包含由高玻璃化转变温度聚合物生产的纳米纤维的纤维、非织造材料和制品的制作方法

文档序号:1768751阅读:258来源:国知局
专利名称:包含由高玻璃化转变温度聚合物生产的纳米纤维的纤维、非织造材料和制品的制作方法
技术领域
本发明涉及由纳米纤维制成的纤维、非织造材料和制品以及生产纳米纤维的方法。纳米纤维可由高玻璃化转变温度聚合物制成。
背景技术
对由包含纳米纤维的非织造材料生产的制品的需求一直在持续增加。通常认为纳米纤维的直径小于约1000纳米或一微米。纳米纤维网因其表面积高、孔径低和其它特性而受到欢迎。可用多种方法和多种材料制造纳米纤维,通常也称为微纤维或超细纤维。虽然已经采用了数种方法,但是每种方法均有缺点,并且生产高性价比纳米纤维仍存在着困难。
生产纳米纤维的方法包括通过熔体原纤化所描述的一类方法。熔体原纤化方法的非限制性实施例包括熔喷法、熔体纤维破裂法和熔膜原纤化法。不用熔体生产纳米纤维的方法为薄膜原纤化法、静电纺纱法和溶液纺丝法。生产纳米纤维的其它方法包括以海岛型、分割饼型或其它构型纺丝较大直径的双组分纤维,其中纤维随后被进一步加工以便形成纳米纤维。
熔体原纤化是制造纤维的一般类别,定义为其中一种或多种聚合物被熔融并挤压成多种可能的构型(例如复合挤压成型的均相或双组分薄膜或长丝),然后被原纤化或纤维化成长丝。
熔喷法是生产纤维常用的方法。典型的纤维直径在2至8微米范围内。熔喷法可被用来制造直径较小的纤维但对工艺来说需要大量变化。通常,需要重新设计的喷丝头和喷丝板。这些方法的实施例包括Fabbricante等人的美国专利5,679,379和6,114,017,和Nyssen等人的美国专利5,260,003和5,114,631。这些方法利用较高的压力、温度和速度来获得小的纤维直径。
熔体纤维破裂法是的矿物纤维制造方法的衍生并已应用于聚合物纤维制造中。矿物熔体纤维破裂法的实施例包括Walz等人的美国专利4,001,357以及Muschelknautz等人的美国专利4,337,074和4,533,376。这种方法的关键是利用音速和超音速空气(气体)速度将熔融长丝破裂成多个细旦纤维。典型的纤维直径在小于一微米至约6微米的范围内。将聚合物熔体破裂成细旦纤维的方法的实施例包括Nyssen等人的美国专利5,075,161;Gerking的欧洲专利1 192 301 B1和0 724 029B1以及欧洲专利申请1 358 369 A2;Sodemann等人的WO 04/020722。这些方法利用拉瓦尔喷嘴将气流速度加速至音速和/或超音速范围。当聚合物熔体被暴露到这么高的气速下时,将破裂成多个细旦纤维。通过利用所需的工艺条件及喷丝板和喷丝头几何形状将这些方法设定为生产理想的纤维尺寸。
熔膜原纤化法是生产纤维的另一种方法。由熔体产生熔膜,然后用流体由熔膜制成纳米纤维。该方法的两个实施例包括转让给University ofAkron的Torobin的美国专利6,315,806、5,183,670和4,536,361以及Reneker的美国专利6,382,526、6,520,425和6,695,992。
薄膜原纤化法是生产纳米纤维的另一种方法,尽管不是为被用于非织造纤维网中的聚合物纳米纤维的生产而设计。转让给3M的Perez等人的美国专利6,110,588描述了给高度取向、高度结晶、熔融加工的凝固聚合物薄膜表面赋予流体能量以形成纳米纤维的方法。薄膜和纤维用于高强度应用场合,例如聚合物的增强纤维或如混凝土这类浇注建筑材料。
