复合材料及其制造方法

文档序号:1842088阅读:560来源:国知局
专利名称:复合材料及其制造方法
技术领域
本发明涉及复合材料及其制造方法。
本申请主张2004年1月8日申请的日本专利申请第2004-2904号的优先权,在此援引其内容。
背景技术
已知以往在由碳化硅构成的纤维织物上附着由碳化硅构成的基质相而形成的陶瓷基复合材料(复合材料)。这种陶瓷基复合材料(以下称为SiC/SiC)由于分量轻,耐热性高,常用作火箭喷射口等的形成材料。如日本特开2000-219576号公报公开内容所述,该SiC/SiC的基质相通过对加热的纤维织物表面组合进行CVI(化学气相渗透)处理和PIP(聚合物渗透和高温分解)处理而形成。

发明内容
发明要解决的问题碳化硅虽然具有高耐热性,但是其具有强度在高温环境中下降的特性。因此,具有由碳化硅构成的纤维织物和由碳化硅构成的基质相的SiC/SiC在高温环境下强度也降低。具体而言,SiC/SiC在约1400℃的温度环境中,其强度与室温环境相比降至约一半。因此,SiC/SiC有在经常暴露于高温环境中的状态下强度不足的问题。作为用于解决上述问题的方法,有除去碳化硅纤维中的氧等杂质的方法。按照这种方法,虽然可以抑制碳化硅在高温环境中强度的下降,但是在除去碳化硅纤维中的氧等杂质时,碳化硅纤维变脆,由此产生了织物形成时容易折断的问题。另外,除去碳化硅纤维中的氧等杂质的处理需要高的处理成本。
也有使用另外一种纤维代替碳化硅纤维的陶瓷基复合材料(以下称为(C/SiC),所述另外一种纤维由与碳化硅相比在高温环境中的强度降低小的、低成本的碳构成。C/SiC虽然与SiC/SiC相比在高温环境中的强度高,但由于碳纤维和由碳化硅构成的基质相之间存在热伸缩差,因此在有热循环的环境中,基质相(特别是通过CVI法形成的高密度相)受到高的残留应力,基质相有断裂的可能性。而且,如上所述,由于基质相是在1000℃左右的高温下附着于纤维织物的表面而形成的,因此即使在基质相形成后被冷却时基质相内也受到较高的残留应力,存在基质相断裂的问题。
本发明是鉴于上述问题进行的,目的在于提高在高温环境时的特性,且防止基质相的破坏。
解决课题的方法为了达到上述目的,本发明的复合材料具备由规定的纤维构成的纤维织物,和附着形成于所述纤维织物的基质相,所述纤维织物采用含有主要构成纤维,和补偿所述主要构成纤维暴露于高温环境中时的特性(例如强度下降)的辅助纤维的构成。
所述辅助纤维还可以按照下述比例包含在所述纤维织物中,所述比例使得由于所述纤维织物和所述基质相的热伸缩差,施加在所述基质相的残留应力在所述基质相的被破坏应力以下。
所述辅助纤维还可以按照下述比例包含在所述纤维织物中,所述比例使得由于所述纤维织物和所述基质相的热伸缩差,施加在所述基质相的使用时的应力在所述基质相的被破坏应力以下。
所述主要构成纤维可以是如下构成其由碳化硅,碳,氮化硅,氧化硅,氧化铝,YAG以及耐热金属中的任何一种形成。
所述辅助纤维具有与所述主要构成纤维不同的组成,可以由碳化硅,碳,氮化硅,氧化硅,氧化铝,YAG以及耐热金属中的任何一种形成。
所述纤维织物也可以是含有多种组成不同的所述辅助纤维的构成。
所述基质相可以是如下构成由碳化硅,碳,碳化锆,氮化硅,氧化硅,氧化铝,氧化锆,氧化铪,YAG以及耐热金属中的任何一种形成。
也可以是具备多种组成不同的所述基质相的构成。
当所述主要构成纤维由碳化硅形成、所述辅助纤维由碳形成、所述基质相由碳化硅形成时,可以为所述辅助纤维相对于所述主要构成纤维的混合比例小于90%的构成。
也可以为所述辅助纤维以规定的密度分布含有在所述纤维织物中的构成。
也可以为所述辅助纤维相对于所述纤维织物的密度分布沿板厚方向逐渐变化的构成。
本发明的复合材料的制造方法是具备由规定的纤维构成的纤维织物,和附着形成于所述纤维织物上的基质相的复合材料的制造方法,其具有下述工序形成纤维织物的工序,所述纤维织物含有主要构成纤维和补偿所述主要构成纤维在暴露于高温环境时的特性的辅助纤维;将所述基质相附着形成于所述纤维织物的工序。
