氮化硅基复合烧结体及其生产方法

文档序号:1978837阅读:243来源:国知局
专利名称:氮化硅基复合烧结体及其生产方法
技术领域
本发明涉及在室温至中低温范围内具有低摩擦系数和优秀机械性能的氮化硅基烧结体。这种烧结体是高耐磨性和低摩擦的结构陶瓷材料,可用在各种机械部件、切削工具、滑动件等中。本发明还涉及这种烧结体的生产方法、这种烧结体的原料复合粉末及原料复合粉末地生产方法。
背景技术
氮化硅(Si3N4)是一种在强度、韧度、耐蚀性、抗氧化性和耐热震性方面非常优秀的材料,因此广泛用在切削工具、燃气涡轮、轴承等中。近来人们对用氮化硅作为结构材料如发动机部件进行了研究,在氮化硅的性能度方面更严格地要求其具有更高的耐磨性和硬度等。
例如,在将氮化硅基复合材料用于要求高耐磨性的变形工具或特定的汽车部件的情况下,要求比传统材料如硬质合金(包含由WC和Co的粘结相等组成的硬颗粒的金属陶瓷材料)或高速钢高得多的耐磨性。
但是,氮化硅基复合材料比上述材料贵得多,目前的情况是其耐磨性并没有达到与其成本相称的满意程度。
注意“氮化硅基”指含有氮化硅(Si3N4)和/或赛隆作为主晶相的陶瓷。另外,“氮化硅基复合材料”指包含具有氮化硅基陶瓷作为其主晶体的基质及分散和复合在基质中的不同组分的材料。
为了进一步改善这种氮化硅基材料的性能,人们进行了大量的研究。例如,公开的日本专利11-139882和11-139874中报道在氮气气氛中以很高的加速度混合氮化硅粉末和金属钛粉末可以得到包含氮化硅细粒和氮化钛颗粒的复合粉末。另外还报道用这种复合粉末可以生产具有细晶结构和高强度的氮化硅烧结体,这是因为氮化钛颗粒抑制了氮化硅的晶粒生长。
尽管上述氮化硅烧结体具有很高的强度,但是对与用于机器结构的材料的摩擦相关的性能的研究仍然没有多大进展,特别是在没有润滑剂条件下降低摩擦的研究,而这正是目前最有希望的节能趋势。
作为具有低摩擦系数的陶瓷材料的一般生产方法,在材料中分散固体润滑剂如氮化硼、硫化钼或石墨的方法是公知的。但是,至于固体润滑剂的再生相(second phase),分散作用只可能使其粒度降到约亚微米级,因此对摩擦系数降低的程度有很大限制。
另外,公开的日本专利11-43372中提出氮化硅基陶瓷,这种陶瓷含有0.5-50wt%的游离炭,氮化硅基晶粒的平均短轴直径是0.5μm或更小,该陶瓷还具有0.2或更小的无润滑剂条件下的摩擦系数。但是,当氮化硅和游离炭进行这样组合时,比较磨损量(comparative wear amount)低至10-7mm2/N,因此在磨损量方面仍然存在问题。
发明公开
根据上述现有技术状况,本发明的目的是提供一种在室温至中低温范围内具有优秀机械性能并且具有低摩擦系数和优秀耐磨性的氮化硅基烧结体及这种烧结体的生产方法、适用于生产这种烧结体的复合粉末及复合粉末的生产方法。
1、含硼的氮化硅基复合粉末
本发明的第一个方面是提供一种氮化硅基复合粉末,这是一种二次复合颗粒(secondary composite particles)的粉末,其包括平均粒径均为20nm或更小的氮化硅、氮化钛、硼化钛和氮化硼的一次颗粒(primary particles)和含有至少一种包绕一次颗粒表面的无定形相的相,其中,二次复合颗粒的平均粒径为0.3μm或更大。这种复合粉末可用作氮化硅基复合烧结体的原料。
在本发明的这种含硼的氮化硅基复合粉末中,因为这种粉末包括平均粒径为20nm或更小的氮化硅(Si3N4)细粒和平均粒径为20nm或更小的氮化钛(TiN)、氮化硼(BN)和硼化钛(TiB2)的分散颗粒,所以在烧结过程中Si3N4和分散颗粒自身的晶粒生长受到抑制。另外,因为氮化硼极其微细和均匀地分散在氮化硅基复合粉末中,所以氮化硅基烧结体可以具有低摩擦系数和优秀的耐磨性。
平均粒径均为20nm或更小的氮化硅、氮化钛、氮化硼和硼化钛的细粒聚集在一起形成复合粉末,而且复合粉末的表面主要被硅和/或钛的无定形金属所包绕。因此,与使用传统的纳米级非氧化物基粉末相比其表面氧化受到抑制,因此易于处理。另外,复合粉末,即聚集体的平均粒径约为0.3-1.0μm,因此可以用处理传统市售粉末的方法处理复合粉末。
二次复合颗粒具有其中粒径为几纳米至几十纳米的Si3N4和钛化合物各自且均匀地分散的内部结构。实际上从EDX和电子衍射的结果可以发现形成的纳米复合结构是这些纳米级Si3N4和钛化合物颗粒主要被无定形钛所包绕。
正如下面所述的那样,为了得到本发明的氮化硅基复合粉末,必须在很高的加速度下混合。一般认为金属钛产生了特定的机械化学反应,使氮化硼和氮化硅颗粒在混合过程中细化。
用上述本发明的氮化硅基复合粉末生产的氮化硅基复合烧结体具有一种在其中控制Si3N4、TiN、TiB2和BN使其具有细粒直径的晶体结构。因此,在室温至中低温范围内烧结体的强度很高,并且因为氮化硼极其微细和均匀地分散,所以其摩擦系数低,其耐磨性非常高。
当生产烧结体时,在待烧结的粉末中加入烧结助剂,要求这种烧结助剂均匀地分散在用于烧结的粉末中。因此在本发明中,为了将这种烧结助剂均匀地分散在烧结体的原料粉末中,还优选在生产烧结体阶段将烧结助剂和氮化硅基复合粉末的原料粉末一起加入。在下述实施例中,当生产这种复合粉末时,将烧结助剂加入氮化硅基复合粉末原料中。但是,本发明还包括下述情况在生产复合粉末阶段不加入烧结助剂,而是将烧结助剂加入待烧结的粉末中。