静电纺纱法是生产纳米纤维的一种常用方法。在该方法中,将一种聚合物溶解在一种溶剂中并放入一个隔室中,隔室在一端密封,在另一端颈缩部分具有一个小开口。然后靠近隔室的开口端在聚合物溶液和收集器之间施加高电压。这种方法的生产速度很慢并且纤维典型地以小批量进行生产。生产纳米纤维的另一种纺丝技术是利用溶剂的溶液纺丝或闪蒸纺丝。
生产纳米纤维的两步法也为人们所熟知。第一步骤是以海岛型、分割饼型或其它构型纺丝较大直径的多组分纤维。较大直径的多组分纤维然后进行分裂或海被溶解以便在第二步骤中产生纳米纤维。例如,转让给Chisso的Nishio等人的美国专利5,290,626和转让给Kimberly-Clark的Pike等人的美国专利5,935,883分别描述了海岛型和分割饼型方法。这些方法涉及两个连续的步骤制造纤维和分割纤维。
要生产具有商业竞争力的包含纳米纤维的一次性制品,必须控制纳米纤维的成本。设备、工艺、加工助剂以及聚合物成本均可被控制。因此,生产成本低的纳米纤维是本发明的一个目标。也期望为多种用途和有益效果制成包含纳米纤维的产品。除了其它用途之外,用途包括执行品例如尿布、擦拭物和吸收材料。
发明概述降低纳米纤维成本的一种方法是利用高玻璃化转变聚合物的大规模生产。高玻璃化转变聚合物具有宽的分子量范围且更容易生产,因此来源更广。典型地,高玻璃化转变聚合物更强、研磨性或起绒性更小,并且更稳定。因此,本发明的一个目标是生产包含由高玻璃化转变温度聚合物生产的纳米纤维的制品。
已发现用高玻璃化转变温度聚合物实现较低的纤维直径是有利的。这是由于高玻璃化转变聚合物在高于环境条件的高温下冷冻成最终性质。这样就产生较小直径的纤维。高玻璃化转变温度聚合物和例如高气流速度、流速和吸收速度这样的高拉细能量用于制造纳米纤维。通常,在制造纳米纤维时,所有这些参数都应该进行优化。
本发明涉及包含纳米纤维的纤维、非织造材料和制品。纳米纤维可由一步熔体原纤化方法用玻璃化转变温度高于25℃的聚合物制成。具有小于一微米直径的纳米纤维可大量包括在所述制品所包括的一层纤维网内。优选地,纳米纤维用熔膜原纤化方法进行生产。合适的制品包括尿布、训练裤、成人失禁衬垫、诸如女性护理衬垫和短裤护垫之类的经期用品、卫生棉塞、个人清洁制品、个人护理制品以及包括婴儿擦拭物、面部擦拭物和女性擦拭物在内的个人护理擦拭物。
发明详述本发明涉及由纳米纤维制成的制品。纳米纤维由一种或多种热塑性聚合物制成。本发明的聚合物将具有高于25℃(定义其为室温)的玻璃化转变温度。玻璃化转变温度的定义为其中聚合材料由玻璃态行为转化为橡胶态行为的温度。测量聚合物或弹性体化合物的玻璃化转变温度的方法是ASTM WK6737 DSC。当样本经历机械变形时,可最好地实现玻璃化转变温度。在玻璃化转变温度之下,材料易脆化,具有低的破坏前应变和高的总体积模量。在玻璃化转变温度(以下称作Tg)之上,材料似橡胶,具有增加的伸长和较低的总体积模量。
典型地,已发现高Tg聚合物冷冻成形优于低Tg聚合物,例如聚丙烯或聚乙烯。成形冷冻或凝固可为所期望的,因为这是保持可结晶聚合物形状的第二种热力学机理。对于可结晶聚合物,聚合物熔体必须被冷却以产生结晶,这会由于聚合物链的热力学及流动性限制而对结晶速率造成动力学约束。这些材料通常可被冷却足够快以至于不会产生结晶,从而材料不会原纤化或者一旦原纤化也不会粘在一起。对于高Tg聚合物,材料不必结晶。一旦材料越过了其Tg,大范围的分子运动停止,材料基本处于低于其Tg的固体玻璃化状态。在加工期间,材料可经历结晶并越过其Tg。
