆)或DM+核芽数(空心圆)(图2E和2F)。这些值均以相对于间期核计数的出现频率形式表示(每个点的采样数均大于1000)。
图3A和3B显示各种药物对微核诱导及细胞周期分布的影响。COLO 320DM细胞用所示浓度的DNA复制抑制剂(阿非迪霉素(“APH”);去铁胺(“Def”);胍唑(“Gua”);羟基脲(“HU”);及PALA)、DNA修复抑制剂(香豆素(“Cou”);烟酰胺(“NA”))或膜活化剂DMSO处理3天。在图3A中,经处理的细胞用甲醇/醋酸固定并用c-myc粘粒探针杂交。计算被c-myc探针明亮染色的微核数并以相对于间期核计数的“c-myc+微核出现频率(%)”形式表示(每个点的采样数均大于1000)。在图3B中,细胞在药物处理末期用BrdU进行脉冲标记(30分钟),并通过下述的流式细胞光度计方法进行分析,以确定G1、S和G2/M期的细胞数。
图4A-4F显示DMs在COLO 320DM间期核内的定位。由COLO 320DM细胞培养物分离的核用PFA固定,并用DM-染色探针进行杂交,然后用PI复染。每个核中心附近的光截面是利用共焦激光扫描显微镜获得。图中显示来自快速生长培养物的三个代表性细胞核图像(见图4A至4C)和来自100μM羟基脲处理3天的培养物的三个代表性图像(见图4D至4F)。如箭头所示,未处理培养物中的DMs只优先定位于核膜下。而HU处理培养物的核内则极少观察到周边DMs,并且图中显示大多数信号都很好地位于细胞核内部。
图5A-5C显示DMs和随染色体扩增的序列的核定位定量分析。由COLO 320DM细胞(见图5A)、100μM HU处理3天的COLO 320DM细胞(见图5B)和具有随染色体扩增c-myc序列的快速生长COLO 320细胞(COLO 320HSR)(见图5C)的快速生长培养物分离出的核用识别c-myc扩增子的探针进行杂交。图4显示所获得的每类细胞核的中心截面。测定每个截面中各杂交信号的位置和强度。各分析结果代表对100个随机选定的核的测量结果。横坐标表示距核中心的距离数(0为中心,1为周边),纵座标表示在100个核中观测到的各位置的信号数。曲线图显示每核体积内各位置信号的理论随机分布曲线,图下方为更详细的说明。
图6A-6C显示DM DNA复制与COLO-320DM细胞凋亡的分析。在图6A和6B中,快速生长COLO-320DM细胞培养物用10μM BrdU脉冲标记1小时。分离出细胞核,并用PFA固定,再用生物素标记的DM染色探针杂交,按图4中的方法用结合FITC的抗生蛋白链菌素检测。结合BrdU的位点先用小鼠抗-BrdU单克隆抗体再用结合罗丹明的抗小鼠免疫球蛋白进行检测。用共焦激光扫描显微镜检测双标记的核。图中显示两个典型视野的BrdU图像、FISH图像以及合并图像(红伪色代表BrdU,绿伪色代表FISH)。箭头指明选择性包载DMs的核芽,三角箭头指明脉冲标记(BrdU-)时不处于S期的细胞。图6C概括了利用下文所述TUNEL法进行的COLO 320DM细胞凋亡分析的结果。在获得该典型照片的实验中,COLO 320DM细胞用100μM HU处理3天。箭头指明一个非凋亡细胞内的核芽,三角箭头指明同一视野内的一个凋亡细胞。
图7A-7D说明p53缺乏可使正常人二倍体成纤维细胞的S期出芽及微核形成增加。通过逆转录病毒转导产生野生型(wt)WS1人二倍体成纤维细胞、或表达新霉素抗性基因(neo)的转化体或既表达neo又表达人乳头状瘤病毒E6蛋白(E6)的转化体。在不加入或以所示浓度加入HU或PALA的情况下将这些细胞培养3天。图7A显示在盖片上生长的经上述方法处理并固定和DAPI染色的细胞。计算微核数,并以相对于间期核计数的微核出现频率(%)形式表示(每个点的采样数均大于1000)。图7B显示按图2B方法检查的这些药物对细胞周期的影响。在图7C和7D中,利用下文所述方法将WS1 neo(三角形)或WS1 E6(圆形)培养物同步于G1/S交界,并在生长培养基中释放。在图7C中,通过加入[3H]胸腺嘧啶来监控穿越S期或M期的进程(实心符号),或通过中期细胞数的显微检测方法确定有丝分裂细胞数(空心符号)。图7D中,将盖片上的细胞固定,DAPI染色,并计算相对于间期核数的微核出现频率。每个点计算的核数均大于500,并且结果表示为WS1 neo及WS1-E6细胞的平均±S.D形式(每种细胞株独立测定3次;WS1 neo数据点的误差范围小于符号的大小)。测定同一玻片上的核出芽频率,以确定微核形成系数(每个点的核采样数均大于1000)。
图8显示H2B-GFP嵌合肽的示意图。H2B肽(239个氨基酸残基)结合在GFP肽(126个氨基酸残基)的C-端(H2B-G)或N-端(G-H2B)。图中给出H2B肽和GFP肽连接处的额外氨基酸数。N-端的组蛋白尾加阴影框显示。
图9显示表达H2B-GFP的细胞。图为组成型表达H2B-GFP的HeLa活细胞的共焦显微图像。H2B-GFP荧光显示为反射模式图像。
图10A-10D说明,H2B-GFP结合到单核小体内部。图10A显示HeLa细胞核及表达H2B-GFP的HeLa细胞核的细球菌核酸酶消化结果。将分离的核消化0、1、5、10、15、30和60分钟。纯化通过结合核小体核心蛋白而免受消化的DNA,并按照材料与方法中的详细描述进行分析。图10B显示单核小体群体的蔗糖梯度分析。由细球菌核酸酶消化制得的单核小体蛋白-DNA复合物用5-30%平行蔗糖梯度进行纯化。提取各部分的蛋白并通过15% SDS-PAGE及考马斯染色加以分析。图中显示H2B-GFP蛋白(约45kDa)及天然核心组蛋白。图10C中,相同的蛋白等分试样经电泳并利用抗人H2B抗体进行蛋白免疫印迹分析。图中显示H2B-GFP蛋白及天然H2B蛋白。图10D中,提取各组分内的DNA并用1.5%琼脂糖凝胶加以分析。
图11A和11B说明H2B-GFP的表达不影响细胞周期的进程。图11A为HeLa细胞和表达H2B-GFP的细胞的GFP直方图。图11B为图11A的相同细胞经PI染色确定的DNA直方图。
图12A-12E显示H2B-GFP蛋白的定位。图为表达H2B-GFP的HeLa活细胞不同时期的共焦显微图像。分别显示间期(图12A)、前期(图12B)、中期(图12C)和后期(图12D)的细胞。各图板的左侧显示绿色GFP信号,右侧为反射模式图。图12E显示表达H2B-GFP的HeLa细胞的固定铺展染色体。图中显示GFP定位(左)和DAPI染色(右)。
发明实施方式本发明发现,称为双微染色体(DMs)的自主复制的无着丝点额外染色体结构常介导人肿瘤内的癌基因扩增。据本发明人显示,通过S期核膜出芽启动的微核形成作用将DMs由核中去除可促进细胞的成熟、分化和死亡。
因此,本发明提供一种用于鉴定潜在治疗制剂的筛选方法和一种用于诱导适当细胞成熟或死亡的方法。实施本发明时所采用的适当测试细胞或细胞包括那些具有DM或额外染色体DNA并且能够通过微核形成过程消除该DNA的细胞。这些细胞包括,但并不限定于,诸如细菌细胞或酵母细胞等原核细胞。另外还包括真核细胞,如大鼠、鸟类、鼠科、猿、哺乳动物,包括宠物和家畜、或人类的细胞。
就本发明而言,“药剂”将包括,但并不限定于,有机小分子、复合物、组合物、DNA分子、RNA分子、蛋白、多肽、或融合蛋白。尽管没有始终明确声明,但应了解的是,该药剂可单独使用,或与其它在生物活性方面与本发明所述筛选方法确定的药剂相同或不同的药剂一同使用。这些药剂及方法也可与其它疗法相结合。
文中所用术语“诱导细胞的成熟或死亡”将包括凋亡、坏死或防止细胞分裂、致肿瘤性降低、抗药性丧失、成熟、分化或细胞的肿瘤表型回复的其它任何方法。如上文所述,该方法适当于处理具有DM或额外染色体DNA的细胞。这些细胞的识别可采用该领域熟知的任何用于鉴定扩增的染色体DNA或额外染色体DNA的方法。这些方法包括,但并不限定于,DNA杂交(见下文实施例IID以及Sambrook etal.(1988))、FISH(见下文实施例IIB,U.S.Patent Nos.5,665,549;5,633,365;及5,545,524)、荧光激活细胞分类技术(FACS)(见下文实施例IIC)、离心分部分离以及组蛋白-GFP标记(见下文实施例I)。已知某些类型的细胞中含有微核,如肿瘤抑制蛋白缺失或缺陷的细胞以及肿瘤或瘤细胞。肿瘤抑制蛋白缺陷的存在与否可由肿瘤抑制基因缺陷来决定。由于肿瘤抑制基因的突变可导致功能丧失,因此这些基因被称为“隐性”基因。在肿瘤形成之前,两个等位基因必需均丧失或失效,但单个等位基因的突变可导致人类群体形成可遗传的癌症易感体质。
该方法可在体外、来自体内或在体内实施。当在体外实施时,该方法可提供一种强有力的测定和筛选手段,来确定一种药剂或组合药剂是否能调节以及如何调节胞内DM或额外染色体DNA的减少或消除。在某些情况下,它有望使DM或额外染色体DNA的消除得到加强,而在另一些情况下,如希望抑制细胞凋亡时,它可通过微核形成的方法减少或抑制DM或额外染色体DNA的消除。因此,通过首先提供一种适当细胞的实例,本发明还提供一种筛选潜在药物的方法。该细胞在能够促进药剂插入细胞的适当条件下与潜在药物相接触。在经过适当时间后,对细胞或细胞培养物或上清液中的DM和/或额外染色体DNA的存在状况加以测定。在一项实施方案中,DM或额外染色体DNA的减少或消除肯定地表明该药剂可作为一种潜在的治疗方法。在另一项实施方案中,则有望减少或抑制微核的消除。
因此,为在体外实施该方法而首先提供一种适当的细胞培养物或组织培养物。所用细胞为培养的细胞或经遗传修饰的细胞。作为选择,也可使用取自活检组织的细胞。将细胞在一定条件(温度、培养基及气体(CO2))下培养适当时间,获得不存在密度依赖性抑制的指数增长期。另外还需单独保留一份额外的细胞培养物;作为不接受药剂的对照加以测试。
正如对该领域的技术人员显页易见的,适当细胞可在微量滴定板中培养,并通过记录表型变化或细胞死亡来对不同的药剂进行同时测定。
当确定一种潜在药剂具有所需生物活性时,可将该药剂加入细胞,以诱导细胞的成熟或死亡。因此,本发明还提供一种诱导细胞成熟或死亡的方法,其中该细胞含有DM或额外染色体DNA,并能够经历微核形成。该方法包括将细胞与一种可通过微核形成来诱导或增强胞内DM或额外染色体DNA消除的药剂相接触。该药剂在能够促进细胞成熟或死亡的条件下与细胞相接触。若该药剂是除DNA或RNA核酸分子外的一种组合物,则可将适当条件直接加到细胞培养物或培养基内。正如该领域的专家所了解的,必须加入“有效的”剂量,该有效剂量可根据经验加以确定。
当药剂为核酸时,可利用该领域熟知的方法将其加入细胞培养物,这些方法包括,但并不限定于,磷酸钙沉淀法、显微注射法或电穿孔法。作为可选的或附加的方法,也可将核酸结合到一种用于掺入细胞的表达载体或插入载体内。包含一个启动子和一个经操作可接入多核苷酸的克隆位点的载体已为该领域的专家所熟知。这些载体能够在体外或体内转录RNA,并且能够以商品形式从诸如Stratagene(LaJolla,CA)和Promega Biotech(Madison,WI)等供应商那里购得。为使表达和/或体外转录尽可能完善,或许有必要去除、加入或改变克隆的5’和/或3’非翻译区,以消除那些可能导致错误翻译的额外起始密码子或那些可在转录或翻译水平阻碍或降低表达的其它序列。作为选择,也可在紧接起始密码子的5’端插入共有核糖体结合位点以增加表达。载体的实例有病毒,如杆状病毒和逆转录病毒,和噬菌体、粘粒、质粒、真菌载体,以及其它已证明可在多种真核及原核宿主内表达,并可用于基因治疗和单纯蛋白表达的该领域常用的重组载体。
其中有一些非病毒性载体,如DNA/脂质体复合物,和特定病毒蛋白DNA复合物。为加强向细胞的输送,可将本发明的核酸或蛋白与结合TCR、CD3或CD4等细胞表面抗原的抗体或结合片段相结合。含有导向抗体或其片段的脂质体也可在本发明所述方法中使用。本发明还规定在本文公开的方法中使用的导向复合物。