2、含炭的氮化硅基复合粉末
本发明的第二个方面是提供一种氮化硅基复合粉末,这是一种二次复合颗粒的粉末,其包括平均粒径均为30nm或更小的氮化硅、钛化合物和石墨和/或炭的一次颗粒和含有包绕一次颗粒表面的无定形相的相。在这种情况下,含无定形相的相包括处于适当位置的钛、硅和炭。另外,本申请中的“钛化合物”表示氮化钛、碳氮化钛和碳化钛中的至少一种。
在本发明的这种氮化硅基复合粉末中,平均粒径均为30nm或更小的氮化硅、钛化合物和石墨和/或炭的一次颗粒聚集在一起形成复合粉末。而且,复合粉末的表面主要被钛和/或硅的无定形金属所包绕。因此,与使用一般的纳米级非氧化物基粉末相比其表面氧化受到抑制,因此易于处理。二次复合颗粒的粉末,即聚集体的平均粒径约为0.3-1.0μm,因此可以用处理传统市售粉末的方法处理二次复合颗粒的粉末。
为了制备本发明的复合粉末,在很高的加速度下混合原料。从理论上讲,金属钛和石墨产生了特定的机械化学反应,使氮化硅颗粒细化。还在适当位置处生成碳氮化钛。
用上述氮化硅基复合粉末生产的氮化硅基复合烧结体具有一种在其中控制Si3N4、钛化合物、SiC和C使其具有细粒直径的晶体结构。因此,其摩擦系数低,其耐磨性非常高。
当生产烧结体时,在待烧结的粉末中加入烧结助剂,要求这种烧结助剂均匀地分散在粉末中。因此在本发明中,为了将这种烧结助剂均匀地分散在烧结体的原料粉末中,优选在生产烧结体阶段将烧结助剂和原料粉末即氮化硅基复合粉末一起加入。在下述实施例中,当生产这种复合粉末时,将烧结助剂加入氮化硅基复合粉末原料中。但是,本发明还包括下述情况在生产复合粉末阶段不加入烧结助剂,而是将烧结助剂加入待烧结的粉末中。
3、含硼的氮化硅基复合烧结体
本发明的第三个方面是提供一种氮化硅基复合烧结体,其包括氮化硅、钛化合物和氮化硼,其平均粒径是100nm或更小,其在无润滑剂条件下的摩擦系数是0.3或更小。
本申请中的“钛化合物”主要是氮化钛和硼化钛。烧结体的平均粒径必须是100nm或更小。如果平均粒径大于100nm,则在摩擦过程中颗粒的脱落和粘附性将急剧增加,从而使摩擦系数恶化。尽管平均粒径取决于材料的烧结条件(密度),但是平均粒径优选为50nm或更小。


图1示意性地示出本发明的含硼的氮化硅基复合烧结体的透射电子显微(TEM)图像。烧结体是用下述生产方法得到的,并且具有包括平均粒径为100nm或更小的均匀颗粒的纳米结构。另外,从X射线分析和EDX分析结果可以发现金属钛已经转变为氮化钛和硼化钛,氮化钛颗粒抑制Si3N4的晶粒生长,从而使结构细化,硼化钛呈现柱状或平面状,分散在氮化钛颗粒的晶界(grain boundary)和/或内部,BN分散在氮化硅1和钛化合物2的三相点(triple point)和晶界处。在图1的TEM图像中该BN用数字3表示。
在本发明的烧结体中,优选有一些硼化钛是短轴直径为20nm或更小且长宽比为3或更大的平面状或柱状。通过形成这些柱状颗粒能够改善复合烧结体的机械性能。
因为具有上述特定的纳米结构,所以本发明的烧结体是具有优秀机械性能的氮化硅基复合烧结体,其强度为500MPa或更大,其断裂韧度为6MPa.m1/2或更大。这种烧结体还具有很高的耐磨性,其摩擦系数低,与Si3N4摩擦时的摩擦系数是0.3或更小,其比较磨损量低至2.0×10-8mm2/N。
4、含炭的氮化硅基复合烧结体
本发明的第四个方面是提供一种氮化硅基复合烧结体,其包括氮化硅、钛基氮化物和/或钛基碳化物、炭化硅和石墨或炭,其平均粒径是100nm或更小,其在无润滑剂条件下的摩擦系数是0.2或更小。
用二次复合颗粒的粉末作为本发明的这种烧结体的原料粉末。这种二次复合颗粒包括平均粒径为30nm或更小的一次颗粒,这种一次颗粒是通过将氮化硅、钛的氮化物和/或碳化物和石墨粉或炭粉混合并粉碎而形成的。用火花等离子体烧结等方法在氮气气氛中在1200-1600℃下烧结这种二次复合颗粒。
本发明的这种氮化硅基复合烧结体具有包括平均粒径为100nm或更小,更优选50nm或更小的均匀颗粒的纳米结构。为了达到本发明的这种烧结体所要实现的材料性能,这样的平均粒径是必需的。在烧结过程中,金属钛全部转变为氮化钛和碳化钛或碳氮化钛。TiN抑制氮化硅(Si3N4)的晶粒生长,从而使结构细化,炭分散在氮化硅(Si3N4)、氮化钛(TiN)和碳化钛(TiC)或碳氮化钛(TiCN)叠合点处和晶界处。另外,一些炭可以转化为炭化硅。
因为具有上述特定的纳米结构,所以本发明的烧结体是具有优秀耐磨性能的氮化硅基复合烧结体。本发明的烧结体不仅在两个同样的烧结体之间摩擦时具有优秀的耐磨性,而且在与金属如钢摩擦时也具有优秀的耐磨性。这种烧结体具有低摩擦系数,其摩擦系数是0.2或更小,其比较磨损量低至1.0×10-8mm2/N或更小,因此具有优秀的耐磨性。磨损低的原因是炭是一种固体润滑剂,炭微细地分散在烧结体中,另外,不易于粘附在钢上的钛化合物以纳米级的粒度分散在烧结体中。
5、含硼的氮化硅基复合粉末的生产方法
技术领域