在本发明中,由于高Tg聚合物在较高温度下的原纤化能力增强而成为优选的。对于这些高Tg聚合物的凝固,还期望另外的热力学过程。可供选择地,一个申请可期望采用高Tg与低Tg聚合物。这样能够使一些纤维容易原纤化(即高Tg聚合物)而其它纤维不容易原纤化(即低Tg聚合物)。高Tg与低Tg聚合物的潜在用途可为利用纤维网作为粘合剂。低Tg聚合物可保持粘性以产生自粘合纤维网或者可用作涂层。可供选择地,可利用所有的低Tg聚合物纤维用于自粘合纤维网或涂层。高与低Tg聚合物的其它用途为用于粘结,尤其是用于热粘结。具有低Tg与高Tg聚合物的纤维网的不同区域将具有不同的热粘结性质,并因此具有不同性能。这样可使得不同区域能够适于阻碍性、透气性、吸收性、控释性、不透明性、力学性质、后处理性、热特性以及其它性质。
Tg优选大于约30℃,更优选大于40℃,并且最优选大于约50℃。熔融流动速率的最优选范围为每分钟约1分克至每分钟约1000分克。利用ASTM方法D-1238测量熔融流动速率。通常,熔融流动速率越低则越优选。因此,熔融流动速率小于每分钟约500分克和每分钟100分克的聚合物甚至更优选。
合适的热塑性聚合物包括适于熔体纺丝并具有高Tg的任何聚合物。热塑性聚合物的非限制性实施例包括聚苯乙烯及共聚物、聚酯及共聚物(PET、PBT、PCT、PTT及共聚物)、聚酰胺、聚甲基丙烯酸甲酯及共聚物、聚碳酸酯及共聚物、聚酰亚胺及共聚物、聚苯醚及共聚物、聚砜及共聚物、聚氯乙烯及共聚物、聚醚酯酮及共聚物、聚间苯二甲酰间苯二胺、聚对苯二甲酰对苯二胺、包括热塑性淀粉、聚乳酸的可生物降解的聚合物以及它们的组合。均聚物、共聚物和它们的共混物均包含于本说明书内。最优选的聚合物是聚酯、聚苯乙烯和聚酰胺。这些聚合物可包含增塑剂,只要它们的Tg高于25℃。
任选地,所述聚合物可包含另外的材料以提供纤维的其它性能。除了别的以外,这些材料还可改变最终纤维的物理属性例如弹性、强度、热或化学稳定性、外观、吸收性、气味吸收性、表面性质和印刷适性。可添加合适的亲水熔体添加剂。只要聚合物混料的Tg仍在确定的范围内,任选的材料就可占到总聚合物混料的最多50%。
本发明的纤维可为单组分纤维或诸如双组分纤维的多组分纤维。纤维可具有皮芯型或并列型或其它合适的几何构型。在纤维制成之后,在形成纤维网之前可对纤维进行处理或涂层。此外,在纤维网制成之后,可对纤维网进行处理。任选地,可将添加剂掺进聚合物树脂中,并且这些添加剂在纤维形成之后迁移至表面。迁移至表面的添加剂可能需要利用外部能量例如热量进行固化,或者表面上的添加剂可能需要与另一种组分进行化学反应,或者固化可能需要在另一种组分存在的情况下进行催化,使得可采用掺有添加剂的树脂在制造纤维的时候或在纤维制成之后将附加组分添加到加工过程中。适当的处理包括亲水或疏水处理。疏水处理剂的一个实施例为聚二甲基硅氧烷。具体的处理取决于使用的纤维网、聚合物种类和其它因素。所需的处理为本领域的技术人员所熟悉。
在纤维网的纳米纤维层内的大量纤维的平均纤维直径可小于一微米,优选为约0.1微米至一微米,更优选为约0.3微米至约0.9微米。纳米纤维层的基重可小于约25gsm,通常为约0.1至约15gsm,优选小于10gsm或5gsm。取决于非织造纤维网的用途,纳米纤维层可具有的基重在约0.5至约3gsm或约0.5至约1.5gsm的范围内。希望形成多层纤维网。纳米纤维层可与一个、两个或多个层相结合。纺粘-纳米纤维-纺粘纤维网是一个实施例。整体复合纤维网的基重在约5gsm至约100的范围内,并且通常在约10至约50gsm的范围内。
典型地期望均匀的纳米纤维网,并且其生产具有挑战性,尤其是在低基重情况下。纤维网均匀性可通过几种方法进行测定。均匀性测量的实施例包括孔径、基重、透气率和/或不透明性的低变异系数。均匀性也可意味着没有纤维束或结索或可见的孔洞或其它此类缺陷。均匀性也可通过纤维网的水压头或其它液体阻挡测量进行评价。阻挡得分越高通常表示纤维网更均匀。