利用该领域所熟知的方法将多核苷酸插入载体基因组。例如,可在适当条件下使插入DNA和载体DNA接触,利用限制性内切酶在各分子上产生可相互配对的互补末端,并由连接酶连接。作为选择,也可将合成的核酸连接子连接在限制性多核苷酸的末端。这些合成连接子中可含有与载体DNA的特定限制酶切位点相对应的核酸序列。此外,还可连接含有终止密码子和适当限制酶切位点的寡核苷酸,以用于插入载体,所述的载体可含有,例如,如下所列的部分或全部成分一种可筛选标记基因,如用于筛选哺乳动物细胞中稳定型或短暂型转染子的新霉素基因;人类CMV的立早基因中用于高水平转录的增强子/启动子;来自SV40中用于稳定mRNA的转录终止信号和RNA加工信号;用于游离基因正确复制的SV40多瘤复制起始点和Col E1;通用多克隆位点;以及用于体外转录有义和反义RNA的T7和SP6 RNA启动子。该领域中还有许多众所周知的其它方法可以采用。
文中使用的“表达”是指多核苷酸转录成mRNA并翻译成肽、多肽或蛋白的过程。若多核苷酸起源于基因组DNA,并已选定一种适当的真核宿主,则表达可能还包括mRNA剪切。表达所需的调控元件包括结合RNA聚合酶的启动子序列和结合核糖体的转录起始序列。例如,细菌表达载体就包含有一个启动子,如lac启动子,和Shine-Dalgarno转录起始序列以及起始密码子AUG(Sambrook et al.,见上文)。同样,真核表达载体含有可被RNA聚合酶II识别的异源或同源启动子,以及下游多腺苷酸化信号、起始密码子AUG和用于核糖体脱离的终止密码子。这些载体能够以商品形式购得,或利用该领域熟知的方法中所描述的序列组装而成,如上文描述的构建载体的一般方法。表达载体可用于产生表达本发明所述受体的细胞。
通过减少细胞寿命、细胞分化或凋亡测定可确定是否已实现该方法的目标,即通过微核形成来减少或消除细胞中的DM或额外染色体DNA。细胞分化的监控可利用组织学方法或通过监控与未分化表型相关的细胞表面特定标记,如初级造血干细胞上的CD34,的出现或消失来加以实现。
为监控细胞凋亡,可将细胞以2.5×105细胞/孔的浓度平铺在玻璃盖片上。约两天后,当细胞铺展并粘连时将其固定,再用碘化丙锭染色并封固。利用荧光显微技术根据核的形态测定凋亡细胞和非凋亡细胞的数量,并计算非凋亡细胞的损失百分率。每个样品至少计算100个细胞,每次实验应至少重复一次。由于在任何正常生长的细胞培养物中均有一小部分细胞产生凋亡,因此还需确定未处理样品或处理样品中自发性凋亡的数量。然后用未处理样品中自发性凋亡的频率进行校正,使非凋亡细胞的百分率标准化。电镜观测则按照电镜技术的每个标准步骤来固定和处理细胞。还可使用该领域所熟知的细胞死亡第二种测定方法,如MTT转化测定和结晶紫染色等。
利用U.S.Patent No.5,399,346中描述的修正方法,还可来自体内实施本发明所述方法。
含有实施文中所述筛选方法和体外方法所必需的药剂和说明的试剂盒亦被要求专利保护。
本发明还提供一种治疗疾病的方法,其中该疾病的特征在于受试者中存在含有DM或额外染色体DNA的细胞,并能够通过微核形成消除这些DNA。该方法是给受试者施用有效剂量的药剂,该药剂可通过微核形成诱导或加强这些DNA的消除。
当受试者为大鼠或小鼠等动物时,该方法提供一种便利的动物模型系统,可在临床测试该药剂前使用。如果与具有此种病理细胞的未处理动物相比,通过细胞测试被确定可在该系统中减少或消除DM或额外染色体DNA,或可改善与含有DM或额外染色体DNA的细胞的出现相联系或相关的症状,则该候选药剂为一种潜在药物。健康并且未经处理的细胞或动物的独立阴性对照组还可用于提供一种对比依据。施用一种选自羟基脲或胍唑的药剂,可用作体内和体外的阳性对照。
在一项实施方案中,文中所述方法中采用的药剂选自一个集合,其中包括羟基脲、胍唑或其衍生物。例如,该药剂具有结构
其中R1为H、烷基、芳基、取代芳基、杂芳基、取代杂芳基、酰基或-(CH2)n-X,其中n为1-4的整数,X为取代的烷基、烯基或炔基,并且取代基的选自下列一组,它们是卤素、-OH、-NR2、-OR、-C(O)OR、-OC(O)R、酰胺和酰基,其中R为H、烷基或芳基;R2为H、烷基、芳基、取代芳基、杂芳基、取代杂芳基、-C(O)R’或-(CH2)n-X,其中n为1-4的整数,X为取代的烷基、烯基或炔基,并且其中的R’为烷基或芳基,取代基则如上文定义;R3为H、烷基、芳基、取代芳基、杂芳基、取代杂芳基、OR”、NR”2或-(CH2)n-X,其中n为1-4的整数,X为取代的烷基、烯基或炔基,并且取代基的选自下列一组,它们是-OH、-NR”2、-OR”、-C(O)OR”、-OC(O)R”、酰胺和酰基,其中R”为H、烷基或芳基;并且R4为H、烷基、芳基、取代芳基、杂芳基、取代杂芳基或-(CH2)n-X,其中n为1-4的整数,X为取代的烷基、烯基或炔基,并且取代基的选择集合包括-OH、-NR”’2、-OR”’、-C(O)OR”’、-OC(O)R”’、酰胺和酰基,其中R”’为H、烷基或芳基。
在一种替代方法中,该药剂具有结构 其中R1为H、烷基、芳基、取代芳基、杂芳基、取代杂芳基、酰基或-(CH2)n-X,其中n为1-4的整数,X为取代的烷基、烯基或炔基,并且取代基选自下列一组,它们是卤素、-OH、-NR2、-OR、-C(O)OR、-OC(O)R、酰胺和酰基,其中R为H、烷基或芳基;R2和R4分别为H、烷基、芳基、取代芳基、杂芳基、取代杂芳基、OR’、NR’2或-(CH2)n-X,其中n为1-4的整数,X为取代的烷基、烯基或炔基,并且取代基选自下列一组,它们是-OH、-NR’2、-OR’、-C(O)OR’、-OC(O)R’、酰胺和酰基,其中R’为H、烷基或芳基;并且R3和R5分别为H、烷基、芳基、取代芳基、杂芳基、取代杂芳基或-(CH2)n-X,其中n为1-4的整数,X为取代的烷基、烯基或炔基,并且取代基选自下列一组,它们是-OH、-NR”2、-OR”、-C(O)OR”、-OC(O)R”、酰胺和酰基,其中R”为H、烷基或芳基。
羟基脲或胍唑能够以商品形式购得,并用作衍生物的原材料。利用U.S.Patent Nos.5,549,974;5,639,603和5,679,773中描述的修正方案,可通过本发明所述方法合成并测定这些有机小化合物的衍生物的生物活性。
本发明的这些药剂以及上文指出的化合物及其衍生物均可用于制备文中所述方法中使用的药剂。
文中确定可有效用于其预定用途的药剂均可向易于产生或可能产生某种与细胞中出现DM和/或额外染色体DNA相关的疾病,如癌症,的受试者或个体给药。当该药剂向小鼠、大鼠或人类患者等受试者给药时,可在药剂中加入药学上容许的载体,并对受试者进行全身或局部给药。为确定能够从治疗中受益的患者,可从患者中采集肿瘤样本,并测定细胞内DM、额外染色体DNA或微核的存在情况。治疗剂量主要通过经验确定,并随所处理的病状、受试者以及药剂疗效和毒性的不同而改变。当向动物给药时,该方法可用于进一步确定药剂的疗效。作为动物模型的一个实例,对多组裸鼠(Bal b/c NCR nu/nu雌性,Simonsen,Gilroy,CA)各皮下注射约105-109个文中定义的过增殖癌细胞或靶细胞。当肿瘤形成时,将该药剂给药,例如可利用在肿瘤周围的皮下注射方式。用游标卡尺对肿瘤进行二维测量,以确定肿瘤减小的尺寸,每周测量两次。也可采用其它适当的动物模型。
体内给药可通过整个疗程内的单次、连续或间歇给药方式加以实现。确定给药的最有效方式和剂量的方法对该领域的专家而言是众所周知的,该方法随治疗所用组合物、治疗目的、处理的靶细胞、以及处理的受试者的不同而不同。由治疗医师选定的剂量和方式可进行单次或多次给药。适当剂量的制剂以及药剂的给药方法将在下文给出。
本发明所述药剂和组合物可用于药物的生产,并可通过常规的给药方法,如作为药用组合物中的活性成分,而用于人类和其它动物的治疗。
药用组合物可通过口服、鼻内、胃肠外或吸入疗法方式给药,并且可采取片剂、锭剂、颗粒、胶囊、丸剂、针剂、栓剂或喷雾剂形式。另外也可采取将活性成分溶于水性或非水性稀释剂而制成的悬浮液、溶液和乳剂形式,或采取糖浆、颗粒或粉末形式。药用组合物中除可以含有本发明的一种药剂外,还可含有其它具有药学活性的复合物或多种本发明的复合物。
更详细而言,本发明所述药剂,也就是此处提到的活性成分,可通过任何适当的途径进行治疗性给药,如通过口、直肠、鼻、局部(包括透皮、喷雾剂、口腔及舌下方式)、阴道、胃肠外(包括皮下、肌内、静脉内及皮内方式)以及肺等途径。还应该了解的是,优选的途径将随接受者的状况和年龄以及治疗疾病的不同而不同。
理想的药剂给药方式应能够使活性复合物在疾病部位达到最高浓度值。其实现方式有,例如,将该药剂,或溶于生理盐水的该药剂,进行静脉内注射,或将,例如,包含活性成分的片剂、胶囊或糖浆通过口服给药。该药剂的所需血液水平可通过连续注入加以维持,以在患病组织部位提供治疗剂量的活性成分。有效组合物的使用可使治疗性组合物所需的各抗病毒药剂成分的总剂量低于单独使用各治疗性复合物或药物时所需的剂量,从而可减少副作用。
尽管可以将该药剂单独给药,但优选的是将其以药学制剂形式给药,该药学制剂中包含至少一种上文定义的活性成分和为此加入的一种或多种药学上容许的载体以及任选的其它药学制剂。各种载体必须是“容许的”,其含义是能够与制剂中的其它成分相容并且对患者无害。
制剂中可含有那些适合于通过口、直肠、鼻、局部(包括透皮、口腔及舌下方式)、阴道、胃肠外(包括皮下、肌内、静脉内及皮内方式)以及肺途径给药的成分。制剂能够以单位剂量形式方便地提供,并可通过制药领域中熟知的任何方法进行制备。这些方法包括将活性成分与构成一种或多种副组分的载体相结合的步骤。制剂的制备一般是将活性成分与液态载体或细碎的固态载体或二者均包括在内进行均匀而又密切地结合,如果需要可再将产品整形。
本发明中适合口服给药的制剂的提供方式可以是各含有预定剂量活性成分的胶囊剂、扁囊剂或片剂等不连续单元形式;粉末或颗粒形式;溶于水性或非水性流体的溶液或悬浮液形式;或水包油或油包水乳剂形式。活性成分的提供还可采用大丸剂、药糖剂或药膏剂形式。
片剂的制造可采用压缩法或模塑法,其中可选择加入一种或多种副组分。压缩片剂的制备是在适当机器中将粉末状或颗粒状等易流动形式的活性成分进行压缩,并与粘结剂(如聚烯吡酮、明胶、羟丙基甲基纤维素)、润滑剂、惰性稀释剂、防腐剂、崩解剂(如淀粉羟乙酸钠、交联的聚烯吡酮、交联的羧甲基纤维素钠)、表面活性剂或分散剂进行任意混合。模塑片剂的制备是在适当机器中将粉状复合物与一种惰性稀释液浸湿后所得的混合物模制成型。片剂可被任意包被或修整,并可配方化以使其活性成分缓慢释放或受控释放,例如,可利用不同比例的羟丙基甲基纤维素以获得所需的释放曲线。也可选择在片剂外加一层肠衣,使其在肠道部分释放,而不是在胃内释放。
适合于口内局部给药的配方包括,在调味基质,通常为蔗糖和阿拉伯胶或黄蓍胶,中含有活性成分的药糖块;在惰性基质,如明胶和甘油、或蔗糖和阿拉伯胶,中含有活性成分的锭剂;以及在适当液态载体中含有活性成分的漱口剂。
本发明所述用于局部给药的药用组合物可配制成软膏、乳膏、悬浮液、洗剂、粉末、溶液、糊剂、凝胶、喷剂、气雾剂或油剂。作为选择,配方中还可包含浸有活性成分的绷带或橡皮胶等帖剂或敷料,并可任意包含一种或多种赋形剂或稀释剂。
如果需要,乳膏基质的水相中还可含有,例如,至少约30% w/w的一种多元醇,即具有两个或多个羟基的醇,如丙二醇、1,3-二醇丁烷、甘露醇、山梨醇、丙三醇和聚乙二醇,以及其混合物。局部制剂中还可包含能促进皮肤或其它受影响区域对药剂的吸收或穿透的复合物。这些皮肤穿透增强剂的实例有二甲砜及相关类似物。
本发明所述乳剂的油相可由已知方式的已知成分构成。尽管油相可以只包含一种乳化剂(或在其它地方称为成乳剂),但理想的油相为混合物,其中含含有至少一种乳化剂和一种脂或一种油或既有脂又有油。优选而言,可将一种亲水性乳化剂与一种作为稳定剂的亲脂性乳化剂一同包含在内。既包含一种油又包含一种脂的方案为优选方案。总之,包含或不包含稳定剂的乳化剂构成通常所说的乳化蜡,而乳化蜡加上油和/或脂构成通常所说的乳化软膏基质,乳化软膏基质则形成乳膏制剂的分散油相。
适合于在本发明所述制剂中使用的乳化剂和乳化稳定剂包括Tween 60、Span 80、十八醇十六醇混合物、肉豆寇醇、单硬脂酸甘油酯和十二烷基硫酸钠。
