氮化硅烧结体及其制造方法、及使用其的耐磨部件和轴承的制作方法

文档序号:5656554阅读:285来源:国知局
氮化硅烧结体及其制造方法、及使用其的耐磨部件和轴承的制作方法
【专利摘要】本发明提供氮化硅烧结体,实施方式的氮化硅烧结体含有:铝,以氧化物换算量计为2~10质量%的范围;R元素,为选自稀土元素中的至少一种,以氧化物换算量计为1~5质量%的范围;M元素,为选自IVA族元素、VA族元素和VIA族元素中的至少一种,以氧化物换算量计为1~5质量%的范围。铝的含量与R元素的含量之比以氧化物换算量计为2:1~5:1的范围,且铝的含量与M元素的含量之比以氧化物换算量计为2:1~10:1的范围。实施方式的氮化硅烧结体作为轴承滚珠这样的耐磨部件使用。
【专利说明】氮化硅烧结体及其制造方法、及使用其的耐磨部件和轴承
【技术领域】
[0001]本发明的实施方式涉及氮化硅烧结体及其制造方法、及使用该氮化硅烧结体的耐磨部件和轴承。
【背景技术】
[0002]氮化硅烧结体适用于轴承滚珠和滚筒等耐磨部件。作为现有氮化硅烧结体的烧结组成,例如,已知有氮化娃-氧化钇-氧化招-氮化招-氧化钛系。通过使用氧化钇、氧化铝、氮化铝、氧化钛作为烧结助剂,能够得到烧结性提高,具有良好的耐磨性的氮化硅烧结体。作为烧结助剂,还已知氧化钇-尖晶石(MgAl2O4)-碳化硅-氧化钛等。
[0003]现有的氮化硅烧结体虽然具有良好的耐磨性,但是,硬度大,加工性上存在难点。轴承滚珠等耐磨部件需要将滑动面加工平坦,使表面粗糙度Ra为0.1 μ m以下。氮化硅烧结体的表面加工通常使用金刚石磨粒。现有氮化硅烧结体为难加工材料,因此,研磨加工的负担大,这是造成制造成本增加的主要原因。
[0004]现有的氮化硅烧结体为了提高耐磨性,重点着眼于提高断裂韧性等材料性能。基于改善材料性能提高了耐磨性的氮化硅烧结体适用于在工程机械这样的高负载环境下使用的轴承滚珠。另一方面,以轴承滚珠为代表的耐磨部件不限于在高负载环境下使用,还可以在风扇电动机用轴承这样的低负载环境下使用。现有氮化硅烧结体的性能良好,因此,也能够在风扇电动机用轴承中使用,但是,存在加工性差,制造成本高的问题。
[0005]现有技术文献
[0006]专利文献
[0007]专利文献1:特开2001-328869号公报
[0008]专利文献2:特开2003-034581号公报

【发明内容】

[0009]本发明所要解决的课题在于,提供加工性提高的氮化硅烧结体及其制造方法、以及能够通过使用所述氮化硅 烧结体降低制造成本的耐磨部件和轴承。
[0010]实施方式的氮化硅烧结体含有:铝,以氧化物换算量计为2~10质量%的范围;R元素,为选自稀土元素中的至少一种,以氧化物换算量计为I~5质量%的范围;M元素,为选自IVA族元素、VA族元素和VIA族元素中的至少一种,以氧化物换算量计为I~5质量%的范围。在实施方式的氮化硅烧结体中,所述铝的含量与所述R元素的含量之比以氧化物换算量计,为2:1~5:1的范围,且所述铝的含量与所述M元素的含量之比以氧化物换算量计,为2:1~10:1的范围。
[0011]实施方式的耐磨部件具备实施方式的氮化硅烧结体。实施方式的轴承具备由实施方式的氮化硅烧结体构成的轴承滚珠。
【专利附图】

【附图说明】[0012]图1是通过局部截面表示实施方式的轴承的图;
[0013]图2是用于测量氮化硅烧结体中晶界相的面积比率的SEM图像的一例。
【具体实施方式】
[0014]以下,说明实施方式的氮化硅烧结体及其制造方法、以及使用该氮化硅烧结体的耐磨部件和轴承。该实施方式的氮化硅烧结体含有:铝(Al),以氧化物换算量计为2~10质量%的范围;R元素,为选自稀土元素中的至少一种,以氧化物换算量计为I~5质量%范围;M元素,为选自IVA族元素、VA族元素和VIA族元素中的至少一种,以氧化物换算量计为I~5质量%的范围。