也可以是下述构成所述基质相的至少一部分通过CVI法形成。
或者,也可以是所述基质相的至少一部分通过PIP法形成的构成。
也可以是所述基质相的至少一部分通过浆液法形成的构成。
或者,也可以是所述基质相的至少一部分通过反应烧结法形成的构成。
也可以是将所述主要构成纤维束和所述辅助纤维束合线后形成所述纤维织物的构成。
也可以是所述主要构成纤维和所述辅助纤维被同类纤维分散混合合线后形成所述纤维织物的构成。
也可以是将所述主要构成纤维束和所述辅助纤维束以规定的比例配置,形成所述纤维织物的构成。
也可以是将所述主要构成纤维束和所述辅助纤维束按照规定的粗细进行分线,形成所述纤维织物的构成。
发明效果根据本发明的复合材料及其制造方法,由于补偿与主要构成纤维的温度变化相关的特性、例如主要构成纤维在暴露于高温环境时的特性的辅助纤维包包含在纤维织物中,因此补偿了复合材料在高温环境时的特性,可防止基质相的破坏。


本发明一实施方式涉及的陶瓷基复合材料1的部分放大简略构成图。
本发明一实施方式涉及的陶瓷基复合材料1的模拟结果说明图。
本发明一实施方式涉及的陶瓷基复合材料1的模拟结果说明图。
本发明一实施方式涉及的陶瓷基复合材料1的实验数据的说明图。
本发明一实施方式涉及的陶瓷基复合材料1的实验结果说明图。
本发明一实施方式涉及的陶瓷基复合材料1的实验结果说明图。
用于说明本发明一实施方式涉及的陶瓷基复合材料1的制造方法的流程图。
符号的说明1...陶瓷基复合材料(复合材料) 2...纤维织物 21...碳化硅织物(主要构成纤维) 22...碳纤维(辅助纤维) 3...基质相具体实施方式
以下参照附图就本发明的复合材料及其制造方法的一实施方式进行说明。在以下的图中,为了使各部件成为可辨认的尺寸,对各部件的比例尺进行了适当变更。
图1为本实施方式涉及的陶瓷基复合材料1(复合材料)的部分放大概略构成图。在该图中,符号2为纤维织物,3为基质相。
纤维织物2为将碳化硅纤维21(主要构成纤维)和碳纤维22(辅助纤维)合线,并通过3维编织而形成的。该碳纤维22为补偿碳化硅纤维21在暴露于高温环境时的强度降低(特性)的辅助纤维,其以下述比例织入在纤维织物2中,该比例使得由于纤维织物2和基质相3的热伸缩差,施加于基质相3的残留应力或使用时的应力在基质相3的被破坏应力以下。在此所述的被破坏应力是指基质相3耐受残留应力或者使用时的应力而不被破坏的阈值,当施加了所述被破坏应力以上的应力时,基质相3会出现龟裂等破损。
在此所述的残留应力是指陶瓷基复合材料1从基质相形成时的高温环境向低温环境中转移时施加于基质相3的应力,是均匀施加于每种基质相3的应力。另外,使用时的应力是指当将陶瓷基复合材料1置于使用环境中时,因产生陶瓷基复合材料1内部的温度分布等而施加在基质相3的应力,是在基质相3的各部分上强度不同的应力。一般,使用时的基质相3的应力比残留应力小。因此,优选碳纤维22以下述比例织入在纤维织物22中,该比例使得由于纤维织物2和基质相3之间的热伸缩差,施加在基质相3的残留应力在基质相3的被破坏应力以下。
基质相3附着形成于纤维织物2上,由碳化硅形成。该基质相3是由在纤维织物2周围致密形成的碳化硅(以下称为CVI基质)和在所述致密形成的碳化硅上形成的具有小气孔的碳化硅(以下称为PIP基质)构成。
如此构成的本实施方式的陶瓷基复合材料1,由于纤维织物2中含有碳纤维22,因此陶瓷基复合材料1即使被暴露在高温环境中,也可抑制陶瓷基复合材料1的强度下降。
并且,所述碳纤维22由于以施加在基质相3的残留应力或者使用时的应力在基质相3的被破坏应力以下的范围含有在纤维织物2中,因此陶瓷基复合材料1在成形时或者使用时,仅在基质相3上施加了被破坏应力以下的应力。因此,可以防止由纤维织物2和基质相3的热伸缩差所引起的基质相3的破坏。