由于活性复合物在大多数可用于药用乳剂的油中的溶解性非常低,因此适用于该制剂的油或脂的选择依据是要能够实现所需的装饰特性。因此,优选的乳膏剂产品应该是无油腻性、非污染性以及可清洗的,并且应具有适当的粘稠度以避免从软管或其它容器中泄露。可使用的有直链或支链烷基的单价或二价酸酯,如二异己二酸酯、异十六基硬脂酸酯、椰子脂肪酸的丙二醇二酯类、豆蔻酸异丙酯、油酸癸酯、棕榈酸异丙酯、硬脂酸丁酯、2-乙基己基棕榈酸酯,或称为Crodamol CAP的支链酯混合物,最后三种则为优选的酯。它们按所需特性的不同可单独或结合使用。作为选择,也可使用高融点液体,如白色软石蜡和/或液体石蜡或其它矿物油。
适合于对眼进行局部给药的制剂还包括眼药水,其中活性成分溶解或悬浮在适合于该药剂的载体,尤其是水性溶剂中。
用于直肠给药的制剂可作为含有可可脂或水杨酸酯等适当基质的栓剂形式提供。
适合于阴道给药的制剂可作为阴道栓剂、卫生棉条、乳膏剂、凝胶、糊剂、泡沫剂或喷雾剂形式提供,其中除药剂外还含有该领域所熟知的适当载体。
载体为固体的适合于鼻部给药的制剂包括颗粒大小范围约为,例如,20-500微米的粗粉,其给药方式需用鼻子使劲地吸,即把含有粉末的容器置于鼻子附近并通过鼻孔快速吸入。载体为流体的适合于以,例如,鼻内喷雾、滴鼻液、或用喷雾器喷雾给药等方式进行给药的制剂包括药剂的水性或油性溶液。
适合于胃肠外给药的制剂包括水性和非水性等渗无菌注射液,其中可含有抗氧化剂、缓冲液、抑菌剂以及使制剂与预定接受者的血液等渗的溶质;以及水性和非水性无菌悬浮液,其中可含有悬浮剂和增稠剂以及可使复合物定向于血液成分或一种或多种器官的脂质体或其它微粒系统。该制剂可置于安瓿和小药水瓶等单剂量或多剂量密封容器中提供,并可在冷冻干燥(冻干)状态下储存,在使用前只需加入无菌液态载体,例如加入水即可用于注射。临时注射液和悬浮液可由上述种类的无菌粉末、颗粒和片剂制得。
所含药剂的量为一日剂量或一日单位、或如上文所述的日亚剂量、或其适当部分的制剂为优选的单位剂量制剂。
应当了解的是,就所述制剂的类型而言,除上文特别提到的成分外,本发明的制剂还可含有该领域的其它传统药剂,如适合于口服给药的制剂中可进一步含有甜味剂、增稠剂和调味剂等药剂。此外还将把其它适当的组合物和疗法结合到本发明的药剂、组合物和方法中。
本发明还进一步提供一种检测细胞内染色体DNA和额外染色体DNA的方法。该方法步骤是首先在细胞内插入一种可检测的标记蛋白,其中该蛋白能够与细胞内的染色体DNA和额外染色体DNA特异结合,然后检测标记,从而检测胞内的染色体DNA和额外染色体DNA。在一项实施方案中,该蛋白为组蛋白或具有保守氨基酸取代的类似物,以及融合蛋白。在一项实施方案中,可检测标记为荧光标记,如多管水母属绿色荧光蛋白,它可经修饰产生红色或黄色荧光。作为选择,也可使用抗生物素蛋白、抗生蛋白链菌素或生物素。在一项可选实施方案中,插入步骤包括将细胞与一种载体接触,其中该载体中含有经可检测标记的组蛋白融合蛋白的编码DNA。
上述方法还可用于分析体内染色体行为、监控染色体运动,即细胞内染色体片段的丢失或易位、检测以胞内含有DM或额外染色体DNA为特征的病理细胞,以及监控患者体内该病理的进展状况。所有这些方法均包括在细胞内插入一种可检测的标记蛋白,其中该蛋白能够与细胞内的染色体DNA和额外染色体DNA特异结合,然后检测标记,从而检测胞内的染色体DNA和额外染色体DNA。然后可将所测染色体区域的存在、缺失或定位情况与以前的样品分析结果或正常细胞进行对比,从而完成染色体畸变和/或变化的分析和监控。也可通过该方法对病理细胞进行检测,其中该病理细胞含有扩增DNA或额外染色体DNA。诸如前列腺癌等癌细胞和/或肿瘤细胞均可检测。
以下实例用来对本发明进行说明,但不是限制本发明。
实验实例I.DM和额外染色体DNA与表型丧失的关系细胞培养人类COLO 320DM(ATCC Accension No.CCL 220)和COLO 320HSR(ATCC Accension No.CCL 220,1)神经内分泌肿瘤细胞来自美国典型培养保藏中心,12301 Parklawn Drive,Rockvillem Maryland,20853,美国并通过有限稀释法获得单细胞亚克隆(Von Hoff,et al.(1988))。利用c-myc粘粒DNA经FISH确定c-myc扩增基因对DMs或HSRs的定位。细胞在补加有10%胎牛血清(FBS)的RPMI1640培养基中增殖。由美国模式培养收集所(CRL 1502)获得的WS1人胚胎皮肤成纤维细胞培养于Dulbecco’s改进型Eagle’s培养基(DMEM)中,该培养基补加有10%经热灭活并透析的FBS以及1×MEM非必需氨基酸。WS1neo和WS1E6来自S.Linke博士的惠赠,并分别由表达新霉素抗性蛋白编码基因或新霉素抗性蛋白和E6蛋白编码基因的逆转录病毒载体感染WS1而产生(E6蛋白来自人乳头瘤病毒16)(Linke,et al.(1996))。RPE-h(正常的人视网膜色素上皮细胞)及其neo和E6衍生物同样由S.Linke博士惠赠,其亲代细胞来自CellGenesys,Inc.(Foster City,CA)。上皮细胞的培养方法与WS1相同。
B.化学制剂阿非迪霉素、5-溴-2’-脱氧尿苷(BrdU)、香豆素(1,2-苯并吡喃酮)、去铁胺甲磺酸(甲磺酸去铁胺)、DMSO、羟基脲(HU)、烟酰胺、胸腺嘧啶以及诺考达唑(5-(2-噻吩基羰基)-1H-苯异咪唑-2-YL-基甲酚)均由Sigma(St.Louis,MO)购得。胍唑(3,5-二氨基-1,2,4-三唑)来自Aldrich(Milwaukee,WI),PALA(N-膦乙酰-L-天冬氨酸)则由药物生物合成和化学分部,治疗开发项目,癌症治疗部,国立癌症研究院(Bethesda,MD)提供。
C.细胞周期分析按前人所述(Yin,et al.(1992)and Di Leonardo,et al.(1994)),用流式细胞术对细胞周期的分布进行分析。经特定浓度的药物处理了特定时间的细胞用10μM BrdU标记30分钟。收集细胞,用70%乙醇固定,含有0.5% Triton X-100的0.1N HCl,然后煮沸10分钟,再迅速制冷使DNA变性。然后将核与结合FITC的抗BrdU抗体(Boehringer Mannheim)共保温,并用含有RNAse(200μg/ml)的2μg/ml碘化丙锭(PI)复染。利用Becton Dickinson FACScan对样品进行分析。每份样品收集1万个数据。按前人所述(Yin,et al.(1992)and Di Leonardo,et al.(1994))用Sun Display对数据进行分析。
D.微核定量利用在标准低渗膨胀条件下(Lawce and Brown(1991))制备的铺展染色体,来检测COLO 320DM细胞中含有DM序列的微核,然后按前人所述(Shimizu,et al.(1996))的方法用生物素标记的c-myc粘粒探针进行杂交。用DAPI(Sigma;1μg/ml in VectaShield,VectorInc.)对铺展染色体进行染色,并由此确定总微核数(图3)。将贴壁细胞(WS1、RPE-h及其衍生物)培养于盖片上,用冷丙酮固定(-20℃,5分钟),再用冷甲醇固定(-20℃,5分钟),PBS重新水化,并用DAPI(1μg/ml in VectaShield)染色。用60×或100×的物镜和配有适当表荧光滤片的Zeiss荧光显微镜计算总微核或富含DM的微核的数量。结果以相对于间期核计数的“微核出现频率(%)”形式表示(每个点的最小采样数为1000)。
E.细胞同步化按前人所述(Stein,et al.(1994))进行同步化。首先用过量胸腺嘧啶(2mM)处理17小时,使快速生长的COLO 320DM细胞抑制于早S期。然后用培养基清洗细胞,并在含有25μM 2’-脱氧胞苷的生长培养基中置12小时(以逆转胸腺嘧啶的毒性),然后在2.5μg/ml阿非迪霉素中培养17小时,使细胞在进入S期时被抑制。用培养基清洗被抑制的细胞,然后置于不含药物,或含有诺考达唑(0.4μg/ml)的培养基中。通过加入[3H]胸腺嘧啶来监控细胞周期的进展(Stein,et al.(1994))。为检测有丝分裂过程的进展,用多聚甲醛(PFA;2%)固定一部分培养物(1ml)并用DAPI染色。利用荧光显微镜计算有丝分裂期细胞的出现率。WS1 E6细胞的同步化是通过将其接种于具有或不具有盖片(18×18mm)的15cm培养皿中而实现。在传代后第二天,去除原培养基并替换为含有0.1%FCS的培养基,再培养48小时。将通过血清缺失而被抑制在G0期的细胞置入含有5μg/ml阿非迪霉素的生长培养基中培养15小时,使其抑制于S期起始阶段。把培养基替换为不含药物的新鲜培养基,使细胞释放并进入S期。通过加入[3H]胸腺嘧啶来监控进入S期的进展情况(Stein,et al.(1994))。同时,移取盖片,用丙酮和甲醇染色,DAPI固定,并按照上文所述计算微核、核出芽以及有丝分裂细胞的出现率。
F.TUNEL测定TUNEL测定是根据前人发表的一套步骤(Gavrieli,et al.(1992))按下列所述的修改方法。简单地说,即用2%的PFA固定COLO 320DM细胞(室温10分钟),并利用细胞甩片机离心到玻片上。细胞用冷甲醇进一步固定(-20℃,5分钟),再用冷丙酮固定(-20℃,5分钟)。玻片用PBS重新水化,然后在室温下用反应缓冲液(200mM二甲胂酸钠,1mM MgCl2,1mM β-巯基乙醇,pH7.2)平衡15分钟。末端标记反应采用将玻片在37℃下与含有10μM生物素-dUTP(Boehringer Mannheim GmbH,德国)和0.3单位/μl末端脱氧核苷酸转移酶(Toyobo Co.,Osaka,日本)的反应缓冲液保温60分钟。将玻片广泛清洗,用20%FCS封闭,并利用结合FITC的抗生蛋白链菌素按照FISH规程中的描述(见下文)检测结合的生物素。玻片用RNAse A处理(100μg/ml,37℃,20分钟),PI复染,并在用于观测FISH的条件下观察。
G.探针制备及FISH除利用BioPrime DNA标记系统(Life Technologies Inc.Gaithersburg,MD)直接将纯化微核中的DNA用于生物素标记之外,其余均按照文献所述(Shimizu,et al.(1996))从纯化微核中制备探针。按照前人所述(Shimizu,et al.(1996))利用经甲醇/醋酸标准化固定的核进行FISH。用共焦显微镜评测DM的定位时需采用以下方法来保持核的球形。该规程以用于人淋巴细胞而开发的规程(Ferguson and Ward(1992)and Vourc’h,et al.(1993))为基础,但由于核的严重聚集而不能将其直接使用于COLO 320DM。改进方法包括在260×g下离心5分钟使10ml COLO 320DM细胞沉淀,再完全去除上清液。将细胞温和悬浮于50μl生长培养基,并缓慢加入10ml预热(37℃)的75mM KCl,2mM CaCl2。利用上述条件立即将悬浮液离心,并完全去除上清。温和地使细胞沉淀松散,并悬浮于1ml 4℃的75mM KCl和2mM CaCl2中,再加入1ml 4℃的75mM KCl、2mM CaCl2、0.5%Triton X-100。悬浮液在冰上置10分钟,然后进行Dounce匀浆(松配杵,5分钟,4℃)。悬浮液中加入1.5倍体积溶于PBS的5%PFA,并在室温下保温10分钟,并偶尔温和摇动。保温后,再加入1/10体积含有1%BSA的1M Tris-HCl(pH7.4),并于室温下再保温10分钟并温和摇动。固定的核用含有1% FCS的PBS洗两次,并在4℃下保存一周。在进行FISH杂交前,通过细胞甩片将固定的核沉淀于涂有多聚L-赖氨酸的玻片上(Matsunami Glass Ind.,Ltd.,日本)。玻片用RNAse A处理(Sigma,100μg/ml溶于2×SSC,37℃,60分钟),再用2×SSC清洗两次,每次3分钟,然后用溶于PBS的3% BSA封闭并在37℃下放置30分钟。玻片于室温下在溶于2×SSC的50%甲酰胺中保温30分钟,以使缓冲液达到平衡,再加入含有标记探针的杂交液(按FISH的标准方法制备(Shimizu,et al.(1996)))。用盖片覆盖样品,并用橡胶泥完全密封,在85℃下变性,并通过37℃保温过夜完成杂交。杂交探针的清洗与检测均按照前人所述(Shimizu,et al.(1996))进行。图像是利用BioRad MRC600共焦系统在Zeiss Axiovert 135显微镜上获得(图6的方法可参考下文)。多数图像是利用×63物镜(Zeiss,复消色差物镜,1.40,油镜)获得,并且放大比为2。所得数字图像用伪彩色表示,图像的合并采用Adobe Photoshop(Adobe systems Inc.,Mountain View,CA)。
