Ni-Cu-Zn系铁氧体材料及其制造方法

文档序号:1809161阅读:325来源:国知局
专利名称:Ni-Cu-Zn系铁氧体材料及其制造方法
技术领域
本发明涉及Ni-Cu-Zn系铁氧体材料及其制造方法,主要是涉及改善比电阻和Q值的Ni-Cu-Zn系铁氧体材料及其制造方法。
背景技术
由于便携式仪器的普及,电子仪器快速向小型化方向发展,使用的部件例如层叠芯片感应器等也要求进一步小型化。层叠芯片感应器是磁性铁氧体层和内部电极交互层叠,同时具有与内部电极进行电连接的外部电极的结构。为了使层叠芯片感应器高度变低,必须使此磁性铁氧体层减薄,为此要求使磁性铁氧体层的电阻提高。
此外不仅是上述层叠芯片感应器,绕线型的感应器中也要求使铁氧体的电阻提高。这些层叠芯片感应器和绕线型的感应器等表面实装型部件利用形成的高电阻可以实现高可靠性。此外由于比电阻变高,减少涡流损失,Q值提高,为了得到Q值高的铁氧体,也希望得到比电阻高的铁氧体。
从此目的考虑,上述氧化物磁性体需要使用比电阻高的氧化物磁性体,例如与Mn-Zn系铁氧体相比,广泛使用比电阻高出不同数量级的Ni-Zn系和Ni-Cu-Zn系铁氧体。可是考虑了层叠芯片感应器的进一步小型化和高可靠性、以及绕线型的感应器的更高可靠性的情况下,要求进一步提高Ni-Zn系和Ni-Cu-Zn系铁氧体的比电阻。
例如专利文献1~专利文献6等所述的技术是提高Ni-Zn系铁氧体电阻的技术。具体说,在专利文献1中发表了利用添加B4C来提高导磁率和Q值的铁氧体烧结体的制造方法。在专利文献1中再利用添加Mn2O3进一步实现高的导磁率和Q值,提高比电阻,防止绝缘电阻降低。此外,在专利文献2中发表了以含有氧化锆的Ni-Cu-Zn系铁氧体为磁性体,得到高强度优良绝缘电阻的Ni-Cu-Zn系铁氧体制品。在专利文献3中发表了由含Sb2O5的Ni-Zn系铁氧体组成的低损失的氧化物磁性材料。在专利文献4中发表了含有Bi、V的氧化物的Ni-Zn系铁氧体材料,利用添加这些氧化物实现Ni-Zn系铁氧体的高电阻。在专利文献5中发表了对于Ni-Cu-Zn系铁氧体的含有Sn氧化物、Co氧化物和Bi氧化物的高比电阻的氧化物磁性体瓷组成物。在专利文献6中发表了利用添加Bi2O3和具有4价正离子的氧化物,得到高频性能优良、体积电阻率高、可以在低温烧结的、抑制因Ag扩散而造成的内部导体消失的氧化物磁性材料,以及使用它的层叠芯片感应器。
特开2000-233967号公报[专利文献2]专利第3275466号公报[专利文献3]特开2000-150221号公报[专利文献4]特开2001-44016号公报[专利文献5]特开2002-255637号公报[专利文献6]特开2002-141215号公报发明内容由于比电阻一般与烧结密度成比例,上述各专利文献所述的发明中作为提高比电阻的手段是添加Bi2O3、Sb2O5、V2O5等低熔点氧化物和低熔点玻璃。可是添加这些低熔点氧化物和低熔点玻璃存在有在烧结体中容易引起异常晶粒长大且容易引起磁性恶化的大问题。
本发明是根据这些现有的实际情况提出的,本发明的目的是提供具有高比电阻的高特性Ni-Cu-Zn系铁氧体材料,此外提供它的制造方法。
为了达到上述目的,本发明人进行了专心的、长期反复的研究。其中尝试添加TiO2时发现,通过添加TiO2可以使比电阻产生1位以上的大幅度提高。本发明是以此为基础完成的发明。
也就是,本发明的Ni-Cu-Zn系铁氧体材料的特征在于,除了不可避免的夹杂物以外,作为辅助成分只含有TiO2,设TiO2的含量为x时,x为0.1重量%<x≤4.0重量%。