本发明的第五个方面是提供一种氮化硅基复合粉末的生产方法,该方法包括在氮气气氛中在室温至250℃的温度下以10-300G的加速度将氮化硅粉末、氮化硼粉末和金属钛粉末混合并粉碎。
从理论上讲,以10-300G的高加速度混合时,金属钛主要产生以下述化学式表示的机械化学反应,使氮化硼和氮化硅都成为平均一次粒径为20nm或更小的细粒。
为了得到足够低的摩擦系数,氮化硼粉末的加入量必须至少为2wt%。但是,为了保持材料的优秀机械性能,应当使其加入量不超过40wt%。因此,尽管没有特别限制,但是其加入量的优选范围是2-40wt%。
尽管对金属钛粉末的加入量没有特别限制,但是其优选范围是5-60wt%。在金属钛粉末的加入量低于5wt%的情况下,反应的钛量太少,因此这种方法不能使氮化硼和氮化硅细化。另一方面,如果加入量超过60wt%,则因为存在大量的钛,所以烧结体中会出现不需要的麻点等。
在本发明中,所有的原料粉末都可以是市售产品。Si3N4的晶体形式可以是α或β。
将加速度限定为10-300G的原因是低于10G时难以使粉末细化和均匀,从而导致最终的烧结体中的晶体粒径不均匀;而如果在混合过程中的加速度超过300G,则杂质会通过粉碎机中容器(pot)或球的磨损而进入粉末。混合设备优选使用球磨机或也能进行粉碎的磨碎机。
在以高加速度进行混合的过程中,其温度为室温至250℃,优选50℃-200℃。这种温度范围能够促进上述机械化学反应,从而可以在短时间内得到基于平均一次粒径为30nm或更小的粉末的目标复合粉末。至于混合时间,在少于0.5小时时,不会发生伴随反应的形成细粒的反应,在超过50小时时,杂质会进入粉末。因此优选将混合时间设定为0.5-50小时。注意优选根据要生产的粉末的要求合适控制混合过程中的加速度、温度和混合时间。
进行上述机械化学反应需要氮气气氛。该氮气气氛的压力优选为0.05-1.0MPa,更优选0.08-0.15MPa。如果氮气气氛的压力低于0.05MPa,则难以控制。而如果压力高于1.0MPa,则需要使用特殊容器如耐压容器,这是不希望的。
我们发现通过上述粉碎和混合,在工艺过程中会发生使金属钛转化为钛化合物的机械化学反应,Si3N4的晶体粒径会随着混合时间的增加而减小。最终形成平均粒径为0.3μm或更大的二次复合颗粒。
用上述氮化硅基复合粉末生产的氮化硅基复合烧结体具有一种在其中控制Si3N4、TiN、TiB2和BN使其具有细粒直径的晶体结构。因此,在室温至中低温范围内烧结体的强度很高,并且因为氮化硼极其微细和均匀地分散,所以其摩擦系数低,其耐磨性非常高。
6、含炭的氮化硅基复合粉末的生产方法
技术领域
本发明的第六个方面是提供一种氮化硅基复合粉末的生产方法,该方法包括在氮气气氛中在室温至250℃的温度下以10-300G的加速度将氮化硅粉末、金属钛粉末和石墨和/或炭粉混合并粉碎。不以粉末形式而以酚树脂等形式加入石墨和/或炭也是有效的。
从理论上讲,以10-300G的高加速度混合时,金属钛主要产生以下述化学式表示的机械化学反应,使氮化硅、氮化钛、碳化钛和碳氮化钛每一个都成为具有平均粒径为30nm或更小的细粒。
在这种情况下,氮化钛和碳化钛通常相互固溶,从而形成碳氮化钛。
石墨和/或炭的加入量优选是0.5-20wt%。在石墨和/或炭的加入量低于0.5wt%的情况下,烧结体将不能得到足够的摩擦性能。另外,因为在混合过程中粉末附着在容器壁上,所以这种附着量将增加,从而降低收集的粉末的百分率。另一方面,如果石墨和/或炭的加入量超过20wt%,则生产烧结体时石墨和/或炭会变得不致密,从而恶化了材料性能。
尽管对金属钛粉末的加入量没有特别限制,但是其优选范围是5-60wt%。在金属钛粉末的加入量低于5wt%的情况下,因为反应的钛量太少,所以氮化硅不能细化。另一方面,如果加入量超过60wt%,则因为反应的钛量太大,所以烧结体中会出现不需要的麻点(mottling)等。
在本发明中,所有的原料粉末都可以是市售产品。Si3N4的晶体形式可以是α或β。
将加速度限定为10-300G的原因是低于10G时难以使粉末细化和均匀,从而导致最终的烧结体中的晶体粒径不均匀;如果在混合过程中的加速度超过300G,则杂质会通过粉碎机中容器或球的磨损而进入粉末。优选使用球磨机或也能进行粉碎的磨碎机作为混合设备。
在以高加速度进行混合的过程中,其温度为室温至250℃,优选50℃-200℃。这种温度范围能够促进上述机械化学反应,从而可以在短时间内得到基于平均一次粒径为30nm或更小的粉末的目标复合粉末。至于混合时间,在少于0.5小时时,不会发生伴随反应的形成细粒的反应,在超过50小时时,杂质会进入粉末。因此优选将混合时间设定为0.5-50小时。注意优选根据要生产的粉末的要求合适控制混合过程中的加速度、温度和混合时间。
进行上述机械化学反应需要氮气气氛。该氮气气氛的压力优选为0.05-1.0MPa,更优选0.08-0.15MPa。如果氮气气氛的压力低于0.05MPa,则难以控制。如果压力高于1.0MPa,则需要使用特殊容器如耐压容器,这是不希望的。
我们发现通过上述粉碎和混合,在工艺过程中会发生使金属钛转化为钛化合物的机械化学反应,Si3N4的晶体粒径会随着混合时间的增加而减小。最终形成平均粒径为0.3μm或更大的二次复合颗粒,并形成含包绕颗粒表面的无定形相的相。