H.间期核内的DMs定位以相应核的直径为单位长度测量各杂交信号与核中心的距离,由此确定共焦核切面中DMs的定位。PI(DNA)和FITC(杂交信号)的核中心共截面图像来自随机选定的核。数字图像的合并采用COMOS软件(BioRad,Hercules,CA)。为能够精确地测量距离,而将各FITC信号的阈值降低,直至每个代表了一个或多个DMs区域的信号成为单一的点。确定该点到核中心的距离以及核的直径。用前一数字除以后一数字来表示各信号在核中的位置。按照这种表示方法,核的中心为0,核膜的外边界为1。同时,利用任意单位标度测定各信号的密度。确定每个核切面中各信号的该密度值时,每个样品至少随机选定100个核。由这一过程得出各二维焦平面中的DM信号分布。每个核的高度和宽度近似相等,提示文中所述的固定方法确实保持了核的球状形态。假定每个核体积内的信号分布与我们在2D空间的相应半径内检测的信号数量相符。将信号数量对各径向位置加以修正,使其代表在相应半径的球形体积内所应出现的数量。
I.通过加入FISH和BrdU掺入来同时确定DM位置和DNA复制快速生长的COLO 320DM培养物用10μM BrdU(Sigma)脉冲标记1小时,然后立即收集细胞。按上文所述将核分离,用PFA固定,并利用纯化的微核探针进行FISH。在FISH后确定BrdU的掺入情况,方法是将玻片与溶于含有0.1% BSA的PBS中的终浓度为10μg/ml的小鼠抗BrdU单克隆抗体(Pharmingen,San Diego,CA)共保温。玻片于37℃保温60分钟后,用PBS清洗3次,每次5分钟。然后用终浓度为10μg/ml、溶于含有0.1%BSA的PBS中的罗丹明标记的抗小鼠Ig(Boeringer-Mannheim)处理玻片。玻片于37℃保温60分钟,再用PBS清洗3次,每次5分钟。利用Axiovert 135M显微镜(Zeiss)上配备的MRC 1024(BioRad)共焦系统观察未经复染的细胞核,所得数字图像按上文所述进行处理。
J.间期时的核出芽可选择性包载DMsDMs等无着丝点染色体片段从细胞中丢失的传统机制涉及末期后将其封装在重新形成核膜内(综述可参考Heddle,et al.(1991))。但有报告称,经γ射线照射后可在间期产生类似微核的核异常现象(Duncan,et al.(1985))。这里采用一种具有c-myc扩增基因的细胞系来评定有丝分裂期后结构及间期结构对DM微核形成的相对影响。
图1显示COLO 320DM,一种神经内分泌起源的结肠癌细胞系,的荧光原位杂交(FISH)分析。特异识别COLO 320细胞中c-myc扩增子的生物素标记FISH探针,来自COLO 320DM细胞的纯化微核(Shimizu,et al.(1996))。利用该探针所得的FISH分析结果表明,群体中95%以上的细胞只含有DMs,其余细胞则含有DMs以及一种染色体内扩增区域(图1A箭头所示)。前中期铺展染色体中的DMs(图1A)似乎并非随机分布,因为其中有很多是位于前中期环的边缘,这与前人的报导(Levan and Levan(1978))相一致。另外还利用共焦显微技术观测了间期核中的周边核定位(见下文)。
由COLO 320DM细胞的指数增长培养物所得的分析结果均显示出具有突起或“芽”的间期核。约40-80%的核芽含有高度浓缩的DM序列(图1,B-D图板显示典型的含有DMs的芽;C图板显示两个微核和一个核芽)。图1D显示的核芽高度富含扩增序列,因为它含有三个可被PI染色的簇区(红色信号表示DNA染色,因为这些样品首先用RNAse进行广泛处理),而每个PI阳性簇区均能够与微核DNA FISH-探针强烈杂交(图1D’;合并显示于图1D”)。偶尔会观测到不与DM探针杂交的PI-阳性芽,这表明与DM序列不相关的DNA也能够掺入核芽内。但含有DM序列的核芽相对而言似乎含有极少的不与FISH探针杂交的PI反应物质,这表明核芽的DNA俘获对DMs有高度选择性。采用由包含c-myc的粘粒所获得的FISH探针、或不同的固定方法(如多聚甲醛,见图6)或采用核分离所使用的等渗方法,均同样很容易地表明核芽对DMs的选择性包载(数据未显示)。
K.核芽与微核均在S期时形成产生核芽的核显示出间期细胞所具有的典型形态,而不是有丝分裂期时的形态。因此测定微核与核芽的形成动力学,以确定这些结构是否可产生于S期。利用两步法将COLO 320DM细胞同步于G1/S交界,该方法包括用高浓度的胸腺嘧啶处理细胞,使其阻滞于S期,再将抑制解除12小时,使细胞周期的进程能够穿过并脱离S期,然后与DNA聚合酶抑制剂阿非迪霉素保温,使细胞阻滞于下一S期的起始点(Stein,et al.(1994))。去除阿非迪霉素,使细胞快速进入S期,并在4小时后达到DNA合成的高峰,在10小时后达到有丝分裂的高峰(图2A)。细胞在抑制解除19小时后进入同步性较差的第二个周期。
利用DNA特异性染料4’,6-二脒-2-苯吲哚(DAPI)确定微核与核芽的发生率(图2C和2D)。所有样品用来自微核的DM着色探针杂交,以确定这些结构是否包含扩增序列。具有核芽的核的发生率在G1/S交界处(即t=0)几乎为零,并在细胞步入早S期时(t=0-5小时)显著增加,在S期后期时又减小,然后当细胞进入并穿过第二个S期时又逐渐增加(图2C)。FISH分析说明核芽内含有DMs(图2E)。重要的是,总微核或含有DMs的微核的数量的增加和减少与核芽数量的增加和减少非常吻合(图2C)。
在S期发展过程中,核芽与微核可再次出现,并且对其形成而言并非必须经历M期。
出芽与微核形成的动力学分析及核形态分析结果表明,这两个事件均可发生于S期。由于减慢复制叉进程可导致DNA断裂(Eki,et al.(1987)and Linke,et al.(1996)),并且微核可优先俘获无着丝点的片段(Von Hoff,et al.(1992)and Shimizu,et al.(1996)),因此对这些抑制因素是否能增加S期的微核形成效率进行了测定。测试的药物包括核糖核苷酸还原酶抑制剂(HU、去铁胺、胍唑)、可催化嘧啶再次生物合成前三个步骤的CAD酶复合物的抑制剂(PALA)、以及阿非迪霉素。DNA合成抑制剂导致微核形成的显著增加,它通常与处S期细胞的增加相关(图3A和3B)。在能够严重抑制S期的浓度下使用去铁胺和PALA时发现,这些药物导致了微核形成效率的急剧下降(图3B)。这些数据表明,能够阻滞复制叉进程并使S期延长的抑制剂可导致微核形成。
对不影响DNA合成的抑制剂的效应进行分析,以确定阻碍诸如DNA修复等其它DNA事务或扰乱膜结构是否会导致微核形成。由于DNA修复过程包括ADP的核糖基化(Satoh and Lindahl(1992)),并且抑制修复可使无着丝点染色体片段产生的概率增加,因此测试采用了多聚(ADP-核糖)聚合酶的两种抑制剂(烟碱和香豆素)。据前人报导,膜活化极性复合物DMSO可减少某些肿瘤细胞系内DM拷贝数(Shima,et al.(1989)and Eckhardt,et al.(1994)),在此对DMSO的效应也进行了测试。DMSO使微核形成增加,但不使S期延长(图3A和3B)。香豆素对微核形成没有影响,而烟碱在胞内损伤量明显增加的条件下使微核形成稍有增加,因为处于G2期的细胞显著增加(图3A和3B)。这些数据与至少有两种机制可提高微核形成效率的观点相符合,一个可能涉及到复制叉进程的干扰,另一个可能涉及到S期外所发生的事件。
L.DMs的核周边定位与其通过出芽而被消除相关利用共焦显微技术了解DMs被选择性包含在核芽内的机制以及这些结构的形成机制。为能够最好地保持核的形态而用PFA对核进行固定(Manuelidis and Borden(1988))。
图4A-C显示分离自未处理的快速生长COLO 320DM细胞的三个代表性核的共焦面。FISH结果显示,显著的杂交强度表明大多数DM序列优先定位于核周边,并且显示出DM信号在细胞核最边缘的群集及数量。注意DM序列在核周边随机分布的基本偏差(图5A显示测量的100个间期核内相对于每个核中心的DM位置的定量结果)。相反,近亲细胞系COLO 320HSR内随染色体扩增的序列几乎在整个核内随机分布(图5C)。用HU处理优先减少核周边的DMs(图4D-F,定量结果显示于图5B),竞争性PCR扩增的测定结果表明HU处理使每个细胞内的DM含量减少了约三倍(方法见Shimizu,et al.(1996),数据未给出)。综合以上数据,这些结果表明,定位于核周边的DM序列可优先掺入核芽,然后通过微核形成从核内去除。
M.将复制的DM序列掺入核芽上文所述的S期进程、核出芽和微核形成之间的相关性,致使本发明人去研究是否进行复制的DM序列可被定向包含在核芽内。用BrdU脉冲标记COLO 320DM细胞,然后用DM FISH探针对分离的核进行杂交。随后用抗BrdU抗体和荧光素标记的二级抗体进行反应,使核、核芽以及含有在短暂标记间隙进行DNA复制的DMs的微核可被同时检测。两个代表性共焦面的FI SH分析结果(图6A-A”,B-B”)显示,这些细胞内的核芽(箭头所示)内含有高度浓缩的DM序列。核、核芽以及每个核的外周区域均与BrdU结合,表明形成这些核芽的核在核芽形成时正在进行DNA合成。表1显示,BrdU+,DM+核芽(1,1’型)占整个含DM核芽群体的48%。也有一些核与BrdU结合,但其产生的核芽却不被标记(2,2’型;35%)。这些核芽中也有一些产生于S期(与前一周期相反),并且它们未显示出可与BrdU结合,因为其DNA在短暂的BrdU温育期间不进行复制。
从表面上看,此处描述的S期微核形成过程类似于γ射线照射(Duncan,et al.(1985))或秋水仙素处理(Duncan and Heddle(1984))后由凋亡机制诱导的“核异常”。但是由核产生的核芽中不含有高度浓缩的DNA,表明它们在形成核芽时并没有发生凋亡。为确定是否能把出芽和微核形成与凋亡分开,而对核芽中是否含有凋亡细胞特征性DNA浓缩片段进行测定。DNA片段的检测采用TUNEL测定法,在该方法中利用末端转移酶将BrdU加到凋亡DNA片段产生的3’-OH基团上(Gavrieli,et al.(1992))。为观测所有的核及核芽,细胞同样用PI染色。图6C-C”显示由该COLO 320DM细胞分析所获得的数据实例。TUNEL测定结果显示一个具有叶状细胞核的细胞,细胞核具有强烈的TUNEL反应,并且特征性含有在凋亡细胞中观测到的DNA浓缩片段(Cohen(1993))。中间图板的PI染色结果显示一个细胞,该细胞产生的核芽不被TUNEL测定染色,并且不具有凋亡核的固缩结构。同步化实验显示,在S期高峰期时约有5%的细胞产生核芽(例如,见图2C),但只有0.5-1%为TUNEL阳性。
N.微核形成在正常细胞内很少发生,而一旦p53失活则发生率上升正常细胞内出现微核形成的几率明显低于肿瘤细胞系(Roser,etal.(1989)and Bondy,et al.(1993))。由于染色体断裂可诱导微核形成(Heddle and Carrano(1977)),因此在肿瘤细胞内观测到的微核形成的增加可能是由可增加DNA断裂概率的突变所导致。肿瘤抑制因子p53控制着G1检验点,该检验点可被经PALA处理而导致的DNA断裂和rNTP损耗所激活,而在PALA处理时进入S期的p53-缺陷细胞系中可发生DNA断裂(Livingstone,et al.(1992);Yin,et al.(1992)and Linke,et al.(1996))。如上所述,PALA也能够诱导COLO 320细胞内的S期微核形成。这些数据致使我们去研究是否正常二倍体成纤维细胞内的p53失活可导致S期出芽及微核形成的增加。