[0015]本实施方式的氮化硅烧结体含有Al,以换算成氧化物(Al2O3)的量计,为2~10质量%的范围。Al的含量(氧化物换算量)小于2质量%或大于10质量%均会导致强度降低,作为耐磨部件的耐久性降低。作为烧结助剂的Al成分优选作为选自Al2O3和尖晶石(MgAl2O4)中的至少一种来添加。作为氮化硅烧结体的烧结助剂,历来一直使用氮化铝(AlN),在本实施方式中,作为Al成分,优选不使用A1N。若并用Al2O3和AlN作为烧结助剂,则AlN抑制氮化硅和SiO2分解成SiO,促进了氮化硅粒子的均匀生长,晶界组织变得坚固。其结果是,氮化硅烧结体的材料性能提高,但是加工性降低。本实施方式中,为了提高氮化硅烧结体的加工性,Al成分优选作为氧化物添加。
[0016]氮化硅烧结体含有R元素,R元素为选自稀土元素中的至少一种,以氧化物换算量计为I~5质量%的范围。R元素优选为选自乾⑴、镧(La)、铺(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钦(Ho)、铒(Er)、铥(Tm)、镱(Yb)和镥(Lu)中的至少一种。R元 素的含量(氧化物换算量)小于I质量%或大于5质量%均会导致烧结性降低,不能得到能够作为耐磨部件使用的氮化硅烧结体。R元素的氧化物换算量表示将稀土元素R的量换算成R2O3而得到的值。作为烧结助剂的R元素成分(稀土元素成分)优选作为R元素的氧化物添加。
[0017]另外,氮化硅烷结体含有M元素,M元素为选自IVA族元素、VA族元素和VIA族元素的至少一种,以氧化物换算量计为I~5质量%的范围。IVA族元素为钛(Ti)、锆(Zr)、铪(Hf)。VA族元素为钒(V)、铌(Nb)、钽(Ta)。VIA族元素为铬(Cr)、钥(Mo)、钨(W)。M元素成分有助于强化Al成分和R元素成分形成的晶界相。由此,能够调节氮化硅烧结体的韧性和硬度。若M元素的含量(氧化物换算量)小于I质量%,则不能得到充分的添加效果,若大于5质量%,则烧结性降低。作为M元素成分,优选并用IVA族元素成分和VIA族元素成分。
[0018]IVA族元素的氧化物换算量表示将IVA族元素的量换算成Ti02、Zr02、Hf02而得到的值。VA族元素的氧化物换算量表示将VA族元素的量换算成V205、Nb2O5, Ta2O5而得到的值。VIA族元素的氧化物换算量表示将VIA族元素的量换算成Cr203、Mo03、W03而得到的值。作为烧结助剂的M元素成分优选作为含有M元素的化合物添加。含有M元素的化合物优选为选自氧化物、碳化物和氮化物中的至少一种。
[0019]在实施方式的氮化硅烧结体中,Al的含量(氧化物换算量)与R元素的含量(氧化物换算量)之比为2:1~5:1的范围,且Al的含量(氧化物换算量)与M元素的含量(氧化物换算量)之比为2:1~10:1的范围。Al成分和R元素成分构成晶界相,M元素成分(IVA族元素成分、VA族元素成分、VIA族元素成分)强化晶界相。若Al的含量与R元素的含量之比超出上述范围,则均会导致强度和烧结性降低。若M元素的含量相对于Al的含量之比(Μ/Al比)大于0.5,则氮化硅烧结体的加工性降低。若M元素的含量相对于Al的含量之比(Μ/Al比)小于0.1,则氮化硅烧结体的强度和韧性等降低,不能满足作为耐磨部件的性能。Al的含量与M元素的含量之比(Μ/Al比)更优选0.2~0.4的范围。
[0020]实施方式的氮化硅烧结体除了上述必要成分以外,作为可选成分,还可以含有碳化硅(SiC)。SiC抑制液相的偏析,提高烧结性,同时有助于强化晶界相。由此,容易得到氮化硅烧结体作为目的的韧性和硬度等。SiC的含量优选I~5质量%的范围。若SiC的含量小于I质量%,则不能得到充分的添加效果。若SiC的含量大于5质量%,则烧结性降低。SiC为不与由Al成分和R成分形成的晶界相发生反应的成分,因此,有利于强化晶界相。