在本实施方式中,虽然使用由碳化硅形成的碳化硅纤维作为本发明的主要构成纤维,但并不限定于此,也可以使用例如由碳、氮化硅、氧化硅、氧化铝、YAG(镱铝石榴石)以及耐热金属中的任何一种形成的主要构成纤维。
另外,在本实施方式中,虽然使用由碳形成的碳纤维作为本发明的辅助纤维,但并不限定于此,也可以使用例如具有与主要构成纤维不同的组成,由碳化硅、碳、氮化硅、氧化硅、氧化铝、YAG以及耐热金属中的任何一种形成的辅助纤维。辅助纤维并不必须为一种,也可以使用多种辅助纤维。
另外,在本实施方式中,使用由碳化硅形成的物质作为本发明的基质相,但并不限定于此,也可以由例如碳、碳化锆、氮化硅、氧化硅、氧化铝、氧化锆、氧化铪、YAG以及耐热金属中的任何一种形成。基质相也并不必须为一种,也可以使用多种基质相。
接下来,参照表1、图2以及图3的表对本实施方式的陶瓷基复合材料1的模拟结果进行说明。表1中,碳纤维比表示将纤维织物2全体作为1时碳纤维22所占的比例,体积比表示将陶瓷基复合材料1作为1时纤维织物2所占的比例,强度CVI表示CVI基质的强度,强度PIP表示PIP基质的强度,体积比CVI表示将陶瓷基复合材料1作为1时CVI基质所占的比例,体积比PIP表示将陶瓷基复合材料1作为1时PIP基质所占的比例,CVI残留应力表示将陶瓷基复合材料1从1000℃降至室温(23℃)时施加在CVI基质上的残留应力,PIP残留应力表示将陶瓷基复合材料1从1000℃降至室温(23℃)时施加在PIP基质的残留应力。在上述模拟中,碳化硅纤维21使用的是宇部兴产制造的チラノ(注册商标)ZMI纤维,碳纤维22使用的是东丽制造的T-300。


如表1所示,与碳纤维比无关,纤维织物2的体积比为0.4。在这种情况下,强度CVI(即CVI基质的被破坏残留应力)为0.8GPa,强度PIP(即PIP基质的被破坏残留应力)为0.2GPa。并且,体积比CVI和体积比PIP为0.22,与碳纤维比无关。
如表1所示,随着碳纤维比从0.1向1增加,CVI残留应力从0.09GPa变化至0.89GPa,PIP残留应力从0.01Gpa变化至0.07GPa。CVI残留应力比PIP残留应力高的原因是CVI基质比PIP基质致密,作为基质的弹性率高。
碳纤维比为0.9和1.0时(纤维织物仅由碳纤维形成的情况),CVI残留应力超过作为CVI强度的0.8GPa。
因此可知,碳纤维比为0.9和1.0时,基质相3被残留应力破坏。即,由表1可知,碳纤维比在不足0.9的情况下,基质相3不会被破坏。因此,当主要构成纤维由碳化硅形成、辅助纤维由碳形成、基质相由碳化硅形成时,辅助纤维相对于主要构成纤维的混合比优选不足90%。
图2以及图3表示随着碳纤维比的变化,陶瓷基复合材料1的强度是如何变化的图,横轴表示碳纤维比,纵轴表示为陶瓷基复合材料1的强度。图2是表示在室温(23℃)下陶瓷基复合材料1的强度的图,图3是表示在1600℃(高温环境)中陶瓷基复合材料1的强度的图。
如图2所示,在室温下陶瓷基复合材料1的强度相对于碳纤维比几乎不变化,约为250MPa。这是由于作为碳化硅纤维21的ZMI和作为碳纤维22的T-300在室温下基本上具有相同的强度。因此,例如,将比T-300强度高的纤维(例如T-1000)用作碳纤维22时,随着碳纤维比的增加陶瓷基质复合材料1的强度也增加。
与此相对,如图3所示,在1600℃下,陶瓷基复合材料1的强度随着碳纤维比的增加而增加。原因是纤维织物2大量含有即使在高温环境下强度降低也少的碳纤维22,从而抑制了陶瓷基质复合材料1在高温环境中的强度降低。
由表1、图2以及图3可知,在本实施方式中,为了抑制陶瓷基复合材料1在高温环境中的强度降低且防止基质相3的破坏,优选相对于纤维织物2的碳纤维比为0.7左右。