本发明的铁氧体材料是Ni-Cu-Zn系铁氧体材料,例如与Mn-Zn系铁氧体相比,原本就具有高的比电阻。在本发明中利用添加TiO2,实现更高的比电阻。此时添加高熔点氧化物的TiO2不会成为例如异常晶粒长大的原因,Q值特性也提高。
其中,关于添加TiO2例如在专利文献6中也有记载。可是在此专利文献6所述的发明中,以添加Bi2O3为前提,而不是象本发明这样的作为辅助成分不添加Bi2O3、Sb2O5、V2O5等低熔点氧化物和低熔点玻璃,而只添加TiO2。根据本发明人的试验证实了,添加Bi2O3等低熔点的氧化物的情况下,即使添加TiO2,也不增加比电阻,而降低导磁率和Q值。
本发明的Ni-Cu-Zn系铁氧体材料可以用一般制造铁氧体的工艺进行制造。因此,本发明的Ni-Cu-Zn系铁氧体材料的制造方法具有把原料称重后混合的配料工序、把混合后的原料进行焙烧的焙烧工序、把用焙烧得到的焙烧物粉碎成细粉的粉碎工序、在粉碎后的细粉中添加粘结剂后制造颗粒的造粒工序、把造粒后的颗粒成形后进行烧成的烧成工序,设TiO2的含量为x时,相对于主要成分使TiO2的含量在0.1重量%<x≤4.0重量%范围。
添加TiO2的时间既可以在最初配制原料氧化物时,也可以在焙烧后粉碎时。也就是在上述制造方法中配料工序时添加TiO2。或者,在上述制造方法中在上述粉碎工序中粉碎时添加TiO2。在任何情况下可以制造具有高比电阻的Ni-Cu-Zn系铁氧体材料。
根据本发明,可以实现具有高比电阻、具有高Q值的高特性Ni-Cu-Zn系铁氧体材料。因此,例如把它用于层叠芯片感应器可以进一步小型化。此外,根据本发明的制造方法,在配料工序或粉碎工序中添加TiO2的情况下都能得到添加TiO2的效果,可以制造具有高比电阻的Ni-Cu-Zn系铁氧体材料。


图1是表示铁氧体烧结体制作工序的流程图。
附图标记1配料工序,2干燥工序,3焙烧工序,4粉碎工序,5造粒工序,6成形工序,7烧成工序,A、BTiO2的添加时间具体实施方式
下面对适用于本发明的Ni-Cu-Zn系铁氧体材料及其制造方法进行详细说明。
本发明的铁氧体材料主要成分是含有Fe2O3、CuO、ZnO、NiO的Ni-Cu-Zn系铁氧体材料。上述主要成分可以考虑磁性后确定,例如主要成分为由43.0~49.8摩尔%的Fe2O3、4.0~13.0摩尔%的CuO、5~35摩尔%的ZnO、其余为NiO组成的铁氧体中可以达到高饱和磁通密度的良好磁性。
在上述组成中Fe2O3小于43.0摩尔%时,导磁率μi不足。而Fe2O3超过49.8摩尔%时,比电阻降低,作为Ni-Cu-Zn系铁氧体材料特征的绝缘性降低,是不合适的。CuO小于4.0摩尔%时,烧结密度降低。CuO超过13.0摩尔%时,容易出现异常晶粒长大,磁性差。ZnO小于5摩尔%时,导磁率μi不足。ZnO超过35摩尔%时,居里点变得过低。鉴于上述情况,希望本发明的铁氧体材料的主要成分组成在上述组成范围内。
在本发明的Ni-Cu-Zn系铁氧体材料中,在上述主要成分中添加作为辅助成分的TiO2,可以得到高比电阻。添加的TiO2由于是高熔点的氧化物,不会象添加低熔点氧化物和低熔点玻璃的情况那样在烧结体中引起异常晶粒长大和磁性恶化,可以得到具有高性能的Ni-Cu-Zn系铁氧体材料。