用上述生产的氮化硅基复合粉末得到的氮化硅基复合烧结体具有一种在其中控制Si3N4、钛化合物、SiC和C使其具有细粒直径的晶体结构。因此,其摩擦系数低,其耐磨性非常高。
7、含硼的氮化硅基复合烧结体的生产方法
技术领域
本发明的第七个方面是提供一种氮化硅基复合烧结体的生产方法,该方法包括粉碎并混合氮化硅粉末、烧结助剂粉末、金属钛粉末和氮化硼粉末直到一次颗粒的平均粒径为20nm或更小,形成二次复合颗粒,将二次复合颗粒模制成压坯(compact),在1200-1600℃的氮气气氛中烧结该压坯。
作为原料粉末,优选生产本发明的氮化硅基复合粉末。即,在压力为0.05-1.0MPa的氮气气氛中在室温至250℃的温度下以10-300G的加速度将氮化硅粉末、烧结助剂粉末、金属钛粉末和氮化硼粉末混合在一起。结果,每一种粉末都成为平均粒径为20nm或更小的一次颗粒,该复合粉末成为具有含处于一次颗粒表面上的无定形相的相的二次复合颗粒,其平均粒径为0.3μm或更大,这包括表面相的厚度。
本发明的生产方法中用的所有的原料粉末都可以是市售产品。Si3N4粉末的晶体形式可以是α或β。可以用Y2O3、Al2O3等作为烧结助剂。
为了得到足够低的摩擦系数,至少需要2wt%的氮化硼。但是,为了保持材料的优秀机械性能,不超过40wt%的量是合适的。尽管对氮化硼粉末的加入量没有特别限制,但是优选2-40wt%。
尽管对金属钛粉末的加入量没有特别限制,但是其优选范围是5-60wt%。在金属钛粉末的加入量低于5wt%的情况下,因为反应的钛量太少,因此不能使氮化硼和氮化硅细化。另一方面,如果加入量超过60wt%,则因为参与反应的钛量太高,所以烧结体中会出现不需要的麻点等。
从理论上讲,以10-300G的高加速度混合时,金属钛主要产生以下述化学式表示的机械化学反应,使氮化硼和氮化硅都成为平均一次粒径为20nm或更小的细粒。
将加速度限定为10-300G的原因如下低于10G时难以使粉末细化和均匀,从而导致最终的烧结体中的晶体粒径不均匀;而如果在混合过程中的加速度超过300G,则杂质会通过粉碎机中容器或球的磨损而进入粉末。优选使用球磨机或也能进行粉碎的磨碎机作为混合设备。
在以高加速度进行混合的过程中,其温度为室温至250℃,优选50℃-200℃。这种温度范围能够促进上述机械化学反应,从而可以在短时间内得到基于平均一次粒径为30nm或更小的粉末的目标复合粉末。至于混合时间,在少于0.5小时时,不会发生伴随反应的形成细粒的反应,而在超过50小时时,杂质会进入粉末。因此优选将混合时间设定为0.5-50小时。注意优选根据要生产的粉末的要求合适控制混合过程中的加速度、温度和混合时间。
进行上述机械化学反应需要氮气气氛。氮气气氛的压力优选为0.05-1.0MPa,更优选0.08-0.15MPa。如果氮气气氛的压力低于0.05MPa,则难以控制。如果压力高于1.0MPa,则需要使用特殊容器如耐压容器,这是不希望的。
我们发现通过上述粉碎和混合,在工艺过程中会发生使金属钛转化为钛化合物的机械化学反应,Si3N4的晶体粒径会随着混合时间的增加而减小。最终形成平均粒径低至0.3μm的二次复合颗粒。
二次复合颗粒具有其中粒径为几纳米至几十纳米的Si3N4和钛化合物均匀地分散的内部结构。实际上从EDX和电子衍射的结果可以发现形成的纳米复合结构是这些纳米级Si3N4和钛化合物颗粒主要被无定形钛所包绕。
如上所述形成二次复合颗粒后,在1200-1600℃的氮气气氛中烧结这些压坯。众所周知,由于烧结过程中热的作用发生其中晶粒结合在一起的晶粒生长。为了尽可能抑制由于热量而导致的晶粒生长,采用诸如短时间内的高压烧结和低温烧结的方法是有效的。因此,采用微波烧结法或能够进行电流烧结的火花等离子体烧结法作为烧结方法是有效的。
根据上述生产方法可以得到具有特征纳米结构的本发明的新型氮化硅基复合烧结体。
8、含炭的氮化硅基复合烧结体的生产方法
技术领域
本发明提供一种氮化硅基复合烧结体的生产方法,该方法包括粉碎并混合氮化硅粉末、烧结助剂粉末、金属钛粉末和石墨和/或炭粉直到一次颗粒的平均粒径为30nm或更小,形成二次复合颗粒,将二次复合颗粒模制成压坯,在1200-1600℃的氮气气氛中烧结该压坯。为了实现本发明烧结体的材料性能,其平均粒径应当为100nm或更小,优选50nm或更小。
为了生产本发明的烧结体,优选生产本发明的氮化硅基复合粉末作为原料粉末。即,在压力为0.05-1.0MPa的氮气气氛中在室温至250℃的温度下以10-300G的加速度将氮化硅粉末、烧结助剂粉末、金属钛粉末和石墨和/或炭粉混合在一起。结果如上所述,每一种粉末都成为平均粒径为30nm或更小的一次颗粒,且颗粒形成具有含处于一次颗粒表面上的无定形相的相的二次复合颗粒。
本发明的生产方法中用的所有的原料粉末都可以是市售产品。Si3N4粉末的晶体形式可以是α或β。可以用Y2O3、Al2O3等作为烧结助剂。
尽管对金属钛粉末的加入量没有特别限制,但是其优选范围是5-60wt%。如果金属钛粉末的加入量低于5wt%,因为反应的钛量太少,因此不能使氮化硅细化。另一方面,如果加入量超过60wt%,则因为反应的钛量太大,所以烧结体中会出现不需要的麻点等。