所使用的有人WS1正常二倍体成纤维细胞和两种通过新霉素磷酸转移酶基因的逆转录病毒转导而产生的几乎同源的衍生物(WS1-neo)或一种含有人乳头状瘤病毒E6基因的致瘤衍生物(WS1-E6)。E6基因产物可通过泛素依赖性途径促进p53的降解(Scheffner,etal.(1990)and Crook,et al.(1991))。细胞周期检验点调节装置可在存在DNA损伤或rNTP浓度有限的情况下控制细胞进入S期,它在表达突变p53和E6致瘤蛋白的人类细胞以及敲除p53的纯合小鼠胚胎成纤维细胞内似乎被同等程度地灭活(Kastan,et al.(1992);Kuerbitz,et al.(1992);Livingstone,et al.(1992);Yin,et al.(1992);White,et al.(1994);Linke,et al.(1996)and Linke,et al.(1997))。此前的文献显示,在p53-/-MEFs内由γ射线照射诱导的微核发生率要高于野生型MEFs的频率(Huang,et al.(1996))。因此,在E6致瘤蛋白表达时观测到的对微核形成的影响很可能与p53的灭活相关,而不是与其它可被E6影响的蛋白相关。
图7显示的数据表明,E6基因的表达可提高WS1细胞的微核形成率。HU或PALA不能使WS1细胞显示的低微核形成率有所提高(图7A)。PALA可导致细胞周期阻滞于G1期,但HU在所用浓度下不能显著影响S期WS1细胞的比例(图7B),这与以前的研究(Linke,etal.(1996))相一致。相反,E6的表达可提高这些在正常条件下生长的细胞的微核形成率,并且HU和PALA均可导致微核形成率的进一步显著提高(图7A),而处于S期的细胞数量也相应地显著增加(图7B)。在其它细胞类型中,E6的作用对象,这里推断是p53,在限制微核形成方面具有明显的重要性,因为采用正常视网膜色素上皮细胞(RPE-h)及其表达E6的衍生物时获得了类似的结果。
HU和PALA在COLO 320DM细胞和WS1 E6细胞内均可使S期延长并诱导微核产生,这致使我们去评价S期出芽是否是WS1-E6细胞内微核形成的主要机制。利用血清缺乏将WS1-neo和WS1-E6细胞阻滞于G0期,然后在存在阿非迪霉素的情况下释放,使细胞阻滞于G1/S交界(图7C)。利用血清缺乏进行的同步化不提高WS1-neo细胞内的微核形成率,并且S期的微核形成率及出芽率均没有增加(图7D)。相反,当WS1-E6细胞发展至S期时去除其中的阿非迪霉素可导致核出芽率及微核形成率均显著提高(图7D)。由于DNA损伤不会诱导WS1或WS1-E6细胞的凋亡(Di Leonardo,et al.(1994);Linke,et al.(1996)and Linke,et al.(1997)),因此在这些细胞中观测到的S期微核形成的增加与凋亡程序无关。
O.在S期出芽和微核形成前无需产生凋亡程序;但它们可导致凋亡凋亡可产生核泡(Dini,et al.(1996)),并且推测可产生与微核类似的“核异常”(Duncan and Heddle(1984)and Duncan,etal.(1985))。但本文报导的分析结果表明,产生核芽的核并不象凋亡核那样呈固缩及碎裂状。处于单一S期的COLO 320DM细胞所产生的核芽及微核均不呈TUNEL阳性,这表明它们不含有破碎的DNA。尽管在HU处理的COLO 320DM培养物中,凋亡细胞的确有所增加,但这需要延长培养时间,并且在c-myc扩增基因的基本部分被去除之后才发生。此外,经历出芽和微核形成的细胞还可存活数天,而这对微核形成前已激活凋亡程序的细胞而言是不可想象的。与上文所述相类似的时程实验(如图2)表明,单一S期内的出芽增加,而经历凋亡的细胞数量大体保持不变,并且产生核芽的那些核中大多数不呈TUNEL阳性。最后,尽管它不是在正常成纤维细胞中所观测到的凋亡(Di Leonardo et al.(1994)),并且p53功能的丧失通常会使细胞对可导致DNA损伤的生长条件所引起的凋亡更具有抗性(White(1994)),但推测由p53功能丧失而引起的乳头状瘤病毒E6致瘤基因的表达,可诱导正常二倍体成纤维细胞内的S期出芽及微核形成。
表1出芽及微核形成的定量结果BrdU标记类型 DM+核芽内 核内 各种类型的DM+核芽的比例1++ 26/60(43%)1’ ±+ 3/60(5%)2-+ 9/60(15%)2’ - ± 12/60(20%)3-- 10/60(17%)用BrdU对COLO 320DM的核进行脉冲标记,然后按图6所述对BrdU结合及DMs进行分析。利用表荧光显微技术对核进行观测。将60个具有DM+核芽的核根据DM+核芽是否被BrdU标记(1,1’类)、DM+核芽所附属的核是否被BrdU标记(2,2’类)、或核芽与核是否均未被BrdU标记(3类)进行分类。计算分属于各种类型的核的数量并表示为该类型的核数/总记数的形式。
总之,许多癌细胞内均可产生诸如双微染色体(DMs)等自主复制的环形DNA片段(Barker(1982);Cowell(1982)and Benner,et al.(1991))。这些结构所编码的蛋白可在体内提供生存优势,或对多种化学治疗药剂具有抗性。在S期出芽结构中,DMs优先定位于间期细胞核的周边,并且被选择性封装在核芽内,然后在DNA复制时,核芽被夹断而形成微核。这一过程是微核产生的有丝分裂期后经典机制的替代途径。含有DMs的微核从细胞内排出或DM DNA在胞内微核中降解均可实现DM含量的降低。无论在哪种情况下,细胞核中DM序列的丧失都可导致肿瘤表型、分化或凋亡的逆转。
II.染色体DNA及额外染色体DNA的检测与分析A.H2B-GFP表达载体的构建利用PCR从人胎盘基因组DNA中扩增出人H2B基因,所用引物可在H2B序列的两个末端引入Kpn I和Bam HI位点(Zhong,et al.(1983))。
引物15’-CGGGTACCGCCACCATGCCAGAGCCAGCGAAGTCTGCT-3’引物25’-CGGGATCCTTAGCGCTGGTGTACTTGGTGAC-3’引物1在起始密码子前部引入Kozak共有序列。PCR反应参数如下95℃10分钟,在94℃1分钟,50℃1分钟,72℃2分钟下循环25次,然后是72℃5分钟。PCR产物用Kpn I和Bam HI消化,并将消化片段亚克隆到经KpnI和BamHI消化的pEGFPN1或pEGFPC1载体(Clontech,Palo Alto,CA)内(Yang,et al.(1996)),分别制成C端标记的H2B和N端标记的H2B。这些载体的CMV启动子用一种哺乳动物细胞内的强启动子EF1α启动子替代(Mizushima andNagata(1990))。把EF1α启动子启动的H2B-GFP表达盒亚克隆到含有由SRα启动子(Takebe,et al.(1988))启动的杀稻瘟菌素S-抗性基因(Izumi,et al.(1991))的主链载体中。
B.细胞系及转染在补加有10%FCS的DMEM培养基中单层培养HeLa细胞。通过改进的磷酸钙沉淀法(Chen,et al.(1987))用20μg H2B-GFP表达载体(H2B-G或G-H2B)转染将要铺满的细胞。转染48小时后将转染细胞重新铺平板培养,并在转染72小时后加入5μg/ml的杀稻瘟菌素S(Calbiochem,La Jolla,CA)。在药物筛选15天后,在荧光显微镜下检验存活的细胞,并分离出GFP-阳性克隆。挑选一些克隆并扩大培养成细胞系,用于进一步的分析。
C.单核小体制备单核小体的纯化是按照前人所述(Dubochet and Noll(1978)and Laybourn and Kadonaga(1991))进行并有少量修改。胰蛋白酶消化HeLa细胞和稳定表达H2B-GFP的细胞(3×107),收集细胞并用1×RSB缓冲液(10mM Tris pH7.6,15mM NaCl,1.5mM MgCl2)清洗两次。离心后,将细胞沉淀重悬于含有1% Triton-X 100的RSB缓冲液中,用松配杵瞬时匀浆5次以释放细胞核。核通过离心收集,并用1ml缓冲液A(15mM Tris pH7.5,15mM NaCl,60mM KCl,0.34M蔗糖,0.5mM亚精胺,0.15mM精胺,0.25mM PMSF and 0.1%β-巯基乙醇)清洗两次。最后将核重悬于1ml缓冲液A中,并加入10μl的0.1M CaCl2。
制备核小体梯带的方法是在37℃下加入2μl细球菌核酸酶(Sigma,200单位/ml)(终浓度为0.4单位/ml缓冲液A)并保温1、5、10、15、30和60分钟。在每个时间点取出100μl等分试样并加入2.5μl的0.5M EDTA以终止反应。每管加入30μl蒸馏水、20μl的10% SDS和40μl的5M NaCl。混合物用苯酚/氯仿抽提,并取5μl上清进行1.5%琼脂糖凝胶电泳分析。
为制备单核小体,在1.5ml悬浮于缓冲液A的核(终浓度为2单位/ml缓冲液A)中加入15μl细球菌核酸酶(200单位/ml)进行限制性消化。37℃消化2小时后,加入30μl的0.5M EDTA以终止反应。消化产物在10000rpm下离心10分钟,去除上清。沉淀重悬于450μl的10mM EDTA,加入50μl的5M NaCl以溶解染色质。14000rpm离心5分钟后,上清用Beckman SW41转子在5-30%的蔗糖梯度上26Krpm分级分离18小时。离心后收集1ml组分,并取少量等分试样(50μl)用于DNA分析。剩余样品(950μl)用280μl含有脱氧胆酸的100% TCA沉淀并置于冰上10分钟。然后将样品在3000rpm下离心5分钟,沉淀用丙酮清洗,再用70%冷乙醇清洗。沉淀经空气干燥后重悬于20μl的1×SDS样品缓冲液中,并通过15% SDS-PAGE及Coomassie染色加以分析。取同样的等分试样用15% SDS-PAGE进行分析,并以抗人H2B抗体(Chemicon)为一抗,结合辣根过氧化物酶的抗兔IgG为二抗进行蛋白免疫印迹测定。按照厂商说明用鲁米诺增强试剂(NEN Life Science Products)检测信号。
D.FACS分析通过胰蛋白酶消化收集HeLa细胞和表达H2B-GFP的HeLa细胞,在4℃下用70%乙醇固定3小时。细胞用含有RNAse的20μg/ml碘化丙锭(PI)染色。细胞荧光的测量采用Becton Dickinson FACScan。用FACScan标准光学器件区别并测量每个细胞的红色(PI)及绿色(GFP)发射光。为消除由PI发射和GFP发射重叠所造成的假象而进行补色。细胞碎片和固定假象均被滤掉。数据分析采用Cell Quest,G1、S和G2/M部分的定量则采用Multicycle。
E.荧光显微镜检查铺展染色体表达H2B-GFP的HeLa细胞用秋水仙胺处理60分钟,胰蛋白酶消化,收集,并重新在低渗缓冲液(10mM Tris pH7.4,10mM NaCl,5mM MgCl2)中悬浮10分钟(1.5×106细胞/ml)。通过细胞甩片(90秒)将50μl膨胀的细胞附着在涂有多聚L-赖氨酸的玻片上,用3.7%的甲醛固定5分钟,溶于PBS的0.1% NP40固定10分钟,再用DAPI(1μg/ml)复染。图像收集采用配有DAPI(激发360nm/发射460nm)或FITC(激发460nm/发射535nm)滤光装置的Nikon荧光显微镜。