其中,添加TiO2时,根据添加量提高比电阻,但要使比电阻提高到足够大,设TiO2的含量为x时,优选为0.1重量%<x≤4.0重量%。添加量超过0.1重量%可以看到比电阻的增加,此外也可以看到Q值增加。但是TiO2添加量超过4.0重量%时,比电阻有降低的倾向,担心磁性、特别是导磁率μi降低。x为更优选在0.2重量%~4.0重量%,最优选为1.0重量%~4.0重量%。
在添加上述TiO2时,重要的是仅把TiO2作为辅助成分进行添加,例如把不添加Bi2O3、Sb2O5、V2O5等低熔点氧化物和低熔点玻璃作为前提。如前面所述的那样,添加低熔点氧化物和低熔点玻璃时,在烧结体中引起异常晶粒长大,成为引起磁性恶化的原因。实际上,即使把这些低熔点氧化物和低熔点玻璃和TiO2一起同时作为辅助成分添加,也不能期待提高比电阻,反而担心导磁率和Q值的降低。
上述的铁氧体材料,例如铁氧体烧结体基本上可以用与一般铁氧体烧结体相同的方法制造。在图1中表示了铁氧体烧结体的制造工序。也就是在配料工序1中把原料氧化物混合。例如在混合时用球磨机等进行湿式混合。混合后经过干燥工序2,在焙烧工序3进行焙烧。焙烧时使保温温度为700~950℃,在大气的气氛中进行。焙烧后用粉碎工序4粉碎成细粉。为了平稳地进行后续的成形工序,希望将由主要成分和辅助成分组成的细粉在造粒工序5中制造成颗粒。在粉碎成细粉后的料浆中添加聚乙烯醇,把它用喷雾式干燥机进行喷雾干燥可以得到颗粒。最后用成形工序6成形为希望的形状,在烧成工序7中进行主烧成。主烧成的保温温度为900~1100℃范围,在大气气氛下进行。
可以在上述制造工序中最初添加TiO2,也就是在配料工序1中添加(图中A)TiO2,也可以在焙烧工序3后在粉碎工序4中添加(图中B)。在任何情况下都能得到添加TiO2的效果(比电阻提高和Q值提高)。
本发明的Ni-Cu-Zn系铁氧体材料由于具有高的比电阻,例如可以用于层叠芯片感应器等电子部件。通过将铁氧体层的厚度变薄,可以抑制部件的高度,可以实现小型化。此外,在用于这样的层叠芯片感应器的情况下,在前面的制造工序中,可以用焙烧后粉碎的细粉制作未烧结的薄片,把它叠放在一起后进行主烧成。
下面以试验结果为基础,对本发明具体的实施例进行说明。
铁氧体烧结体的制作(试样1~9)称量Fe2O3、CuO、ZnO、NiO和TiO2成规定的配比,在其中加入规定量的作为溶剂的离子交换水,用球磨机混合16小时。基本成分的组成为46.0摩尔%的Fe2O3、20.5摩尔%的NiO、10.8摩尔%的CuO、22.7摩尔%的ZnO。
把混合后的粉末用加热炉在最高温度为800℃下焙烧2小时后,使其进行炉冷,用30目筛筛分。然后再将规定量的作为溶剂的离子交换水加入其中,用球磨机破碎成细粉。
接着,在粉碎的料浆中加入聚乙烯醇水溶液,制作铁氧体颗粒。用此颗粒利用模具做成外径13mm、内径6mm、厚度3mm的园环形。得到的铁氧体成形体用加热炉在900℃烧成温度烧成,得到铁氧体烧结体。
按上述的方法,改变TiO2的添加量,制作试样(试样1~试样8)。下面相同,但在相当于实施例的试样上标记※。在试样7、8中即使增加TiO2的添加量,Fe2O3少的话,也会成为磁性恶化小的原因,由此确定使Fe2O3为44.0摩尔%,ZnO为24.7摩尔%。此外,试样9是在试样6的成分中把低熔点氧化物的Bi2O3作为辅助成分一并加入的示例,在此点上相当于对比例。