当加入石墨和/或炭粉时,其量优选为0.5-20wt%。如果炭量超过20wt%,则磨损量急剧增加,从而使其耐磨性下降。另一方面,如果炭量低于0.5wt%,则会由于作为固体润滑剂的炭量不够而导致摩擦系数增大。
从理论上讲,以10-300G的高加速度混合时,金属钛主要产生以下述化学式表示的机械化学反应,使氮化硅、氮化钛、碳化钛和碳氮化钛都成为平均粒径为30nm或更小的细粒。
在这种情况下,氮化钛和碳化钛通常相互固溶,从而形成碳氮化钛。
将加速度限定为10-300G的原因如下低于10G时难以使粉末细化和均匀,从而导致最终的烧结体中的晶体粒径不均匀;而如果在混合过程中的加速度超过300G,则杂质会通过粉碎机中容器或球的磨损而进入粉末。优选使用球磨机或也能进行粉碎的磨碎机作为混合设备。
在以高加速度进行混合的过程中,其温度为室温至250℃,优选50℃-200℃。这种温度范围能够促进上述机械化学反应,从而可以在短时间内得到基于平均一次粒径为30nm或更小的粉末的目标复合粉末。至于混合时间,在少于0.5小时时,不会发生伴随反应的形成细粒的反应,而在超过50小时时,杂质会进入粉末。因此优选将混合时间设定为0.5-50小时。注意优选根据要生产的粉末的要求合适控制混合过程中的加速度、温度和混合时间。
进行上述机械化学反应需要氮气气氛。该氮气气氛的压力优选为0.05-1.0MPa,更优选0.08-0.15MPa。如果氮气气氛的压力低于0.05MPa,则难以控制。而如果压力高于1.0MPa,则需要使用特殊容器如耐压容器,这是不希望的。
我们发现通过上述粉碎和混合,在工艺过程中会发生使金属钛转化为钛化合物的机械化学反应,Si3N4的晶体粒径会随着混合时间的增加而减小。最终形成平均粒径低至0.3μm的二次复合颗粒和含包绕颗粒表面的无定形相的相。
如上所述形成二次复合颗粒后,在1200-1600℃的氮气气氛中烧结这些压坯。众所周知,由于烧结过程中热的作用会发生其中晶粒结合在一起的晶粒生长。为了尽可能多地抑制由于热量而导致的晶粒生长,采用诸如短时间内的高压烧结和低温烧结的方法是有效的。因此,采用微波烧结法或能够进行电流烧结的火花等离子体烧结法作为烧结方法是有效的。
根据上述生产方法可以得到具有上述特征纳米结构的本发明的新型氮化硅基复合烧结体。
附图简述
图1是示出本发明的氮化硅基复合烧结体的TEM图像的示意图。
本发明的最佳实施方式
下面通过实施例和对比实施例详细说明本发明。
实施例1
将2.5wt%的Y2O3粉末和1wt%的Al2O3粉末作为烧结助剂加入平均粒径为0.5μm的市售Si3N4粉末中,然后加入40wt%的平均粒径为10μm的金属钛粉末和10wt%的平均粒径为5μm的BN粉末。在0.1MPa的氮气气氛中在50℃下用带有Si3N4球的行星式球磨机以150G的加速度将这些粉末混合16小时,以此得到本发明的氮化硅基复合粉末。
用XRD对得到的粉末进行定性分析,此时鉴别对应于Si3N4、TiN、TiB2和BN的峰。另外,用透射电子显微镜观察这种复合粉末发现对于所有Si3N4颗粒、TiN颗粒、TiB2颗粒和BN颗粒来说平均粒径都是20nm或更小,其结构是这些颗粒被无定形Ti和Si所包绕。得到的复合粉末的平均粒径是0.5μm。
把这些复合粉末装入炭模,然后用火花等离子体烧结法(SPS)在1300℃下烧结。将得到的烧结体研磨和精研磨,然后用球盘试验机评价其耐磨性。结果是得到的烧结体具有0.2这样低的摩擦系数,并且具有很高的耐磨性,比较磨损量为2.0×10-8mm2/N。将烧结体抛光,然后用Ar离子蚀刻法生产膜试样片。然后用透射电子显微镜评价试样片中Si3N4、TiN、BN和TiB2的粒径,我们发现这些颗粒都极其微细,其粒径为50nm或更小。
对比实施例1
作为对比,用与上述实施例1同样的方法生产复合粉末,不同之处是用超声波而不用行星式球磨机混合原料粉末,然后与上述实施例1一样烧结该复合粉末。用超声波混合作为传统混合方法,其加速度不足以粉碎陶瓷粉末。在该对比实施例中得到的烧结体中观察到的TiN颗粒和BN颗粒粒度是几微米,其摩擦系数很高,约为0.5,比较磨损量为7.0×10-7mm2/N。
实施例2-1至2-12
将与实施例1相同的烧结助剂加入平均粒径为0.5μm的市售Si3N4粉末中,然后以下表1所示的量加入平均粒径为10μm的金属钛粉末和平均粒径为5μm的BN粉末。
然后与实施例1一样用行星式球磨机混合表1中所示的每一种样品的原料粉末,但是,至于气氛、压力、温度、加速度和混合时间,则使用下表2所示的混合条件,以此得到氮化硅基复合粉末。
然后,对于得到的每一种复合粉末来说,与实施例1一样测定Si3N4颗粒、TiN颗粒、BN颗粒和TiB2颗粒的平均粒径。结果示于下表3。
对比实施例2-1至2-4
和实施例2一样生产氮化硅基复合粉末,只是使用的样品和条件在下表1和2中用“*”表示。对于得到的每一种复合粉末,与实施例2一样测定Si3N4颗粒、TiN颗粒、BN颗粒和TiB2颗粒的平均粒径。测试结果和实施例2的测试结果一起示于下表3。
表1
注表中标有“*”的样品是对比实施例2的样品。
表2
注表中标有“*”的条件是对比实施例2的条件。
表3