[0021]为了调节氮化硅烧结体的韧性和硬度,构成氮化硅烧结体的氮化硅晶粒的长轴的平均粒径优选5μπι以上。如下所述,在1600~1900°C的范围内的温度烧结的氮化硅烧结体中,一般来说,长宽比为2以上的细长粒子(β相)为主相。长轴的平均粒径小于5μπι的情况下,从α相型氮化硅U-Si3N4)转化成β相型氮化硅(P-Si3N4)的反应不充分,难以得到致密的烧结体组织。因此,得不到稳定的强度性能,因此,氮化硅烧结体作为材料的可靠性降低。氮化硅晶粒的长轴的平均粒径优选40 μ m以下。若氮化硅晶粒过大,则氮化硅烧结体的加工性提高,但是韧性和硬度降低。韧性和硬度的降低会导致氮化硅烧结体作为耐磨部件的耐久性降低。
[0022]另外,氮化硅烧结体优选具有适量的晶界相。具体而言,在氮化硅烧结体的任意截面中,每单位面积IOOymXlOOym中存在的晶界相的面积比率优选35~50%的范围。若晶界相的面积比率小于35%,则氮化硅烧结体的加工性可能降低。若晶界相的面积比率大于50%,则加工性提高,但是氮化硅烧结体的韧性和硬度可能显著降低,耐磨性降低。在100 μ mX 100 μ m的微小区域中,通过控制晶界相的面积比率,改善加工性、韧性、硬度的平衡。
[0023]晶界相的面积比 率如下测量。首先,得到氮化硅烧结体的任意截面。对该截面实施表面粗糙度Ra为I μπι以下的镜面加工。为了明确氮化硅晶粒和晶界相的区域,对得到的镜面进行等离子体蚀刻处理。若进行等离子体蚀刻处理,则氮化硅粒子和晶界相的刻蚀速率不同,因此,其中一方被除去部分较多。例如,在使用CF4的等离子体蚀刻中,与晶界相相比,氮化硅粒子的刻蚀速率高(容易被蚀刻),因此氮化硅晶粒变成凹部,晶界相变成凸部。蚀刻处理也可以通过使用酸或碱的化学蚀刻实施。
[0024]使用扫描电子显微镜(Scanning Electron Microscope:SEM)观察蚀刻处理后的镜面。SEM图像以1000倍以上的倍率拍摄。在SEM图像中,能够通过对比度的差区分氮化硅粒子和晶界相。通常,晶界相呈白色。通过进行蚀刻处理,使对比度的差更加清晰。通过对SEM图像进行图像解析,测量每单位面积中晶界相的面积比率。图像解析可以采用通过对晶界相部分进行彩色映射来进行图像解析的方法。图2表示SEM图像(10000倍)的一例。在图2中,符号11为氮化硅粒子部分,符号12为晶界相部分。图2是晶界相部分为凸部,氮化硅粒子部分为凹部的例子。对图2的SEM图像进行图像解析,晶界相的面积比为41%。如图2所示,在一视野达不到单位面积(100 μ mX 100 μπι)的情况下,可以进行多次拍摄,使总和为单位面积(100 μ mX 100 μ m)也可以。[0025]氮化硅烧结体的维氏硬度(Hv)优选1000~1500的范围。断裂韧性值(Kle)优选
4.5~6.5MPa ? m1/2的范围。另外,氮化硅烧结体的可切削系数Mc优选0.125~0.150的范围。可切削系数Mc为由下式(I)算出的值。
[0026]Mc = Fn978/ (Klc1/2 ? Hv578) ? ? ? (I)
[0027]式(I)中,Fn为压痕载荷,在此为20kgf。20kgf的压痕载荷Fn为适合测量氮化硅烧结体的硬度和韧性的值。维氏硬度(Hv)根据JIS-R-1610测量。断裂韧性值(Kle)根据JIS-R-1607的压痕断裂法(IF法)测量。断裂韧性值的计算使用新原的式子。对于下述轴承滚珠,使用其截面进行测量。