孔径可通过本领域技术人员已知的方法进行确定。纳米纤维层的平均孔径优选小于约15微米,更优选小于约10微米,并且最优选小于约5微米。均匀纤维网的理想变异系数可小于20%,优选小于约15%,并且更优选约10%或更小。没有成束可通过在纤维网的测定面积上计数纤维索或束的数量进行测定。没有孔洞也可通过在纤维网的测定面积上计数直径超过某一阈值的洞的数目进行测定。可利用扫描电子显微镜或其它放大部件。例如,如果洞为肉眼所见或者直径大于100微米,则可利用灯箱对它们进行计数。
制备本发明纳米纤维的方法优选为熔体原纤化方法或更优选地为熔膜原纤化方法。通常,这种方法涉及提供聚合物熔体、利用中心流体流形成聚合物膜、然后使用流体由所述聚合物膜形成多根纳米纤维。合适的方法详述于如授予Torobin的美国专利4,536,361以及授予Reneker的美国专利6,382,526、5,520,425和6,695,992中。膜可为中空管、较平坦的结构或其它合适结构。
如4,536,361中进一步所述,聚合物被加热直到其成为液体并易于流动。熔融聚合物的温度可处在约0℃至约400℃,优选约10℃至约300℃,并且更优选约20℃至约220℃。聚合物的温度取决于聚合物或聚合物混料的熔点。聚合物的温度可超过其熔点不到约50℃,优选超过其熔点不到25℃,更优选超过其熔点不到15℃,以及刚好处在其熔点或其熔化范围内或之上。熔点或熔化范围用ISO 3146方法进行测量。熔融聚合物具有的粘度典型地将为约1Pa-s至约1000Pa-s,典型地为约2至约200Pa-s,且更常见为约4至约100Pa-s。这些粘度在剪切速率在每秒约100至约100,000的范围内给出。熔融聚合物处在约大气压力或略高的压力下。
在一种方法中,通过在薄膜上并随后在管的内表面上吹气并施加压力,成纤流体可穿过聚合物流体膜以形成中空聚合物管。在6,695,992内详述的另一种方法中,成纤流体将由狭缝或狭槽类的喷丝板设计形成薄膜片。成纤流体可处在接近于熔融聚合物温度的温度下。成纤流体的非限制性实施例为诸如氮气之类的气体,或更优选地为空气。成纤流体温度可比熔融聚合物的温度高,以有助于聚合物的流动以及中空管或平面薄膜的成型。可供选择地,成纤流体温度可处在熔融聚合物温度之下,以有助于纳米纤维的成型和凝固。成纤流体温度超过聚合物熔点不到约50℃,优选超过聚合物熔点不到25℃,更优选超过聚合物熔点不到15℃,或刚好处于聚合物熔点或之上。成纤流体温度也可处在加工温度之下,低至15℃。成纤流体的压力足以吹制纳米纤维并在其被挤出喷丝孔时略微高于熔融聚合物的压力。
成纤流体将通常具有低于34.5Mpa(5000psi)的压力。成纤流体压力将优选小于6.9Mpa(1000psi),更优选小于约690kPa(100psi),并且最优选为约100至约550kPa(约15至约80psi)。
聚合物产量将主要取决于所用的具体聚合物,喷丝头样式以及聚合物的温度和压力。聚合物产量将超过每分钟每喷丝孔约1克。聚合物产量可优选大于每分钟每喷丝孔约5克,并且更优选大于每分钟每喷丝孔约10克。将有可能一次运行几个喷丝孔,增加总的生产量。产量连同压力、温度和速度一起在喷丝孔出口处进行测量。描述产量的另一种方法是使用术语挤压润湿长度。聚合物产量将超过每厘米挤压润湿长度约0.3克。挤压润湿长度定义为产生纳米纤维之前熔融薄膜的线性距离。例如,如果表明本发明是利用离散喷丝头且喷丝头孔口直径为1厘米,则该喷丝头的质量产出速率为1克/分钟,总速率为每厘米每分钟0.318克。聚合物处理量将优选超过每厘米每分钟约3克,更优选大于每厘米每分钟约6克,并且最优选大于每厘米每分钟10克。