表2和图4为用于证明上述模拟的实验数据,表2是实测值,图4是根据表2的实测值作图得到的。该表2和图4所示的[ZMI+(T-300)/SiC](碳纤维比例是0.5)为本实施方式的陶瓷基复合材料,[ZMI/SiC]为纤维织物仅由碳化硅形成的陶瓷基复合材料。为了比较参考,表2和图4也示出了纤维织物仅由碳形成的陶瓷基复合材料(T-300/SiC)的强度。
如该表及图所示,随着从室温(23℃)上升至高温环境(1600℃),[ZMI/SiC]的强度从250MPa降至100MPa,与此相对,碳纤维比例为0.5的[ZMI+(T-300)/SiC]在相同条件下,强度从260MPa降变化为186MPa。另外,在相同的条件下,[T-300/SiC]强度从252MPa降至235MPa。
因此,由以上实验数据可知,如上述模拟所示,本实施方式的陶瓷基复合材料在高温环境中的强度下降得到抑制。


图5A以及图5B的照片为陶瓷基复合材料从高温环境降至室温时基质相的放大照片,图5A是[T-300/SiC]的基质相的放大照片,图5B是本实施方式的陶瓷基复合材料(ZMI+(T-300)/SiC)基质相的放大照片。如这些图所示,可确认在[T-300/SiC]的基质相中的基质裂缝,与此相对,未见本实施方式的陶瓷基复合材料的基质相的基质裂缝。由此可知,本实施方式的陶瓷基复合材料可防止基质相的破坏。
接下来,参照图6的流程图,对本实施方式的陶瓷基复合材料1的制造方法进行说明。
如图6所示,本实施方式的陶瓷基复合材料1的制造方法用作纤维制造1,编织2,退浆3,C-CVI4,SiC-CVI5,模具分离6,SiC-CVI7,密度测定8,PIP9,密度测定10,机械加工11,SiC-CVI12,检查13各工序的一部分。应说明的是,也可以省略模具分离6、SiC-CVI7等。
在纤维制造工序1和编织工序2中,通过将碳化硅纤维21和碳纤维22按照规定的比例成形为规定的形状从而得到纤维织物2。具体而言,例如,可以将300根碳化硅纤维21束成的纤维束和将700根碳纤维22束成的纤维束合线后形成纤维织物2,也可按照碳化硅纤维21为300根、碳纤维22为700根的比例将纤维分散、混合,合线后形成纤维织物2。编织工序2成形的形状可以为适于例如陶瓷基复合材料1所适用的火箭发动机喷射口等的立体形状。还可以进行将所述合线后的纤维织物分线,使之达到规定粗细的工序。
退浆工序3中将包覆于纤维织物2上的多余聚合物除去。机械加工工序11为对通过混合处理完成的陶瓷基复合材料1进行机械加工或者表面磨削,从而制造目标产品的工序,所述混合处理为将CVI(化学气相渗透)处理和PIP(聚合物渗透和高温分解)处理组合的处理。在该工序中,使用例如钻石磨石等加工成规定形状。
本实施方式的主要工序,即所述混合处理,由在减压环境中在成形的纤维织物2的表面上形成碳化硅基质相的CVI处理、和在形成的基质相间隙中含浸有机硅聚合物作为基材并烧结的PIP处理构成。
CVI处理包括C-CVI工序4和3次的SiC-CVI工序5、7和12。C-CVI工序4为在成形的纤维织物2上涂布炭(优选石墨)或者BN等的工序。涂布厚度可以为0.1-1.0um左右。在C-CVI工序4中,可以只在碳化硅纤维21上涂布碳或者BN等。按照日本特开昭63-12671号公报所公开的那样,该涂布相具有分离基质相3和碳化硅纤维21,强化碳化硅纤维21的韧性的作用。
SiC-CVI工序5、7、12为使用所谓的CVI法(气相含浸法)进行处理的工序,在炉内加热用专用模具固定的纤维织物2,在减压环境中使例如甲基三氯硅烷流入而合成所述CVI基质。根据需要,反复进行2次中的最初工序5和7,使通过CVI处理合成的基质的体积比大于等于5%、且小于等于80%。最后的工序12为在通过PIP处理形成的PIP基质表面上形成致密的基质的工序。工序12并非不可缺少,根据情况也可以省略。
PIP处理9为使用PIP法(液相含浸法)进行处理的工序,包括在通过CVI处理形成的基质相间隙中含浸有机硅聚合物作为基材的含浸工序以及其后的烧结工序。含浸工序和烧结工序根据需要反复进行。含浸工序所使用的有机硅聚合物可以为聚碳硅烷溶液、聚乙烯硅烷、聚金属碳硅烷等,或者也可以为这些聚合物与碳化硅粉末的混合物。通过使用这些有机硅聚合物含浸并进行烧结的PIP处理,能够在短时间形成PIP基质。