从表3可以得出下述结论在本发明定义的范围内合适地选择金属钛粉末和BN粉末的加入量和混合条件,即气氛、压力、温度、加速度和混合时间,可以得到包括细粒的复合粉末。另外,即使在使用不是行星式球磨机的混合设备如磨碎机的情况下,如果在10-300G的加速度下混合原料粉末,则实际上能够得到同样的结果。
实施例3
将2.5wt%的Y2O3粉末和1wt%的Al2O3粉末作为烧结助剂加入平均粒径为0.5μm的市售Si3N4粉末中,然后加入40wt%的平均粒径为10μm的金属钛粉末和5wt%的平均粒径为5μm的石墨粉。在0.1MPa的氮气气氛中在50℃下用带有Si3N4球的行星式球磨机以150G的加速度将这些粉末混合16小时,以此得到本发明的氮化硅基复合粉末。
用XRD对得到的复合粉末进行定性分析,此时鉴别对应于Si3N4、TiN、TiC(TiCN)和C的宽峰。另外,用透射电子显微镜观察这种复合粉末发现对于所有组成颗粒来说平均粒径都是30nm或更小,其结构是这些颗粒被无定形Ti、Si和处于适当位置的炭所包绕。得到的复合粉末的平均粒径是0.3μm。
然后用这些氮化硅基复合粉末生产烧结体。把复合粉末装入炭模,然后用火花等离子体烧结法在1400℃下烧结粉末,加热速率为100℃/分钟,维温时间为5分钟。将得到的烧结体研磨和精研磨,然后用球盘试验机评价其耐磨性。结果是得到的烧结体具有0.12这样低的摩擦系数,并且具有很高的耐磨性,比较磨损量为5×10-9mm2/N。将烧结体抛光,然后用Ar离子蚀刻法生产膜试样片。然后用透射电子显微镜评价试样片,我们发现已经形成极其微细的颗粒,其粒径为50nm或更小。
对比实施例3
作为对比,用与上述实施例1同样的方法生产复合粉末,不同之处是用超声波而不用行星式球磨机混合原料粉末,然后与上述实施例1一样烧结该复合粉末。用超声波混合作为传统混合方法,其加速度不足以粉碎陶瓷粉末。在该对比实施例3得到的烧结体中观察到的TiCN颗粒的粒度是几微米,而且其摩擦系数很高,约为0.5,其耐磨性差,比较磨损量为5.0×10-8mm2/N。
实施例4-1至4-11
将与实施例3相同的烧结助剂加入平均粒径为0.5μm的Si3N4粉末中,然后以下表4所示的量加入平均粒径为10μm的金属钛粉末和平均粒径为5μm的石墨粉。然后按照与实施例3相同的步骤得到本发明的氮化硅基复合粉末,即二次复合颗粒,但是,气氛、温度、加速度和混合时间如下表5所示。对于得到的每一种复合粉末,用XRD进行定性分析后发现Si3N4、钛化合物(TiN、TiC和TiCN)和C的平均粒径如下表6所示。
对比实施例4-1至4-5
与实施例4相同的方法生产复合粉末,只是使用下表4所示的样品和下表5所示的条件。对于得到的每一种复合粉末,用XRD进行定性分析后发现Si3N4、钛化合物(TiN、TiC和TiCN)和C的平均粒径如下表6所示。
表4
注表中标有“*”的样品是对比实施例4的样品。
表5
注表中标有“*”的条件是对比实施例4的条件。
表6
实施例5-1至5-3
将2.5wt%的Y2O3粉末和1wt%的Al2O3粉末作为烧结助剂加入平均粒径为0.5μm的市售Si3N4粉末中,然后加入30wt%的平均粒径为10μm的金属钛粉末和10wt%的平均粒径为5μm的BN粉末。在0.1MPa的氮气气氛中在50℃下用带有Si3N4球的行星式球磨机以150G的加速度将这些粉末混合16小时,以此得到本发明的氮化硅基复合粉末。
用XRD对得到的粉末进行定性分析,鉴别对应于Si3N4、TiN、TiB2和BN的峰。用透射电子显微镜观察这种复合粉末发现对于所有颗粒来说平均粒径都是20nm或更小,其结构是这些颗粒被无定形Ti和Si所包绕。得到的复合粉末,即二次复合颗粒的平均粒径是0.5μm。
把这些复合粉末装入炭模,然后在下表7所示的条件下用能够进行电流烧结的火花等离子体烧结机烧结,加热速率为100℃/分钟,维温时间为5分钟,以此得到本发明的氮化硅基复合烧结体。温度是在炭模上测定的。
将得到的每一种烧结体研磨和精研磨,然后用XRD评价其组成。另外,在没有润滑剂的条件下(25℃、常压、60%的湿度)以0.1m/s的速度用带有直径为5mm的Si3N4球的球盘试验机进行测定,以此评价其摩擦系数和比较磨损量。另外,将每一种烧结体抛光,然后用Ar离子蚀刻法生产膜试样片。然后用透射电子显微镜评价其粒径,上述结果均示于表8。
具体到实施例5-2得到的烧结体,根据JIS R 1601测定其断裂强度,其平均断裂强度为750MPa。另外,根据JIS R 1607测定其断裂韧度(KIC),得到的值为6.5MPa.m1/2。
对比实施例5-1和5-2
作为对比实施例5,在用与实施例5相同的方法得到复合粉末后,与实施例5一样烧结复合粉末,只是条件如下表7中的5-A*或5-E*所示。然后与实施例5一样进行测试,测试结果也示于下表8。
表7
*表示对比实施例5的条件
表8
实施例6-1至6-7
将2.5wt%的Y2O3和1wt%的Al2O3作为烧结助剂加入平均粒径为0.5μm的Si3N4粉末中,然后象实施例5那样加入平均粒径为10μm的金属钛粉末和平均粒径为5μm的BN粉末,但是其量如下表9所示。在0.1MPa的氮气气氛中在50℃下用带有Si3N4球的行星式球磨机以150G的加速度将这些粉末混合16小时,以此得到本发明的氮化硅基复合粉末。