[0028]若氮化硅烧结体的维氏硬度(Hv)小于1000,则硬度不足,作为耐磨部件的耐久性降低。若维氏硬度(Hv)大于1500,则氮化硅烧结体的加工性降低。断裂韧性值(Klc)也一样,若断裂韧性值(Klc)小于4.5MPa*m1/2,则氮化硅烧结体作为耐磨部件的耐久性降低。若断裂韧性值(Klc)大于6.5MPa ? m1/2,则氮化硅烧结体的耐久性提高,但是加工性降低。
[0029]本实施方式的氮化硅烧结体在维氏硬度(Hv)和断裂韧性值(Klc)为上述范围的基础上,优选可切削系数Mc为0.125~0.150的范围。可切削系数Mc为表示使用压痕载荷(Fn)、维氏硬度(Hv)和断裂韧性值(Klc)的加工性的系数。它是横向裂纹断裂模型的关系式,Mc表示一粒磨粒除去的物质量。意味着可切削系数Mc越大,一次可加工的量越大。
[0030]横向裂纹断裂模型是指作为磨削加工时的材料除去机制由Evans氏和Marshall氏提出的模型。该模型显示:一个磨削磨粒通过材料表面时除去的物质的量(AV)在将磨粒沿垂直方向压入材料中的力Fn、维氏硬度(Hv)及断裂韧性值(Kic)的关系中,与[Fn9/8/(Klc172 ? Hv578)]的值成比例。在此,将AV替换成可切削系数Me。
[0031]加工大体分为脆性模式和延性模式。脆性模式相当于所谓的粗加工,延性模式相当于所谓的精加工。一般认为磨损相当于延性模式,因此,为了满足耐磨部件的要求性能,改善脆性模式的加工性而不降低延性模`式的加工性尤为重要。另外,作为磨损模型之一,一般考虑晶界产生微小的预制裂纹,其传播导致材料表面破坏,发生磨损的机构。
[0032]表示磨损模型的机械接触程度的参数Sc.m由摩擦系数U、最大赫兹应力Pmax、材料的结晶粒径d、断裂韧性值Kle通过下式表示。
[0033]Sc.m = [(I + 10 ? U ) ? Pmax ? (d1/2) ] /Klc
[0034]意味着参数Sc.m越大,磨损越大,参数Sc.m越小,磨损越小。可知:通过减小材料的结晶粒径d或增大断裂韧性值Klc;,能够抑制磨损。
[0035]考虑这些因素的情况下,可切削系数Mc优选0.125~0.150的范围。可切削系数Mc小于0.125的情况下,通过磨粒进行的加工量少,因此,氮化硅烧结体的加工时间增加。若可切削系数Mc大于0.150,则通过磨粒进行的氮化硅烧结体的加工量过大。若加工量大,则加工性提高,但是作为耐磨部件的耐久性降低。可切削系数Mc为0.125~0.150的范围的氮化硅烧结体能够保持作为耐磨部件的性能,同时能够提高加工性,降低制造成本。
[0036]然后,说明实施方式的氮化硅烧结体的制造方法。氮化硅烧结体的制造方法没有特别限定,作为能够有效得到具有上述性能等的氮化硅烧结体的方法,可以举出如下所示的制造方法。
[0037]首先,准备氮化硅粉末。氮化硅粉末优选氧含量为4质量%以下,含a相型氮化硅为85质量%以上,平均粒径为1.0 y m以下。若氧含量大于4质量%,则成为导致烧结性降低的原因。氮化硅粉末在烧结过程中从球状的α相相变并生长成长宽比为2以上的细长的β相。细长的β相复杂地缠结并随机定向,从而形成具有预期韧性和硬度的氮化硅烧结体。若α相的比率小于85质量%,则不足以得到这样的氮化硅晶粒的缠结构造。若氮化硅粉末的平均粒径大于1.0 μ m,则氮化硅晶粒的长轴径可能过大。
[0038]作为烧结助剂,向这样的氮化硅粉末中添加:A1氧化物粉末,2~10质量%的范围;稀土氧化物(R元素的氧化物)粉末,I~5质量%的范围;M元素的化合物粉末,I~5质量%的范围。烧结助剂的添加量(质量%)为氮化硅粉末和烧结助剂粉末的总量为100质量%时的比率。M元素的化合物粉末优选为选自IVA族元素、VA族元素或VIA族元素的氧化物粉末、碳化物粉末和氮化物粉末中的至少一种。根据需要,在I~5质量%的范围内添加SiC粉末。烧结助剂粉末的平均粒径优选2.0 μ m以下。特别是M元素的化合物粉末和SiC粉末的平均粒径优选1.5 μ m以下。M元素成分和SiC为强化晶界相的成分,因此,优选粒径较小。作为烧结助剂添加的Al成分如上所述,优选为选自Al2O3和MgAl2O4中的至少一种。