铁氧体烧结体的制作(试样10~13)将基本成分的组成为48.0摩尔%的Fe2O3、19.6摩尔%的NiO、10.7摩尔%的CuO、21.7摩尔%的ZnO,其他用与前面试样1~9相同的方法得到铁氧体烧结体。其中也改变TiO2的添加量,制作试样(试样10~试样12)。此外,试样13是在试样12的成分中把低熔点氧化物的Bi2O3作为辅助成分一并加入的示例,在此点上相当于对比例。
铁氧体烧结体的制作(试样14~16)将基本成分的组成为49.0摩尔%的Fe2O3、10.7摩尔%的NiO、10.5摩尔%的CuO、29.8摩尔%的ZnO,其他用与前面试样1~9相同的方法得到铁氧体烧结体。其中制作了不添加TiO2的试样(试样14)和添加TiO2的试样(试样15)。此外,试样16是在试样14的成分中把低熔点氧化物的Bi2O3作为辅助成分一并加入的示例,在此点上相当于对比例。
铁氧体烧结体的制作(试样17~18)与前面的试样5组成相同,粉碎时添加TiO2,其他与前面试样1~9相同制作了试样。试样18是在试样17的成分中把低熔点氧化物的Bi2O3作为辅助成分一并加入的示例,在此点上相当于对比例。
评价方法把得到的园环形的铁氧体烧结体绕20圈导线后,用阻抗分析器测定在测定频率100kHz中的导磁率μi和1MHz的Q值。此外,在烧结体上形成一对对置电极,在此电极之间施加25V电压,测定绝缘电阻,计算出比电阻。
评价结果如上所述测定了制作的各铁氧体烧结体的导磁率μi、比电阻和Q值(1MHz)。结果示于表1。


从表1可以看出,TiO2的添加量超过0.1重量%时可以看到比电阻增加,且Q值也增加(试样3~7和试样11、12、15、17)。特别是关于比电阻,TiO2的添加量在0.2%重量~4.0重量%的试样(试样3~7和试样11、12、15、17)中可以达到106~109位阶的非常高的比电阻。但是,当TiO2的添加量超过4.0重量%时(试样8),发现比电阻降低,磁性、特别是导磁率μi也降低。此外,在不添加TiO2的试样1、10、14中,与相同组成的添加TiO2的试样相比,比电阻、导磁率μi、和Q值降低。而且,添加TiO2且把低熔点氧化物的Bi2O3作为辅助成分添加的试样9、13、16、18中,不仅看不到比电阻提高(反而降低),发现导磁率和Q值也大幅度降低。
权利要求
1.一种Ni-Cu-Zn系铁氧体材料,其特征在于,除了不可避免的夹杂物以外,作为辅助成分只含有TiO2,设TiO2的含量为x时,x为0.1重量%<x≤4.0重量%。
2.如权利要求1所述的Ni-Cu-Zn系铁氧体材料,其特征在于,主要成分为由43.0~49.8摩尔%的Fe2O3、4.0~13.0摩尔%的CuO、5~35摩尔%的ZnO、其余为NiO组成。
3.一种Ni-Cu-Zn系铁氧体材料的制造方法,其特征在于,具有把原料称重后混合的配料工序、把混合后的原料进行焙烧的焙烧工序、把用焙烧得到的焙烧物粉碎成细粉的粉碎工序、在粉碎后的细粉中添加粘结剂后制造颗粒的造粒工序、把造粒后的颗粒成形后进行烧成的烧成工序,设TiO2的含量为x时,相对于主要成分使TiO2的含量在0.1重量%<x≤4.0重量%范围内。
全文摘要
提供具有高比电阻的、而且Q值大的Ni-Cu-Zn系铁氧体材料。是Ni-Cu-Zn系铁氧体材料。除了不可避免的夹杂物以外,只把TiO
文档编号C04B35/622GK1605576SQ20041008041
公开日2005年4月13日 申请日期2004年9月29日 优先权日2003年10月6日
发明者青木卓也, 村濑琢 申请人:Tdk株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1