输送流体或其它流体可被用来产生脉动或波动压力场,以有助于形成多个纳米纤维。输送流体可通过一个横向喷口来提供,定位横向喷口用来引导输送流体在薄膜和纳米纤维形成区域上和周围流动。输送流体的速度可为每秒约1至约100米,并且优选为每秒约3至约50米。输送流体的温度与上述成纤流体相同,但其典型地为与薄膜刚好形成时的熔融聚合物大约相同的温度。也可利用空气帘或其它辅助空气流来影响纳米纤维从两个或多个喷丝头的喷射图案。空气流或空气帘可有助于保护邻近喷丝头之间的喷射形成或者可有助于压缩喷射图案。空气帘或空气流可改进纤维网的均匀性。
可任选采用另一种流体流,骤冷或加热流体。可定位此第三种流体流以将流体引导进纳米纤维来冷却或加热纤维。如果流体被用作骤冷流体,则其温度为约-20℃至约100℃,优选为约10℃至40℃。如果流体被用作加热流体,则其温度为约40℃至400℃,并且典型地为约100℃至约250℃。任何流体流均有助于聚合物熔体的纤维化并因此可通常被称作成纤流体。任何流体流可包含用于改变所制备纤维的表面、化学、物理或力学性质的处理剂或添加剂。
喷丝孔或喷丝头至收集器的距离(通常称为喷丝板至收集器距离(DCD))可进行优化。优化可有助于生产更均匀的纤维网。DCD的减少有助于降低纤维成捆或成束的数量。这种较小的距离使纤维来不及缠结、彼此缠绕或成捆。可期望在纤维网利用不只一个的DCD、在生产期间改变DCD或用不同的DCD产生不同的束。最理想的是通过改变DCD形成均匀性不同的纤维网。
其它由聚合物熔体制备纳米纤维方法的非限制性实施例包括熔体纤维破裂法、高级熔喷法、由多组分纤维的纤维分裂法和固体成膜法。利用将聚合物熔体破裂成细旦纤维的的熔体纤维破裂法的实施例包括Nyssen等人的美国专利5,075,161;Gerking的欧洲专利1 192 301 B1和0 724029 B1以及欧洲专利申请1 358 369 A2;Sodemann等人的WO04/020722。这些方法利用拉瓦尔喷嘴将气流速度加速至音速和/或超音速范围。当聚合物熔体被暴露到这么高的气速下时,将破裂成多个细旦纤维。
Nyssen等人在美国专利5,075,161中公开了将聚苯硫醚熔体破裂成细旦长丝的方法。在该方法中,恰好在纺丝喷嘴之后放置拉瓦尔喷嘴。通过将聚合物熔体流挤压至气体介质中使其拉长并冷却至低于熔体温度,从而可生产具有平均纤维直径小于约6微米(优选约0.2微米至6微米)聚合物纤维,气体介质基本平行于聚合物熔体流流动并获得音速或超音速的速度。这种同时变形和冷却产生了有限长度的无定形的细旦或超细旦纤维。高速纤维爆裂使纤维的表面氧化达到最小。Sodemann等人的WO04/020722公开了通过利用音速及超音速的流体速度由热塑性聚合物的纤维破裂生产长丝纺粘非织造材料的类似方法。在所述方法中,拉瓦尔喷嘴放置在纺丝喷嘴之下。纺丝速度、熔体温度和拉瓦尔喷嘴的位置被近似设定以实现细旦长丝在它们的表面仅局部热氧化。已公开由这种方法生产的纤维具有小于一微米的直径,并在离散点相互连接。Gerking在欧洲专利申请1 192 301 B1和1 358 369 A2中所公开的方法和设备也利用拉瓦尔喷嘴将气体加速至音速及超音速的速度,从而可利用该气体将聚合物熔体破裂成多个细旦长丝。