免疫荧光细胞置12mm盖片上生长,并按照前人所述(Sullivanet al.(1994))用抗着丝粒抗血清进行免疫荧光处理。简单地说,即细胞用溶于PBS的4%甲醛固定,用含有0.1% Triton-X 100并溶于PBS的1% BSA(PBS-TX-BSA)封闭。一抗以1∶2000的比例用PBS-TX-BSA稀释,加在盖片上并于37℃保温30分钟。盖片用PBS-TX清洗4次,每次4分钟,然后用1∶200稀释于PBS-TX-BSA的罗丹明偶联羊抗人IgG(Southern Biotechnologies,Birmingham,AL)共保温。盖片在37℃下保温30分钟,然后用蒸馏水清洗4次,再空气干燥。然后用Slow Fade(Molecular Probes,Eugene,OR)将其封固在载玻片上。显微检查用建在Zeiss Axiovert 100上的BioRad 1024共焦显微镜进行,物镜采用63×1.4 NA Zeiss平场消色差。
活细胞细胞置25mm盖片上生长,并用预热的培养基封固在Dvorak-Stotler盒内(Nicholson Precision Instruments,Gaithersburg,MD)。用上述的BioRad 1024共焦显微镜采集图像,物镜为63×或40×1.3 NA Neofluar,产生GFP荧光的激光功率为0.3-1%。用DIC光学器件采集透见光图像。利用Adobe Photoshop将荧光图像叠加在DIC图像上。
F.用H2B-GFP标记染色体用共焦显微镜观测表达H2B-GFP的活细胞,以确定在间期及有丝分裂期细胞内染色质着色的模式。如图12所示,H2B-GFP能够高灵敏度地检测细胞周期中所有时期的染色质。获得该图像时无需对细胞进行固定和渗透,它们可能会造成胞内结构的人为改变。H2B-GFP对核染色质具有高度特异性,因为在细胞质中观测不到任何的荧光。此外,H2B-GFP可提供非常高的灵敏度。例如,可清晰地观测到正在靠近赤道板的后随姐妹染色单体。间期核内荧光强度的变化表明了染色质分布的不均一性。由H2B-GFP观测到的核内染色质精细结构与此前报导的用4’,6-二脒苯吲哚(DAPI)染色所获得的去褶合光截面图像(Belmont,et al.(1994))相符。表达H2B-GFP的细胞的铺展染色体也说明GFP与DAPI的染色模式相同(图12E)。
在一些间期核内的核仁外周观测到密集的GFP染色,这表明可能存在核仁外周异染色质区域(图12A)。确定着丝粒的位置,以查明其定位是否与H2B-GFP浓染色区域相符。表达H2B-GFP的细胞被固定,用抗着丝粒的抗体染色,然后通过共焦显微镜观察。如前人所述(Moroi,et al.(1981)),在某些间期核中有许多着丝粒位于核仁外周区域。这些着丝粒与H2B-GFP浓染色区域重叠。其它不位于核仁外周区域的着丝粒也往往与H2B-GFP浓染色区域相关。在核被膜的内表面同样观测到H2B-GFP浓染色区域,表明也存在外周异染色质。
G.活细胞中双微染色体显像H2B-GFP的可能应用之一是作为有丝分裂期时染色体分离的详细分析手段。构建可高效转移并表达H2B-GFP的逆转录病毒载体。构建并采用的是一种水泡性口膜炎病毒G糖蛋白(VSV-G)假型化逆转录病毒载体(载体的构建可参考U.S.Patent No.5,512,421和PCT/US95/11892),因该系统可提供目前最高的病毒效价。将含有扩增c-myc和DMs的COLO 320DM细胞用H2B-GFP逆转录病毒感染,两天后,几乎100%的细胞均表达H2B-GFP蛋白。利用配有CCD照相机的表荧光显微镜能够很容易地观测到以有丝分裂细胞内小荧光点的形态存在的DMs。
H.HeLa细胞内H2B-GFP的稳定表达通过对人胎盘基因组DNA的PCR扩增而获得人H2B基因。由于组蛋白H2B为多拷贝基因(Baxevanis,et al.(1997)),所以该PCR扩增获得了若干克隆。利用与报导的H2B序列(基因库登记号X00088)(Zhong,et al.(1983))有最高同源性的扩增序列构建H2B-GFP载体。将H2B基因连接在经密码子优化的增强型GFP(EGFP)(Yang,et al.(1996))的C末端(H2B-G)或N末端(G-H2B)(图8),并将这些嵌合基因克隆到哺乳动物表达载体内。通过转染将构建体引入HeLa细胞,荧光显微镜观测结果表明H2B-G和G-H2B蛋白均定位在间期核及有丝分裂期染色体上。
为进一步描述H2B-GFP蛋白的特征,制备稳定表达H2B-GFP的细胞系。在转染细胞中加入杀稻瘟菌素并培养2周,并利用荧光显微镜分析抗药性克隆,以识别出GFP阳性克隆。利用H2B-G或G-H2B抗杀稻瘟菌素克隆产生GFP阳性克隆的频率相等(~10%)。尽管有报导称,分离稳定表达GFP的细胞系非常困难(Shima,et al.(1997)),但还是观测到数个可稳定表达H2B-G或G-H2B的细胞系。
I.H2B-GFP掺入核小体为确定H2B-GFP是否是核小体核心颗粒的组成部分,利用生物化学方法将核小体核心颗粒分步分离,并对H2B-GFP的存在情况进行分析。将分离出的表达H2B-GFP的核用细球菌核酸酶进行广泛消化而产生单核小体(图10A),再通过含有以解离组蛋白H10.5M NaCl的蔗糖梯度离心进行分步分离,(Dubochet and Noll(1978)andLaybourn and Kadonaga(1991))。DNA的电泳分析结果显示,级分2-4(主要为级分3)中含有与核小体核心颗粒预定大小(146bp)相同的DNA(图10D)。通过15%SDS-PAGE分析样品中的蛋白含量。图10B显示整个梯度上的蛋白分布。用抗人H2B抗体通过蛋白免疫印迹分析方法特异检测出了H2B和H2B-GFP,这表明H2B-GFP融合蛋白存在于单核小体组分中,并且它在梯度中的分布与组蛋白相同(图10C)。
J.H2B-GFP的掺入不影响细胞周期的进程将非同步化HeLa细胞和表达H2B-GFP的转化体固定,碘化丙锭(PI)染色,并利用FACS进行分析。与亲代HeLa细胞相比,GFP标记细胞的绿色发射光约产生三个对数级的迁移(图11A)。通过测量PI的红色发射光确定DNA的含量(图11B)。结果显示,表达H2B-GFP的非同步化HeLa细胞与亲代HeLa细胞的细胞周期分布没有什么区别。该结果清晰地表明,H2B-GFP蛋白对细胞周期进程的影响即便有也是非常小。此外,与亲代细胞相同,利用胸腺嘧啶双阻断策略可使表达H2B-GFP的细胞成功地同步化。
K.讨论这些数据表明,H2B-GFP为荧光法标记活细胞内染色体提供了一个新的策略。尽管GFP标记的体积较大(239个氨基酸残基),但在许多实例中都表明,被标记的蛋白仍具有功能并且可正确定向(Cubitt,et al.(1995)and Gerdes and Kaether(1996))。显然,C端标记(H2B-G)和N端标记(G-H2B)的组蛋白均标记出瞬时转染细胞内的染色体,而利用C端标记组蛋白还成功地建立了稳定的细胞系。根据组蛋白八聚体的X射线晶体结构(Arents,et al.(1991)),组蛋白H3/H4四聚体负责组织核小体内DNA的中心旋转路线,而H2A/H2B二聚体则结合在H3/H4四聚体的两边。由于早已了解增加离子强度可导致核小体解离成DNA和组蛋白组分(Wolffe(1995)),因此负责核小体稳定性的初级相互作用是静电力。0.5MNaCl可使组蛋白H1和非组蛋白从核小体上解离,但组蛋白H2A/H2B和H3/H4只有在盐浓度分别达到0.8M NaCl和1.2M NaCl以上时才解离(Ohlenbusch,et al.(1967))。实验数据表明,H2B-GFP能够在高离子强度(0.5M NaCl)下与单核小体共分离。因此,很可能H2B-GFP蛋白是结合到核小体核心颗粒内部,而不是仅连接在核小体核心颗粒的外侧。
用于活细胞内染色体分析的H2B-GFP策略与其它方法相比具有明显的优势。尽管已有实验说明可采用Hoechst 33342进行哺乳动物染色体的活体荧光标记(Belmont,et al.(1989)and Hiraoka andHaraguchi(1996)),但要使暴露于药物的时间和药物的浓度得到优化,则必须对每个细胞系进行单独分析(Arndt-Jovin,et al.(1989))。此外,由于Hoechst 33342的最大激发峰接近350nm,而高强度的UV照射可损伤细胞并导致细胞周期延迟或停止,因此必须小心控制UV激发的强度。DNA药物,如二氢乙啡啶,的加入可通过干扰DNA复制而引起DNA突变(Arndt-Jovin,et al.(1989))。显微注射罗丹明标记的组蛋白曾成功地用于果绳属染色体的活体染色(Hiraoka,et al.(1989)and Minden(1989)),但它不适合于对大量哺乳动物细胞进行分析。与这些方法相比,文中采用的增强GFP方法(Yang,et al.(1996))的激发光为蓝光(490nm),与激发Hoechst所需的UV光激发相比,它所造成的伤害较小。GFP的圆柱桶状结构可保护内部的发色团,它可减少由系统间交联形成的单态氧所造成的光化学损伤(Yang,et al.(1996)and Ormo(1996))。由于DNA非常容易遭受光损伤,因此GFP是一种标记DNA的理想蛋白标记。此外还进行了长时间的延时成象,在不产生光褪色的17小时时间内每分钟采集一个图像。由于稳定细胞系内的H2B-GFP蛋白通过转基因整合而进行组成型表达,因此该细胞系尤其适合于长期分析。如文中所示,表达H2B-GFP的稳定细胞系与亲代HeLa细胞的细胞周期分布没有什么区别。由于不同物种中组蛋白的一级结构非常保守(Wells(1986)),因此文中所述的H2B-GFP可用于不同物种的细胞。
GFP标记蛋白能够与特定染色体区域结合,加上H2B-GFP的通用修饰能力,使这种蛋白推动了体内染色体行为的动力学分析。例如,通过与GFP融合的着丝粒结合蛋白(CENP-B)的表达,可对HeLa细胞内的着丝粒进行荧光标记。这使我们能够分析有丝分裂期和间期细胞内的着丝粒运动(Shelby,et al.(1996))。最近,利用与染色体整合的lac操纵子以及在CHO(Robinett,et al.(1996))和芽殖酵母(Straight,et al.(1996))内表达lac阻抑物-GFP融合蛋白的方法对一种特定染色体区域进行了荧光标记。如果能够实现用不同光谱的GFP变异体标记特定染色体区域,并结合H2B-GFP,我们将能够同时检测总染色体上多个特定位点的行为。例如,在固定细胞中观测到的着丝粒与异染色质空间共定位的现象可通过用不同光谱的GFP变异体标记CENP-B而直接在活细胞核内得到证实。
H2B-GFP载体及其使用方法可在许多方面得到应用。由于H2B-GFP的强度代表了染色体的凝集状况,因此我们可以研究染色体凝集和去凝集(Hiraoka,et al.(1989))、细胞核形成、以及间期核内的异染色质移动。此外,染色体分离的活体显像使我们能够详细地分析异常染色体的动力学运动。例如,已分别在活细胞内显现了染色体桥的形成和微核形成,它们通常代表了双着丝点染色体和无着丝点染色体(Shimizu,et al.(1996))。在活细胞内同样鉴别出了带有扩增序列的双微染色体,尽管它们的大小要小于正常染色体。H2B-GFP系统有助于基因组不稳定性的分析,如非整倍性的形成、基因扩增、以及染色体丢失等,而利用固定铺展染色体方法难以对这些问题加以分析。
这些结果表明,H2B-GFP融合蛋白可结合到核小体核心颗粒内部,并能够在保持核及染色体结构的情况下进行染色体的高分辨率成象。这使我们能够对染色体动力学的多个方面进行研究,如染色体凝集、核内染色质结构以及有丝分裂期间的分离等。
应该了解的是,尽管连同以上实施方案对本发明进行了描述,但前面的描述以及后面的实例均是用来说明,而不是限定,本发明的范围。处在本发明范围内的其它方面、优点和修改对该领域的专家而言是显而易见的,它们都将从属于本项发明。
参考文献Arents,G.,R.W.Burlingame,B.C.Wang,W.E.Love,E.N.Moudrianakis.1991.“3.1A分辨率下的核小体核心组蛋白八聚体由三种蛋白组装的左手超螺旋”PNAS USA 8810148-52.