[0039]混合上述的原料粉末制备原料混合物。原料混合物的制备工序优选通过制备含有烧结助剂粉末的第一浆料,将该第一浆料和含有氮化硅粉末的第二浆料混合来实施。含有烧结助剂粉末的第一浆料优选以作为分散性指标的触变指数(TI值)为I~2的范围的方式进行制备。通过使用TI值调节为I~2的范围的浆料,抑制了烧结时主要由氧化物形成的晶界相的偏析,能够对加工面赋予均匀的加工性。
[0040]一般来说,若通过旋转粘度计连续提高剪切速度,则凝聚的流体中粘度降低。此时,剪切速度a和剪切速度b下的粘度η的比为TI值。即,TI值通过下式表示。
[0041]TI 值=η b/ η a
[0042]剪切速度a和b的值没有特别限制,优选设定TI值取I以上的值。TI值越接近1,越接近牛顿流体的动作,意味着是未凝聚或凝聚极弱的高分散性浆料。在此,优选以剪切速度a为6s — S剪切速度b为60s — 1时的TI值为I~2的范围的方式制备含有烧结助剂粉末的浆料。
[0043]另外,向原料混合物中添加粘合剂。原料混合物与粘合剂的混合使用球磨机等,根据需要,一边进行粉碎或造粒一边实施。将原料混合物成形成预期形状。成形工序通过模压或冷等静压(CIP)等实施。成形压力优选IOOMPa以上。将成形工序中得到的成形体脱月旨。脱脂工序优选在300~600°C的范围的温度实施。脱脂工序在大气中或非氧化性氛围气中实施,氛围气没有特别限定。
[0044]然后,在1600~1900°C的范围的温度烧结脱脂工序中得到的脱脂体。若烧结温度小于1600°C,则氮化硅晶粒的粒子生长可能不充分。即,从α相型氮化硅转换成β相型氮化硅的反应不充分,可能得不到致密的烧结体组织。这种情况下,氮化硅烧结体作为材料的可靠性降低。若烧结温度大于1900°C,则氮化硅晶粒的粒子过度生长,加工性可能降低。烧结工序可以通过常压烧结和加压烧结中的任一方式实施。烧结工序优选在非氧化性氛围中实施。作为非氧化性氛围,可以举出:氮氛围气和氩氛围气。
[0045]烧结工序后,优选在非氧化性氛围中实施30MPa以上的热等静压(HIP)处理。作为非氧化性氛围,可以举出:氮氛围气和氩氛围气。HIP处理温度优选1500~1900°C的范围。通过实施HIP处理,能够除去氮化硅烧结体内的气孔。若HIP处理压力小于30MPa,则不能得到那样充分的效果。
[0046]对这样制成的氮化硅烧结体,在必要的位置实施研磨加工,制作耐磨部件。研磨加工优选使用金刚石磨粒实施。实施方式的氮化硅烧结体具有良好的加工性,因此,能够降低由氮化硅烧结体制作耐磨部件时的加工成本。实施方式的氮化硅烧结体具有例如0.125~0.150的范围的可切削系数Mc,因此,能够降低研磨加工时的成本。另外,根据上述氮化硅烧结体的制造方法,能够将可切削系数Mc调节为0.125~0.150的范围。因此,能够得到加工性提高的氮化硅烧结体。
[0047]实施方式的氮化硅烧结体适用于耐磨部件的形成材料。实施方式的耐磨部件具备上述实施方式的氮化硅烧结体。作为耐磨部件,可以举出:轴承滚珠、滚筒、止回球、耐磨垫片、柱塞、辊子等。耐磨部件具有相对于由金属或陶瓷等构成的对象部件滑动的滑动面。为了提高滑动面的耐久性,优选进行研磨加工使其平坦,使表面粗糙度Ra为0.1 Pm以下。滑动面的表面粗糙度Ra更优选0.05 ii m以下,进一步优选0.01 y m以下。