熔膜原纤化方法在纤维的制备方式以及生产细旦长丝的起始熔体几何形状上与熔体纤维破裂法不同。熔膜原纤化法开始于薄膜,在一些情况下开始于中空熔膜管,其通过中心空气喷射变细,然后原纤化成多个纳米纤维。相反地,熔体破裂法的起始熔体几何形状为长丝熔体,当在拉瓦尔喷嘴中暴露于音速和超音速气速时,其破裂成多个纳米纤维。由这些方法制成的纤维网可在均匀性上不同,这是由于纤维与纤维间的分隔以及纤维束构成的不同。
可采用各种方法和方法的组合来制造本发明的纤维网。优选的方法是生产均匀纳米纤维层的方法。熔体纤维破裂法可与熔膜原纤化法结合,其中在单条线上有两个单独的束。可将熔体纤维破裂法的各方面合并到熔膜原纤化法中。例如,可生产不同强度和直径的纤维以提供所需的性质组合。可供选择地,通过利用一个细长的中空管来形成纤维,可将熔体薄膜原纤化的各方面包括在其它熔体原纤化方法中,以增加生产率。例如,可改进熔膜原纤化方法以包括一个拉瓦尔喷嘴帮助拉伸纤维。拉伸可有助于进一步拉细并增加纤维的强度。这对高Tg聚合物如聚酯尤其优选,其中应力诱导结晶。
本发明的纳米纤维用于制备适于制品中阻碍性能的非织造纤维网。纤维网的定义是整体的非织造材料复合物。纤维网可具有一层或几层,这些层通过热点粘合或其它技术被加固以获得强度、完整性及某些美观性质。一个层是在一个单独的纤维网铺展或成型步骤中产生的纤维网或纤维网的一部分。本发明的纤维网将包含一个或多个具有大量直径小于一微米的纳米纤维的层。大量的定义是至少约25%。大量纤维可为层中纤维总数的至少约35%、至少约50%或超过约75%。纤维网可具有超过约90%或约100%的直径小于约一微米的纤维。纤维网的纤维直径采用扫描电子显微镜进行测量,根据视觉分析的需要,放大倍数为大于约500倍以及最多约10,000倍。要确定是否大量纤维具有小于一微米的直径,必须测量至少约100根纤维以及优选地更多的纤维。测量必须在遍布整个层的不同区域进行。采样必须足够,满足统计意义上的显著性。
纳米纤维层内剩余的较大纤维(最多75%)的纤维可具有处在任何范围内的直径。典型地,较大的纤维直径将刚好在一微米之上至约10微米。
纳米纤维层内大量纤维的纤维直径优选小于约900纳米,并且更优选为约100纳米至约900纳米。纤维直径的其它优选范围为小于约700纳米和约300至约900纳米。优选的直径取决于纤维网的用途。期望有大量纤维的直径小于约一微米并且有大量纤维的直径大于约一微米。较大的纤维可捕集和固定纳米纤维。这可帮助减少纳米纤维的团聚或成束量并防止纳米纤维被逸出的气流吹走。
本发明纤维网中的纳米纤维层可包含一种以上的聚合物。不同的聚合物或共混聚合物可被用于不同孔口,在纤维网中产生具有不同纤维直径和不同聚合物混料的纤维层。
期望生产具有不同纤维直径的单层非织造材料。可供选择地,希望生产每层具有不同纤维直径的多层的非织造纤维网。可改进熔体薄膜原纤化方法生产小直径和大直径纤维以制造各种纤维网。较小直径纤维被认为是具有大量的直径小于一微米的纤维。较大直径纤维包括从熔喷范围(典型为3至5微米)至纺粘(典型为10微米左右)或一微米以上的任何纤维直径范围的纤维。例如,可生产平均纤维直径小于一微米的一个层和平均纤维直径5微米左右的另一个层。可在采用传统的纺粘-熔喷-纺粘(SMS)纤维网中使用这类结构。在同一条生产线上用同样的设备可生产具有不同纤维直径的纤维网。这是一种低成本的方法,因为可使用同样的设备和部件。运行成本和设备成本均可得到控制。同样,如果需要,可使用同样的聚合物产生不同的纤维直径。