Arndt-Jovin,D.J.,T.M.Jovin Eds.1989.DNA的荧光标记及显微观察,pp 417-448.
Barker,P.E.1982.“人类肿瘤细胞内的双微体”Cancer GenetCytogenet.581-94.
Baxevanis,A.D.,D.Jandsman.1997.“组蛋白与组蛋白折叠序列和结构数据库”Nucleic Acids Res.25272-3.
Belmont,A.S.,M.B.Braunfeld,J.W.Sedat,D.A.Agard.1989.“有丝分裂期及间期染色体内的体内及体外大型染色质结构域”Chromosoma 98129-43.
Belmont,A.S.and K.Bruce.1994.“G1染色体观察间期染色单体结构的折叠缠绕状超螺旋染色丝模型”J Cell Biol127287-302.
Benner,S.E.,G.M.Wahl and D.D.Von Hoff.1991.“直接取自患者的肿瘤与人肿瘤细胞系中的双微染色体及均染区比较”Anti-Cancer Drugs.211-25.
Bondy,M.L.,M.R.Spitz,S.Halabi,J.J.Fueger,S.P.Schantz,D.Sample and T.C.Hsu.1993.“上呼吸道和上消化道癌症患者的癌症家族史与诱变敏感性之间的联系”Cancer EpidemiolBiomarkers Prev.2103-6.
Brison,O.1993.“基因扩增与肿瘤发展”Biochem Biophys Acta115525-41.
Canute,G.W.,S.L.Longo,J.A.Longo,J.A.Winfield,B.H.Nevaldine and P.J.Hahn.1996.“羟基脲可促进人类多形性成胶质细胞瘤中以双微染色体形式扩增的表皮生长因子受体基因的丧失”Neurosurgery 39976-83.
Carroll,S.M.,M.L.DeRose,J.L.Kohnan,G.H.Nonet,R.E.Kelly and G.M.Wahl.1993.“天然基因座与游离扩增的鼠腺苷脱氨酶基因座中DNA双向复制区的定位”Mol Cell Biol 132971-81.
Chen,C.and H.Okayama.1987.“质粒DNA对哺乳动物细胞的高效转化”Mol Cell Biol 72745-52.
Cohen.1993.“凋亡”Immunology Today 14126-130.
Cowell,J.K.1982.“双微体和均染区哺乳动物细胞内的基因扩增”Ann.Rev.Gen.1621-59.
Cremer,T.,A.Kurz,R.Zirbel,S.Dietzel,B.Rinke,E.Schrock,M.R.Speicher,U.Mathieu,A.Jauch and P.Emmerich.1993.“染色体区在细胞核功能区域化中的作用”Cold Spring HarborSymp.Quant.Biol.8777-92.
Crook,T.,J.A.Tidy and K.H.Vousden.1991.“与结合p53及反式激活所需序列不同的HPV E6序列可定向降解p53”Cell67547-56.
Cubitt,A.B.,R.Heim,S.R.Adams,A.E.Boyd,L.A.Gross,R.Y.Tsien.1995.“绿色荧光蛋白的了解、改进及应用”TrendsBiochem Sci 20448-55.
De,B.U.and A.H.Mintz.1986.“神经元间期细胞核内染色质区域及核仁的三维曲线运动”Science.234863-6.
Denko,N.C.,J.Giaccia,J.R.Stringer and P.J.Stambrook.1994.“人Ha-ras致癌基因可在一个细胞周期内引起鼠成纤维细胞的基因组不稳定”PNAS(USA)915124-8.
Di Leonardo,A.,S.P.Linke,K.Clarkin and G.M.Wahl.1994.“DNA损伤可引起人正常成纤维细胞内p53依赖性G1阻滞的延长及Cip1的长期诱导”Genes Dev.82540-51.
Dini,L.,S.Coppola,M.T.Ruzittu and L.Ghibelli.1996.“导致凋亡核碎裂的多种途径”Exp Cell Res.223340-7.
Dubochet,J.and M.Noll.1978.“核小体弧与螺旋”Science202280-6.
Duncan,A.M.and J.A.Heddle.1984.“三种非致癌制剂在小鼠结肠隐窝中诱导凋亡的频率及分布”Cancer Lett 23307-11.
Duncan,A.M.,J.A.Heddle and D.H.Blakey.1985.“γ辐射诱导小鼠结肠上皮细胞核异常的机制”Cancer Res.45250-2.
Eckhardt,S.G.,A.Dai,K.K.Davidson,B.J.Forseth,G.M.Wahl and D.D.Von Hoff.1994.“随额外染色体扩增的c-myc的减少对HL60细胞分化的诱导”PNAS(USA)916674-6678.
Eki,T.,T.Enomoto,Y,Murakami,F.Hanaoka and M,Yamada.1987.“含有热不稳定DNA聚合酶的小鼠温度敏感性tsFT20突变株中由限定温度诱导的染色体畸变的特性”Cancer Res.475162-5170.
Ferguson,M.and D.C.Ward.1992.“前有丝分裂人类T淋巴细胞核中的细胞周期依赖性染色体运动”Chromosoma 101557-65.
Gavrieli,Y.,Y.Sherman and S.S.Ben.1992.“通过核DNA碎片的特异标记对细胞程序性死亡进行原位鉴定”J Cell.Biol.119493-501.
Gerdes,H.H.and C.Kaether.1996.“绿色荧光蛋白在细胞生物学中的应用”Febs Lett 38944-7.
Hamkalo,B.A.,P.J.Farnham,R.Johnston and R.T.Schimke.1985.“氨甲喋呤抗性小鼠3T3细胞系中的微小染色体超结构特性”PNAS(USA)821026-30.
Heddle,J.A.and A.V.Carrano.1977.“γ辐射在小鼠骨髓中诱导的微核的DNA内容物微核源于无着丝粒染色体片段的证据”Mutat.Res.4463-9.
Heddle,J.A.,M.C.Cimino,M.Hayashi,P.Romagna,M.D.Shelby,J.D.Tucker,P.Vanparys and J.T.MacGregor.1991.“微核作为细胞遗传损伤的指标过去、现在与未来”Environ Mol Mutage18277-91.
Heddle,J.A.,M.Hite,B.Kirkhart,K.Mavournin,J.T.MacGregor,G.W.Newell and M.F.Salamone.1983.“以微核诱导作为生殖毒性的度量标准”美国环保局Gene-Tox计划的报告MutatRes,12361-118.
Hiraoka,Y.and T.Haraguchi.1996.“哺乳动物活细胞的荧光成像”Chromosome Res 4173-6.
Hiraoka,Y.,J.S.Minden,J.R.Swedlow,J.W.Sedat,D.A.Agard.1989.“三维在体延时显微技术显示的染色体凝聚与去凝聚的焦点”Nature 342293-6.
Huang,L.-C.,K.c.Clarkin and G.M.Wahl.1996.“在缺乏DNA激活的蛋白激酶的小鼠成纤维细胞中保持p53依赖性细胞周期阻滞”Cancer Res.562940-2944.
Izumi,M.,H.Miyazawa,T.Kamakura,I.Yamaguchi,T.Endo,F.Hanaoka.1991.“杀稻瘟菌素S抗性基因(bsr)一种新的哺乳动物细胞可选物”[出版勘误发表于Exp Cell Res 1993Feb;204(2)388]Exp Cell Res 197229-33.
Jackson,J.F,and E.G.Clement.1974.“Letter NuclearProjections与染色体异常”Lancet 21270-1.
Kastan,M.B.,Q.Zhan,W.S.E1-Deiry,F.Carrier,T.Jacks,W.V.Walsh,B,S.Plunkett,B.Vogelstein and A.J.Fonace.1992.“利用p53和GADD45的哺乳动物细胞周期检验点途径在毛细管扩张失调症中有缺陷”Cell.7587-97.
Kuerbitz,S.J.,B.S.Plunkett,W.V.Walsh and M.B.Kastan.1992.“野生型p53是辐射后的一种细胞周期检验点决定子”PNAS(USA)897491-5.
Lawce,H.J.and G.Brown.1991.染色体的采集、玻片制备及延长技术Raven Press,Ltd.New York.
Laybourn,P.J.and J.T.Kadonaga.1991.“核小体核心与H1组蛋白在涉及RNA聚合酶II的转录调控中的作用”Science254238-45.
Levan,A.and G.Levan.1978.“双微体具有功能性着丝点吗?”Hereditas.8383-90.
Linke,S.P.,K.C.Clarkin,A.DiLeonardo,A.Tsou and G.M.Wahl.1996.“一种在没有可检测的DNA损伤的情况下由核苷酸缺失引起的可逆的p53依赖性G0/G1细胞周期阻滞”Genes and Dev.10934-947.
Linke,S.P.,K.C.Clarkin and G.M.Wahl.1997.“p53可随γ辐射而介导历经多个细胞周期的持久阻滞”Cancer Res.71171-1179.
Livingstone,L.R.,A.White,J.Sprouse,E.Livanos,T.Jacks and T.D.Tlsty.1992.“野生型p53丧失伴随细胞周期阻滞的改变以及可能的基因扩增”Cell 70923-35.
Lo,C.F.and M.Fraccaro.1974.“肿瘤细胞中的LetterNuclear计划”Lancet.2847.
Manuelidis,L.and J.Borden.1988.“原位杂交及三维重建显示人CNS细胞中单个染色体区域的可重复性区域化”Chromosoma.96397-410.
Miele,M.,S.Bonatti,P.Menichini,L.Ottaggio and A.Abbondandolo.1989.“扩增区域的存在可影响抗药性中国仓鼠细胞中染色体的稳定性”Mutat Res.219171-8.
Mizushima,S.and S.Nagata.1990.“pEF-BOS,一种强有力的哺乳动物表达载体”Nucleic Acids Res 185322.
Moroi,Y.,A.L.Hartman,P.K.Nakane,E.M.Tan.1981.“动粒(着丝粒)抗原在哺乳动物细胞核中的分布”J Cell Biol 90254-9.
Ohlenbusch,H.H.,B.M.Olivera,D.Tuan,N.Davidson.1967.“组蛋白从小牛胸腺核蛋白中的选择性解离”J Mol Biol 25299-315.
Ormo,M.,A.B.Cuitt,K.Kallio,L.A.Gross,R.Y.Tsien,S.J.Remington.1996.“Aequorea victoria绿色荧光蛋白的晶体结构”[见注释]Science 2731392-5.
Pedeutour,F.,R.F.Suijkerbuijk,A.Forus,G.J.Van,Van,de,Klundert,W.J.M.Coindre,G.Nicolo,F.Collin,H.U.Van,K.Huffermann.1994.“完全分化脂肪肉瘤的环状及巨杆状标记染色体中SAS与MDM2的复合物及共同扩增”Genes Chromosom Cancer1085-94.
Robinett,C.C.,A.Straight,G.Li,C.Willhelm,G.Sudlow,A.Murray,A.S.Belmont.1996.“利用lac操纵子/阻抑物识别进行DNA序列的体内定位以及大型染色质结构的显像”J Cell Biol1351685-700.
Roser,M.,A.Bohm,M.Oldigs,K.Weichenthal.,U.Reimers,P.U.Schmidt,E.W.Breitbart and H.W.Rudiger.1989.“在培养的皮肤恶性黑素瘤患者的成纤维细胞中由紫外诱导的微核形成以及姐妹染色单体交换”Cancer Gene Cytogenet.41129-37.
Ruddl e,F.H.1962.“核泡体外建立的细胞系中的一种稳定间期标记”J.Nat’l Cancer Inst.281247-1251.
Satoh,M.S,and T.Lindahl.1992.“DNA修复中形成多聚(ADP-核糖)的作用”Nature 356356-8.