象实施例5那样用能够进行电流烧结的火花等离子体烧结机烧结得到的每一种复合粉末,但是,烧结条件如下表9所示,以此得到本发明的氮化硅基复合烧结体。用与实施例5相同的技术评价得到的烧结体。结果示于下表10。
对比实施例6-1至6-3
作为对比实施例6,象实施例6那样得到复合粉末,但是使用下表9所示的混合物,然后与实施例6一样烧结每一种复合粉末,但是条件如表9所示。然后与实施例6一样进行测试,测试结果也示于下表10。
表9
表10
实施例7-1至7-3
将2.5wt%的Y2O3粉末和1wt%的Al2O3粉末作为烧结助剂加入平均粒径为0.5μm的市售Si3N4粉末中,然后加入30wt%的平均粒径为10μm的金属钛粉末和5wt%的平均粒径为5μm的炭粉。在0.1MPa的氮气气氛中在50℃下用带有Si3N4球的行星式球磨机以150G的加速度将这些粉末混合16小时,以此得到本发明的氮化硅基复合粉末。
用XRD对得到的粉末进行定性分析,确定对应于Si3N4、TiN、TiCN和C的峰。用透射电子显微镜观察这种复合粉末发现对于所有颗粒来说平均粒径都是30nm或更小,其结构是这些颗粒被含无定形相的相所包绕。复合粉末的二次复合颗粒的平均粒径是0.5μm。
把这些复合粉末装入炭模,然后在下表11所示的条件下用能够进行电流烧结的火花等离子体烧结机烧结粉末,加热速率为100℃/分钟,维温时间为5分钟,以此得到本发明的氮化硅基复合烧结体。用两色温度计在炭模上测定温度。
将得到的每一种烧结体研磨和精研磨,然后用XRD评价其组成。另外,在没有润滑剂的条件下(25℃、常压、60%的湿度)以0.2m/s的速度和10N的力在1000m的滑动距离上用带有直径为5mm的Si3N4球的球盘试验机评价其耐磨性,以此测定其摩擦系数和比较磨损量。另外,将每一种烧结体抛光,然后用Ar离子蚀刻法生产膜试样片。然后用透射电子显微镜评价其平均粒径,上述评价结果均示于表12。
具体到实施例7-3产生的烧结体,使用直径为5mm的SUJ2球代替Si3N4球进行上述耐磨性实验。测定结果是其摩擦系数为0.1。比较磨损量为0.4×10-8mm2/N。另外还在0.1-2.0米/秒的速度和1000m的滑动距离及20、40和80N的力的条件下用Si3N4球进行了其它耐磨性实验。结果是摩擦系数和比较磨损量与10N情况下得到的结果大致相同。
对比实施例7-1和7-2
作为对比实施例7,象实施例7那样得到烧结体,只是使用的条件如下表11所示,然后与实施例7一样进行实验。测试结果也示于下表12。
表11
*表示对比实施例7的条件
表12
实施例8-1至8-7
将2.5wt%的Y2O3和1wt%的Al2O3作为烧结助剂加入平均粒径为0.5μm的Si3N4粉末中,然后象实施例7那样加入平均粒径为10μm的金属钛粉末和平均粒径为5μm的炭粉,但是其量如表13所示。在0.1MPa的氮气气氛中在50℃下用带有Si3N4球的行星式球磨机以150G的加速度将这些粉末混合16小时,以此得到本发明的氮化硅基复合粉末。
象实施例7那样用能够进行电流烧结的火花等离子体烧结机烧结得到的每一种复合粉末,但是,烧结条件如下表13所示,以此得到本发明的氮化硅基复合烧结体。用与实施例7相同的技术评价得到的烧结体。结果示于下表14中。
对比实施例8
如实施例8那样生产复合粉末,只是使用下表13所示的混合物,然后与实施例8一样烧结粉末,然后评价得到的烧结体。评价结果也示于下表14。
表13表14
工业实用性
本发明能够提供一种在室温至中低温(最高可达300℃)范围内具有优秀机械强度、低摩擦系数和优秀耐磨性的氮化硅基复合烧结体;本发明还提供一种该烧结体的原料粉末。本发明的烧结体可用作各种机械部件、切削工具和滑动件。原料粉末具有下述结构具有金属氮化物作为其主要组分的微细分散的颗粒分散在具有Si3N4作为其主要组分的微细基质中。因此易于得到具有优秀性能的氮化硅基复合烧结体。另外,在本发明的生产方法中,通过合适地设计混合和粉碎方法易于得到作为原料粉末的含二次复合颗粒的特定氮化硅基复合粉末。另外,通过在规定条件下烧结这种复合粉末可以抑制烧结过程中的晶粒生长,因此能够得到具有上文所述的优秀性能的氮化硅基复合烧结体。
权利要求
1、一种氮化硅基复合粉末,其是一种二次复合颗粒的粉末,其包括平均粒径为20nm或更小的氮化硅、氮化钛、硼化钛和氮化硼的一次颗粒和含有至少一种包绕一次颗粒表面的无定形相的相,其中,二次复合颗粒的平均粒径为0.3μm或更大。
2、一种氮化硅基复合粉末,其是一种二次复合颗粒的粉末,其包括平均粒径为30nm或更小的氮化硅、钛化合物和石墨和/或炭的一次颗粒和含有至少一种包绕一次颗粒表面的无定形相的相。
3、根据权利要求2的氮化硅基复合粉末,其中,所述含有至少一种无定形相的相包括处于适当位置的钛和/或硅和炭。
4、根据权利要求2或3的氮化硅基复合粉末,其中,所述钛化合物是氮化钛、碳氮化钛和碳化钛中的至少一种。
5、根据权利要求1-4中任一项的氮化硅基复合粉末,其还含有烧结助剂粉末。
6、一种氮化硅基复合烧结体,是通过烧结权利要求1-5中任一项的氮化硅基复合粉末得到的。