本发明的制品将包含上述非织造纤维网。纤维网可构成整个制品例如擦拭物,或者纤维网可包括制品的一个组分,例如尿布。卫生制品是优选的制品。卫生制品包括尿布、训练裤、成人失禁衬垫、诸如女性护理衬垫和短裤护垫之类的经期用品、卫生棉塞、个人清洁制品、个人护理制品以及包括婴儿擦拭物、面部擦拭物、身体擦拭物和女性擦拭物在内的个人护理擦拭物。个人护理制品包括诸如伤口敷料、活性成分递送包裹物或贴剂和用于身体尤其是皮肤的其它基质之类的制品。也需要用于个人或工业用途的一次性内衣或衣服及防护服。擦拭物的其它用途可为用于吸收或控制喷溅物的清洁居室擦拭物或净化擦拭物以及其它工业擦拭物。
在尿布中,纤维网可被用作阻碍层如芯上阻碍或外覆盖件。纤维网也可被用作具有高静水压头的高阻碍箍,实现舒适性和贴合性所希望的裆部又薄又窄的尿布的低泄露事故率。利用纳米纤维的典型纤维网是这样的纤维网,其中纳米纤维层与至少一个纺粘层结合并利用热点粘合、水刺缠绕或其它合适且适于最终用途的技术加固。可有一个或两个纺粘层围绕纳米纤维层。
在尿布或其它一次性吸收制品中,可将含有纳米纤维的非织造纤维网用作阻碍层。阻碍层可设置在吸收芯和包含衣服的外层之间。吸收芯为制品主要起到诸如捕集、输送、分配和存储体液之类的流体处理性能作用的部件。吸收芯典型地位于液体可透过的身体侧内层和蒸汽可透过的、液体不可透过的外覆盖件之间。外层,也称作底片或外覆盖件,位于一次性制品的外侧。在尿布的情况下,外层接触使用者的衣服或衣物。阻碍层可供选择地或也被设置在吸收芯和内层之间。内层也称作顶片,其位于紧贴使用者皮肤的一侧上。内层可接触使用者的皮肤或可接触与使用者的皮肤接触的单独的顶片。阻碍层可为吸收材料。阻碍层最优选在对流的空气流和吸收阻挡性之间具有平衡。对流的空气流动性有效地降低吸收制品和穿着者的皮肤间的空间的相对湿度。液体吸收性和液体阻碍性的组合保护制品免除透湿问题并在吸收制品处在碰撞和/或持续压力下时尤其有益。阻碍层的进一步描述和有益效果可见于WO 01/97731中。
纤维网可被用于擦拭物中,改进洗剂处理性并降低液体梯度。纤维网也可提供物质的控制输送。输送的物质可为液体、洗剂、活性物质或其它材料。由于纳米纤维的高表面积,纤维网可被用作擦拭物或女性护理产品护垫、尿布、训练裤或成人失禁用品的芯的吸收材料。纤维网可增强流体的分配性和/或保持性。此外,用于吸收性用途的纤维网可用附加的颗粒或用于增加吸附性的吸收性纤维或天然纤维制造,或者纤维网的某些层可具有不同的性能。
纳米纤维也可被用于希望具有不透明性的制品中。因小纤维直径和均匀性,或可将颜料添加到聚合物熔体或纤维网中,可产生附加的不透明性。还已发现纤维网具有低的起绒性。这可能是由于较长的纤维或纤维网内纤维的缠绕。
将受益于纳米纤维网的其它产品包括过滤器。过滤器可用于工业、个人或家用,并且可用于过滤空气、液体或小颗粒。工业用途可包括汽车、炉子、水、及其它类型的过滤器。一种个人过滤器包括过滤面具如手术口罩。含有纳米纤维层的纤维网的其它医疗用途包括外科手术衣、伤口敷料和医疗防渗层。纤维网也可用作噪音和热的绝缘体,以用于户外装置、衣服和可用作导电纤维。
实施例比较实施例1Basell Profax PH-835,一种Tg为6℃的聚丙烯聚合物,如通过差示扫描量热法所测定的。加工温度为280℃,成纤流体温度为25℃。
比较实施例2使Tg为-15℃的名义上为27熔融指数聚乙烯的Dow Chemical Company Aspun 6811A流动。材料在任何条件下将不会原纤化并形成纳米纤维。
实施例1名义上为17熔融流动速率聚乳酸聚合物的Biomer L9000具有的Tg为55℃。该材料可被原纤化并形成纳米纤维。加工温度为280℃,成纤流体温度为25℃。