Scheffner,M.,B.A.Werness,J.M.Huibregtse,A.J.Levineand P.M.Howley.1990.“由16和18型人乳头状瘤病毒编码的E6癌蛋白可促进p53降解”Cell 631129-36.
Schubert,I.And J.L.Oud.1997.“正常发育有机体的染色体大小有一个上限”Cell 88515-520.
Shelby,R.D.,K.M.Hahn,K.F.Sullivan.1996.“在人类活细胞内原位显像的α卫星DNA区域的动力学弹性行为”J Cell Biol135545-57.
Shima,D.T.,K.Hal dar,R.Pepperkok,R.Watson,G.Warren.1997.“有丝分裂期间HeLa活细胞的高尔基体分区”J Cell Biol1371211-28.
Shima,H.,M.Nakayasu,S.Aonuma,T.Sugimura and M.Nagao.1989.“经多聚(ADP-核糖)聚合酶抑制剂或二甲亚砜处理后人HL-60细胞内扩增的MYC基因的丧失”PNAS(USA)867442-7445.
Shimizu,N.,T.Kanda and G.M.Wahl.1996.“微核对无着丝点片段的选择性捕获为随额外染色体扩增的DNA的纯化提供了一种快速的方法”Nature Genetics 1265-71.
Shimizu,N.,H.Nakamura,T.Kadota,K.Kitajima,T.Oda,T.Hirano and H.Utiyama.1994.“自然分化的HL-60细胞内的扩增c-myc基因的丧失”Cancer Res.543561-3567.
Snapka,R.M.1992.“以基因扩增作为癌症化学疗法的目标”Oncol.Res.4145-50.
Snapka,R.M,and A.Varshavsky.1983.“羟基脲可大幅度加快小鼠细胞内二氢叶酸还原酶基因的丧失”PNAS(USA)807533-7.
Stein,S.J.,S.L.Stein,J.B.Lian,T.J.Last,T.Owen andL.McCabe.1994.哺乳动物的正常二倍体细胞及转化细胞的同步化Academic Press,San Diego.
Straight,A.F.,A.S.Belmont,C.C.Robinett,A.W.Murray.1996.“芽殖酵母染色体的GFP标记表明蛋白-蛋白相互作用可介导姐妹染色单体凝聚”Curr Biol 61599-608.
Sullivan,et al.1994.“人类CENP-A含有一种定向于着丝点所需的组蛋白H3相关组蛋白折叠区”J.Cell Biol.127581-92.
Takebe,Y,M.Seiki,J.Fujisawa,P.Hoy,K.Yokota,K.Arai,M.Yoshida,N.Arai.1988.“SRα启动子一种包含猿猴空泡病毒40早期启动子和人类T细胞白血病病毒1型长末端重复的R-U5片段的通用哺乳动物CDNA高效表达系统”Mol Cell Biol8466-72.
Toledo,F.,R.D.Le,G.Buttin and M.Debatisse.1992.“在含有上百万个碱基的长染色体反向重复中的共扩增标记可发生改变并在哺乳动物基因扩增的早期步骤于间期核内独自成簇”Embo J.112665-73.
Von Hoff,D.,D.Needham-VanDevanter,J.Yucel,B.Windleand G.Wahl.1988.“扩增的人类MYC癌基因定位于复制的环状DNA分子”PNAS(USA)854804-4808.
Von Hoff,D.D.,J.R.McGill,B.J.Forseth,K.K.Davidson,T.P.Bradley,D.R.Van Devanter and G.M.Wahl.1992.“人类肿瘤细胞中随额外染色体扩增的MYC基因的消除可降低其致肿瘤性”PNAS(U.S.A.)898165-8169.
Von Hoff,D.D.,T.Waddelow,B.Forseth,K.Davidson,J.Scott and G.M.Wahl.1991.“羟基脲可加快肿瘤细胞中随额外染色体扩增的基因的丧失”Cancer Research.516273-6279.
Vourc’h,C.,D.Tarusico,A.L.Boyle and D.C.Ward.1993.“端粒、着丝粒和染色体特异性亚随体区在间期小鼠淋巴细胞核中的细胞周期依赖性分布”Exp Cell Res.205142-51.
Wahl,G.M.1989.“环状DNA在哺乳动物基因扩增中的重要性”Cancer Res.491333-1340.
Wells,D.E.1986.“组蛋白与组蛋白基因的编码分析”NucleicAcids Res 14119-49.
White,A.E.,E.M.Livanos and T.D.Tlsty.1994.“HPV癌蛋白差异破坏正常人成纤维细胞中的基因组完整性及细胞周期调控”Genes and Development 8666-77.
White,E.1994.“肿瘤生物学.p53,Rb的守护者”Nature37121-2.
Wolffe,A.1995.染色质结构与功能,第二版;Academic PressYang,F.,L.G.Moss,J.G.N.Phillips.1996.“绿色荧光蛋白的分子结构”Nat Biotechnol 141246-1251.
Yang,T.T.,L.Cheng,S.R.Kain.1996.“密码子选择的优化及发色团突变可提高绿色荧光蛋白的灵敏度”Nucleic Acids Res244592-3.
Yin,Y.,M.A.Tainsky,F.Z.Bischoff,L.C.Strong and G.M.Wahl.1992.“野生型p53可重建细胞周期调控并能够抑制具有突变p53等位基因的细胞内的基因扩增”Cell.70937-48.
Zhong,R.,R.G.Roeder,N.Heintz.1983.“四种人类组蛋白克隆基因的一级结构及表达”Nucleic Acids Res 117409-25.
权利要求
1.一种鉴定方法,用来鉴定可诱导细胞成熟或细胞死亡的治疗药剂,该方法包括将测试细胞与潜在的治疗药剂相接触,其中该测试细胞含有确定水平的DM或额外染色体DNA,并且能够经历微核形成;以及测定所述测试细胞的DM或额外染色体DNA的水平,由此确定DM或额外染色体DNA可减少或从细胞内消除,则表明该药剂是一种可促进微核形成从而导致细胞成熟或细胞死亡的治疗药剂。
2.权利要求1的方法,其中的测试细胞缺乏功能性肿瘤抑制蛋白。
3.权利要求1的方法,其中的测试细胞含有一种癌基因。
4.权利要求1的方法,其中的测定是通过FISH、流式细胞术、离心分步分离、或组蛋白-GFP标记来进行。
5.由权利要求1的方法鉴定的一种治疗药剂。
6.一种诱导适当细胞成熟或死亡的方法,该方法包括将适当细胞与能够通过微核形成来诱导或加强该适当细胞内DM或额外染色体DNA消除的药剂相接触。
7.权利要求6的方法,其中的细胞缺乏功能性肿瘤抑制蛋白。
8.权利要求6的方法,其中的适当细胞含有一种扩增的癌基因。
9.权利要求6的方法,其中的适当细胞在体外、来自体内或在体内进行接触。
10.一种对患有疾病的受试者进行治疗的方法,该疾病涉及受试者中存在含有DM或额外染色体DNA,并能够通过额外的微核形成消除DM或DNA的细胞,该方法包括给受试者施用有效剂量的一种药剂,该药剂可通过微核形成诱导或加强细胞内DM或额外染色体DNA消除。
11.权利要求10的方法,其中的细胞缺乏功能性肿瘤抑制蛋白。
12.权利要求10的方法,其中的细胞含有一种扩增的癌基因。
13.权利要求10的方法,其中的药剂为羟基脲或其衍生物。
14.权利要求6或10的方法,其中该制剂为一种具下式的化合物 其中R1为H、烷基、芳基、取代芳基、杂芳基、取代杂芳基、酰基或-(CH2)n-X,其中n为1-4的整数,X为取代的烷基、烯基或炔基,并且取代基选自下列一组,包括卤素、-OH、-NR2、-OR、-C(O)OR、-OC(O)R、酰胺和酰基,其中R为H、烷基或芳基;R2为H、烷基、芳基、取代芳基、杂芳基、取代杂芳基、-C(O)R’或-(CH2)n-X,其中n为1-4的整数,X为取代的烷基、烯基或炔基,并且其中的R’为烷基或芳基,取代基则如上文定义;R3为H、烷基、芳基、取代芳基、杂芳基、取代杂芳基、OR”、NR”2或-(CH2)n-X,其中n为1-4的整数,X为取代的烷基、烯基或炔基,并且取代基选自下列一组,包括-OH、-NR”2、-OR”、-C(O)OR”、-OC(O)R”、酰胺和酰基,其中R”为H、烷基或芳基;并且R4为H、烷基、芳基、取代芳基、杂芳基、取代杂芳基或-(CH2)n-X,其中n为1-4的整数,X为取代的烷基、烯基或炔基,并且取代基的选自下列一组,包括-OH、-NR”’2、-OR”’、-C(O)OR”’、-OC(O)R”’、酰胺和酰基,其中R”’为H、烷基或芳基。
15.权利要求6或10的方法,其中该制剂为下式的化合物 其中R1为H、烷基、芳基、取代芳基、杂芳基、取代杂芳基、酰基或-(CH2)n-X,其中n为1-4的整数,X为取代的烷基、烯基或炔基,并且取代基选自下列一组,包括卤素、-OH、-NR2、-OR、-C(O)OR、-OC(O)R、酰胺和酰基,其中R为H、烷基或芳基;R2和R4各自独立地为H、烷基、芳基、取代芳基、杂芳基、取代杂芳基、OR’、NR’2或-(CH2)n-X,其中n为1-4的整数,X为取代的烷基、烯基或炔基,并且取代基选自下列一组,包括-OH、-NR’2、-OR’、-C(O)OR’、-OC(O)R’、酰胺和酰基,其中R’为H、烷基或芳基;并且R3和R5各自独立地为H、烷基、芳基、取代芳基、杂芳基、取代杂芳基或-(CH2)n-X,其中n为1-4的整数,n为1-4的整数;X为取代的烷基、烯基或炔基,并且取代基选自下列一组,包括-OH、-NR”2、-OR”、-C(O)OR”、-OC(O)R”、酰胺和酰基,其中R”为H、烷基或芳基。
16.一种检测细胞内DM或额外染色体DNA的方法,该方法包括步骤将一种可检测的标记蛋白插入细胞,其中该蛋白能够与细胞内的DM和额外染色体DNA特异结合;以及检测标记蛋白和/或DM或额外染色体DNA复合物,从而表明细胞内DM和额外染色体DNA的压力。
17.权利要求16的方法,其中的蛋白为组蛋白或其类似物。
18.权利要求16的方法,其中的可检测标记为一种荧光标记。
19.权利要求18的方法,其中的荧光标记为多管水母属绿色荧光蛋白、多管水母属红色荧光蛋白或多管水母属黄色荧光蛋白。
20.权利要求16的方法,其中的标记蛋白通过将细胞与一种载体相接触而被引入细胞,该载体含有经可检测标记的组蛋白融合蛋白的编码DNA。
21.权利要求20的方法,其中的组蛋白融合蛋白为H2B-GFP。
22.权利要求20的方法,其中的载体为一种逆转录病毒载体。
23.一种监控细胞内染色体DNA物质移动的方法,包括将一种经可检测标记的蛋白引入细胞,其中该蛋白能够与胞内染色体DNA特异结合而产生一种标记复合物;检测标记复合物,从而检测细胞内染色体DNA;以及将标记复合物与未复合染色体的位置进行比较。
24.权利要求23的方法,其中能够与细胞内染色体DNA特异结合的蛋白为着丝粒结合蛋白或lac操纵子。
25.权利要求23的方法,其中染色体移动的选自下列现象,包括染色体凝集、染色体去凝集、核仁形成、异染色质移动、染色体断裂、染色体桥形成、微核形成、基因扩增、非整倍性形成、染色体丢失和染色体易位。
26.一种检测病理细胞表型的方法,该方法包括将一种经可检测标记的蛋白引入细胞,其中该蛋白能够与DM和额外染色体DNA特异结合而产生一种标记复合物;检测标记复合物,从而检测与病理性表型相关的DM和额外染色体DNA;以及将病理性表型与参照细胞的表型进行比较。
27.权利要求26的方法,其中的病理性表型为癌症或肿瘤病。
全文摘要
本发明提供筛选测试物质的方法,通过该方法筛选能抑制、增强或除去细胞中微核化形成的双微体(DM)或额外染色体DNA。本发明也提供一种方法,诱导能产生微核的细胞成熟或死亡。本发明也提供给患病的受试者治疗的方法,所治疗的细胞与具有DM和额外染色体DNA并能产生微核以捕捉它们的疾病相关。进一步提供一种检测细胞中染色体和额外染色体DNA的方法。
文档编号A61K48/00GK1383452SQ99803923
公开日2002年12月4日 申请日期1999年1月11日 优先权日1998年1月12日
发明者G·M·瓦尔, H·M·舍帕德, N·施米朱, 特鲁·坎达 申请人:新生物技术公司, 索尔克学院
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1