[0048]通过使耐磨部件的滑动面平坦化,提高氮化硅烧结体的耐久性,同时对对象部件的冲击性降低。通过降低对对象部件的冲击性,能够减少对象部件的消耗。因此,能够提高装配有耐磨部件的装置的耐久性。特别是实施方式的氮化硅烧结体适用于轴承滚珠那样对整个表面进行研磨加工的耐磨部件。即使在对氮化硅烧结体的整个表面进行研磨加工的情况下,由于实施方式的氮化硅烧结体具有良好的加工性,依然能够降低轴承滚珠那样的耐磨部件的制作成本。
[0049]图1表示实施方式的轴承的结构。图1所示的轴承I具有:由上述实施方式的氮化硅烧结体构成的多个轴承滚珠2、支承这些轴承滚珠2的内环3和外环4。内环3和外环4相对于旋转中心呈同心状配置。基本结构与普通轴承同样。内环3和外环4由例如JIS-G-4805规定的SUJ2等轴承钢形成。
[0050]由实施方式的氮化硅烷结体构成的轴承滚珠2优选用于风扇电动机用轴承。风扇电动机为用于对电脑等电子设备进行冷却的装置。在电子设备用风扇电动机中,工作中对轴承施加的负载与一般的工程机械相`比非常小。一般对风扇电动机用轴承施加的负载为5GPa以下,甚至为2GPa以下。这样的低负载的情况下,对由氮化硅烧结体制成的轴承滚珠要求的耐久性低。因此,与耐久性相比,在提高加工性,降低成本方面的优势更大。
[0051]实施方式的耐磨部件适用于工作时的负载为5GPa以下的轴承滚珠。另外,由氮化硅烧结体制成的轴承滚珠在最大接触压力为5.lGPa,转速为1200rpm的条件下通过推力型轴承试验机测量滚动寿命时,具有400小时以上的滚动寿命即可。根据实施方式的氮化硅烧结体,能够满足这样的滚动寿命。
[0052]实施例
[0053]然后,叙述具体实施例及其评价结果。
[0054](实施例1~7、比较例I~2)
[0055]准备氧含量为1.0质量%,平均粒径为0.7 iim,a相的比例为90质量%(其余为3相)的氮化硅粉末。作为烧结助剂,准备Al2O3粉末(平均粒径1.2 ii m)、A1N粉末(平均粒径1.2 ii m) ,Y2O3粉末(平均粒径1.5 ii m) ,HfO2粉末(平均粒径0.8 y m) ,Mo2C粉末(平均粒径0.7 y m)和SiC粉末(平均粒径0.7 y m)。将这些原料粉末按照表1的比例混合。原料粉末的混合通过将含有烧结助剂粉末的浆料和含有氮化硅粉末的浆料混合来实施。含有烧结助剂粉末的浆料的分散系数(TI值)如表2所示。关于比较例2,不实施预分散。向原料混合物中添加粘合剂,使用球磨机进行混合。
[0056]将原料混合物通过模压成形成球体。将成形体干燥后,在450°C进行脱脂。将脱脂体在氮氛围气中1700°C X6小时的条件下进行烧结。对得到的烧结体实施HIP处理。HIP处理在80MPa的压力下1600°C X I小时的条件下实施。对这样得到的氮化硅烧结体测量氮化硅晶粒的长轴的平均粒径、晶界相的面积比率、维氏硬度、断裂韧性值。
[0057]氮化硅晶粒的长轴的平均粒径如下测量。在氮化硅烧结体的任意截面中,拍摄单位面积ΙΟΟμηιΧΙΟΟμηι的放大照片(SEM照片),将在此拍摄的氮化娃粒子的最长对角线(虚拟圆)作为最大直径进行测量。进行该操作,直到达到50粒,将其平均值作为氮化硅晶粒的长轴的平均粒径。维氏硬度在压痕载荷20kgf下按照JIS-R-1610进行。断裂韧性值(Kic)按照JIS-R-1607的压痕断裂法(IF法)测量,通过新原的式子求出。由维氏硬度和断裂韧性值求解可切削系数Me。例如,实施例1的可切削系数由压痕载荷Fn = 20kgf、维氏硬度 Hv = 1427、断裂韧性值 Kle = 5.5MPa *m1/2 通过式[Mc = 209/8/ (5.51/2.14275/8)]算出。晶界相的面积比率通过在对任意截面进行镜面加工(表面粗糙度Ra0.1 μ m)后,利用SEM观察等离子体蚀刻处理实施后的面,对得到的SEM照片进行图像解析来求出。其结果如表3所示。