实施例2可采用典型Tg为100℃的Dow Chemical CompanyStyron A-Tech 6079,一种聚苯乙烯,来生产纳米纤维。加工温度为280℃,成纤流体温度为25℃。
实施例3可采用典型Tg为150℃的Dow Chemical CompanyCALIBRE 200-15,一种聚碳酸酯,来生产纳米纤维。加工温度为280℃,成纤流体温度为25℃。
实施例4可采用典型Tg为50℃的DuPont Zytel Type 101,一种聚酰胺,来生产纳米纤维。加工温度为300℃,成纤流体温度为25℃。
实施例5可采用典型Tg为80℃的Eastman Chemical CompanyEastman F61HC,一种可结晶的聚(对苯二酸酯),来生产纳米纤维。加工温度为300℃,成纤流体温度为25℃。
实施例6可采用典型Tg为80℃的Eastman Chemical Companycopolyester 14285,一种非晶形聚(对苯二酸酯),来生产纳米纤维。加工温度为300℃,成纤流体温度为25℃。
所有引用文献的相关部分均引入本文以供参考,任何文献的引用不可解释为是对其作为本发明的现有技术的认可。
尽管已用具体实施方案来说明和描述了本发明,但对于本领域的技术人员显而易见的是,在不背离本发明的精神和保护范围的情况下可做出许多其它的变化和修改。因此,有意识地在附加的权利要求书中包括属于本发明范围内的所有这些变化和修改。
权利要求
1.一种包括纳米纤维层的非织造纤维网,所述纳米纤维层具有大量的直径小于一微米的纳米纤维,其中所述纳米纤维由玻璃化转变温度大于25℃的聚合物制成。
2.如权利要求1所述的非织造纤维网,其中所述聚合物具有大于30℃的玻璃化转变温度。
3.如权利要求1所述的非织造纤维网,其中所述纳米纤维层具有至少50%的直径小于约一微米的纳米纤维。
4.如权利要求1所述的非织造纤维网,其中所述纳米纤维层具有0.5gsm至15gsm的基重。
5.如权利要求1所述的非织造纤维网,其中所述聚合物具有大于40℃的玻璃化转变温度。
6.一种包括如权利要求1所述的非织造纤维网的制品。
7.如权利要求6所述的制品,其中所述制品选自尿布、训练裤、成人失禁衬垫、诸如女性护理衬垫和短裤护垫之类的经期用品、卫生棉塞、个人清洁制品、个人护理制品和诸如婴儿擦拭物、面部擦拭物、身体擦拭物和女性擦拭物之类的个人护理擦拭物,以及它们的组合。
8.如权利要求7所述的制品,其中所述非织造纤维网为阻碍层。
9.一种制造包括纳米纤维层的非织造纤维网的方法,所述纳米纤维层具有大量的直径小于一微米的纳米纤维,其中所述纳米纤维由熔膜原纤化方法制成,所述方法包括以下步骤a.提供玻璃化转变温度大于30℃的聚合物熔体,b.利用流体流形成聚合物膜,和c.由所述聚合物膜形成多根纳米纤维。
全文摘要
本发明涉及包含纳米纤维非织造纤维网和制品。纳米纤维由玻璃化转变温度高于约25℃的聚合物制成。具有小于一微米直径的纳米纤维可大量包括在所述制品所包括的一层纤维网内。优选地,纳米纤维用熔膜原纤化方法进行生产。制品包括尿布、训练裤、成人失禁衬垫、诸如女性护理衬垫和短裤护垫之类的经期用品、卫生棉塞、个人清洁制品、个人护理制品以及包括婴儿擦拭物、面部擦拭物和女性擦拭物在内的个人护理擦拭物。
文档编号D01D5/42GK1942619SQ200580011507
公开日2007年4月4日 申请日期2005年4月19日 优先权日2004年4月19日
发明者E·B·邦德, R·查博拉, O·E·A·伊泽勒, H·徐 申请人:宝洁公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1