7、一种氮化硅基复合烧结体,其包括氮化硅、钛化合物和氮化硼,其平均粒径是100nm或更小,其在无润滑剂条件下的摩擦系数是0.3或更小。
8、根据权利要求7的氮化硅基复合烧结体,其中,所述钛化合物是氮化钛和硼化钛。
9、根据权利要求8的氮化硅基复合烧结体,其中,所述硼化钛是柱状或平面状,分散在氮化硅和氮化钛的晶界和氮化钛颗粒的内部,所述硼化钛的粒度是50nm或更小,分散在氮化硅和钛化合物的晶界和三相点处。
10、根据权利要求9的氮化硅基复合烧结体,其中,一部分所述硼化钛是短轴直径为20nm或更小且长宽比为3或更大的平面状或柱状。
11、一种氮化硅基复合烧结体,其包括氮化硅、钛基氮化物和/或钛基碳化物、炭化硅和石墨和/或炭,其平均粒径是100nm或更小,其在无润滑剂条件下的摩擦系数是0.2或更小。
12、根据权利要求11的氮化硅基复合烧结体,其中,所述平均粒径是50nm或更小。
13、根据权利要求11或12的氮化硅基复合烧结体,其中,所述钛基氮化物和所述钛基碳化物相互固溶。
14、根据权利要求11-13任一项的氮化硅基复合烧结体,其中比较磨损量是1.0×10-8mm2/N或更小。
15、一种氮化硅基复合粉末的生产方法,其包括在氮气气氛中在室温至250℃的温度下以10-300G的加速度将氮化硅粉末、氮化硼粉末和金属钛粉末混合并粉碎。
16、根据权利要求15的氮化硅基复合粉末的生产方法,其中,所述氮化硼粉末的加入量是2-40wt%。
17、一种氮化硅基复合粉末的生产方法,其包括在氮气气氛中在室温至250℃的温度下以10-300G的加速度将氮化硅粉末、金属钛粉末和石墨和/或炭粉混合并粉碎。
18、根据权利要求17的氮化硅基复合粉末的生产方法,其中,所述石墨和/或炭粉的加入量是总重量的0.5-20wt%。
19、根据权利要求15-18中任一项的氮化硅基复合粉末的生产方法,其中,所述氮气气氛的压力是0.05MPa-1.0MPa。
20、根据权利要求15-19中任一项的氮化硅基复合粉末的生产方法,其中,所述金属钛粉末的加入量是总重量的5-60wt%。
21、根据权利要求15-20中任一项的氮化硅基复合粉末的生产方法,其中,混合时间是0.5-50小时。
22、根据权利要求15-21中任一项的氮化硅基复合粉末的生产方法,其中,混合和粉碎是用行星式球磨机或磨碎机进行的。
23、根据权利要求15-22中任一项的氮化硅基复合粉末的生产方法,其中,在粉末中再加入烧结助剂粉末,然后在氮气气氛中在室温至250℃的温度下以10-300G的加速度进行混合和粉碎。
24、一种氮化硅基复合烧结体的生产方法,其包括将根据权利要求15-23中任一项的方法生产的氮化硅基复合粉末制成压坯,在1200-1600℃的氮气气氛中烧结该压坯。
25、一种氮化硅基复合烧结体的生产方法,其包括粉碎并混合氮化硅粉末、烧结助剂粉末、金属钛粉末和氮化硼粉末直到一次颗粒的平均粒径为20nm或更小,形成二次复合颗粒,将二次复合颗粒模制成压坯,在1200-1600℃的氮气气氛中烧结该压坯。
26、根据权利要求25的氮化硅基复合烧结体的生产方法,其中,所述金属钛粉末的加入量是5-60wt%,所述氮化硼粉末的加入量是2-40wt%。
27、一种氮化硅基复合烧结体的生产方法,其包括粉碎并混合氮化硅粉末、烧结助剂粉末、金属钛粉末和石墨和/或炭粉直到一次颗粒的平均粒径为30nm或更小,形成二次复合颗粒,将二次复合颗粒模制成压坯,在1200-1600℃的氮气气氛中烧结该压坯。
28、根据权利要求27的氮化硅基复合烧结体的生产方法,其中,所述金属钛粉末的加入量是5-60wt%,所述石墨和/或炭粉的加入量是0.5-20wt%。
29、根据权利要求25-28中任一项的氮化硅基复合烧结体的生产方法,其中,所述粉碎和混合是在压力为0.05-1.0MPa的氮气气氛中在室温至250℃的温度下以10-300G的加速度进行的。
30、根据权利要求25-29中任一项的氮化硅基复合烧结体的生产方法,其中,所述烧结是用火花等离子体烧结法或微波烧结法进行的。
全文摘要
本发明提供一种氮化硅基复合烧结产品,该产品包含氮化硅、钛基化合物和氮化硼,或氮化硅、钛基氮化物和/或钛基碳化物、炭化硅和石墨和/或炭,该产品在无润滑剂条件下的摩擦系数是不大于0.3或不大于0.2,其平均粒径是100nm或更小;以及用作烧结产品的材料的氮化硅基复合粉末,其包含平均粒径不大于20μm的氮化硅、氮化钛、硼化钛和氮化硼的各种一次颗粒,或平均粒径不大于30μm的氮化硅、钛基化合物和石墨和/或炭的各种一次颗粒,和包括包绕上述各一次颗粒的无定形相的相;制备氮化硅基复合粉末的方法,该方法包括将起始原料粉末在氮气气氛中在室温至250℃的温度下以10-300G的加速度混合并粉碎。氮化硅基复合烧结产品在室温至中低温度下具有优异的机械性能、具有低摩擦系数和杰出的耐磨性。
文档编号C04B35/593GK1461287SQ0280132
公开日2003年12月10日 申请日期2002年4月18日 优先权日2001年4月20日
发明者吉村雅司 申请人:住友电气工业株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1