[0058][ 表 I]
[0059]
【权利要求】
1.氮化硅烧结体,其含有:铝,以氧化物换算量计为2~10质量%的范围;R元素,为选自稀土元素中的至少一种,以氧化物换算量计为I~5质量%的范围;M元素,为选自IVA族元素、VA族元素和VIA族元素中的至少一种,以氧化物换算量计为I~5质量%的范围;其特征在于,
所述铝的含量与所述R元素的含量之比以氧化物换算量计为2:1~5:1的范围,且所述铝的含量与所述M元素的含量之比以氧化物换算量计为2:1~10:1的范围。
2.如权利要求1所述的氮化硅烧结体,其特征在于, 所述氮化硅烧结体的维氏硬度(Hv)为1000~1500的范围,断裂韧性值(Klc)为4.5~6.5MPa ? m1/2 的范围, 压痕载荷Fn为20kgf时,
由式:Mc = Fn978/ (Klc172 ? Hv578) 算出的可切削系数Mc为0.125~0.150的范围。
3.如权利要求1所述的氮化硅烧结体,其特征在于, 含有碳化硅I~5质量%的范围。
4.如权利要求1所述的氮化硅烧结体,其特征在于, 构成所述氮化硅烧结体的氮化硅晶粒的长轴的平均粒径为5 以上。
5.如权利要求1所述的氮化硅烧结体,其特征在于, 在所述氮化硅烧结体的任意截面中,每单位面积100 u mX 100 u m中存在的晶界相的面积比率为35~50%的范围。
6.耐磨部件,具备权利要求1所述的氮化硅烧结体。
7.如权利要求6所述的耐磨部件,其特征在于, 对所述氮化硅烧结体的滑动面进行研磨加工,使表面粗糙度Ra为0.1 y m以下。
8.如权利要求6所述的耐磨部件,其特征在于, 所述耐磨部件为轴承滚珠。
9.如权利要求8所述的耐磨部件,其特征在于, 所述轴承滚珠用于风扇电动机用轴承。
10.如权利要求8所述的耐磨部件,其特征在于, 所述轴承滚珠的滚动寿命在最大接触压力为5.lGPa,转速为1200rpm的条件下通过推力型轴承试验机进行测量时,为400小时以上。
11.轴承,其特征在于,具备由权利要求1所述的氮化硅烧结体构成的轴承滚珠。
12.氮化硅烧结体的制造方法,其特征在于,具备如下各工序: 准备氧含量为4质量%以下、含a相型氮化硅为85质量%以上、平均粒径为I m以下的氮化硅粉末; 向所述氮化硅粉末中添加:氧化铝粉末,为2~10质量%的范围;R元素的氧化物粉末,R元素为选自稀土元素中的至少一种,为I~5质量%范围;含有M元素的化合物粉末,M元素为选自IVA族元素、VA族元素和VIA族元素中的至少一种,为I~5质量%的范围,从而制备原料混合物; 将所述原料混合物成形成预期的形状,得到成形体; 将所述成形体脱脂,得到脱脂体;以及在1600~1900°C的范围的温度烧结所述脱脂体,得到烧结体。
13.如权利要求12所述的氮化硅烧结体的制造方法,其特征在于, 还向所述氮化硅粉末中添加碳化硅粉末I~5质量%的范围。
14.如权利要求12所述的氮化硅烧结体的制造方法,其特征在于, 还具备以下工序:对所述烧结体在非氧化性氛围气中30MPa以上的压力下实施热等静压处理。
15.如权利要求12所述的氮化硅烧结体的制造方法, 制备含有所述氧化铝粉末、所述R元素的氧化物粉末以及含有所述M元素的化合物粉末的第一浆料,使触变指数为I~2的范围,将所述第一浆料和含有所述氮化硅粉末的第二衆料混合,制备所述原料混合物。`
【文档编号】F16C33/32GK103764596SQ201280043049
【公开日】2014年4月30日 申请日期:2012年9月4日 优先权日:2011年9月5日
【发明者】青木克之, 小松通泰, 船木开, 山口晴彦 申请人:株式会社东芝, 东芝高新材料公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1