并且,在该PIP处理中的含浸可以通过浸渍、减压含浸、加压含浸中的任何一种、或者它们的组合进行。浸渍可以是短时间内含浸大量的有机硅聚合物。另外,通过减压含浸可将有机硅聚合物含浸在微小的间隙中。而加压含浸可通过沿使用时的压力方向加压并含浸,提高气密性。
这样,经过CVI处理和PIP处理等,在纤维织物2上附着形成基质相3,制造出本实施方式的陶瓷基复合材料1。
密度测定工序8、10是用于计测通过前面工序形成的基质相3的密度是否达到预期密度的工序,检查工序13为检查完成的陶瓷基复合材料1是否具有预期性能的工序。
以上,参照附图对本发明的复合材料及其制造方法的优选实施方式进行了说明,当然本发明并不限定于所述实施方式。所述实施方式所示的各个构成部件的形状、组合等为一个例子,在不超过本发明的主旨的范围内可以根据设计要求等进行各种变更。
例如,在所述实施方式中,作为主要构成纤维暴露于高温环境下的特性,着眼于强度。但本发明不限于此,例如,作为主要构成纤维暴露在高温环境时的特性,也可着眼于热传导率或杨氏模量。这种情况下,可以选择补偿各种特性的辅助纤维,在着眼于任何特性的情况下都可防止基质相的破坏。
在所述实施方式中,对辅助纤维相对于陶瓷基复合材料1的密度分布为一定的情况进行了说明。但本发明不限于此,辅助纤维相对于陶瓷基复合材料1的密度分布有所不均也是可以的。
例如,将陶瓷基复合材料用于火箭发动机的喷射口等时,根据喷射口的壁面形状设定陶瓷基复合材料的形状。在这种条件下,陶瓷基复合材料的内壁面侧(喷射口的中心侧)暴露在更高温的环境中,与内壁面侧相比,陶瓷基复合材料的外壁面侧处于较低温的环境中。因此,辅助纤维相对于纤维织物的密度分布优选沿外壁面侧向内壁面侧逐渐升高,即按照板厚方向逐渐变化。
在所述实施方式中,利用CVI法和PIP法形成由碳化硅构成的基质相3。但本发明不仅限于此,例如,也可以用浆液法或反应烧结法形成基质相。浆液法为将粉末加入溶剂中生成浆液,将所述浆液烧结由此形成基质相的方法,反应烧结法为将多种粉末或粉末与熔融金属在高温下反应从而制成基质相的方法。
产业实用性可补偿复合材料在高温环境下的特性,而且能够防止基质相的破坏。
权利要求
1.一种复合材料,该材料具有由规定的纤维构成的纤维织物和附着形成在所述纤维织物上的基质相,其特征在于,所述纤维织物含有主要构成纤维和辅助纤维,所述辅助纤维补偿所述主要构成纤维暴露在高温环境时的特性。
2.权利要求1所述的复合材料,其中,所述辅助纤维以下述比例包含于所述纤维织物中,该比例使得由于所述纤维织物和所述基质相的热伸缩差,施加于所述基质相的残留应力在所述基质相的被破坏应力以下。
3.权利要求1所述的复合材料,其中,所述辅助纤维以下述比例包含于所述纤维织物中,该比例使得由于所述纤维织物和所述基质相的热伸缩差,施加于所述基质相的使用时的应力在所述基质相的被破坏应力以下。
4.权利要求1所述的复合材料,其中,所述主要构成纤维由碳化硅、碳、氮化硅、氧化硅、氧化铝、YAG和耐热金属中的任何一种形成。
5.权利要求1所述的复合材料,其中,所述辅助纤维具有与所述主要构成纤维不同的组成,由碳化硅、碳、氮化硅、氧化硅、氧化铝、YAG和耐热金属中的任何一种形成。
6.权利要求1所述的复合材料,其中,所述纤维织物含有多种组成不同的所述辅助纤维。
7.权利要求1所述的复合材料,其中,所述基质相由碳化硅、碳、碳化锆、氮化硅、氧化硅、氧化铝、氧化锆、氧化铪、YAG和耐热金属中的任何一种形成。
8.权利要求1所述的复合材料,该材料含有多种组成不同的所述基质相。
9.权利要求1所述的复合材料,其中,所述主要构成纤维由碳化硅形成、所述辅助纤维由碳形成、所述基质相由碳化硅形成时,所述辅助纤维相对于所述主要构成纤维的混合比例不足90%。
10.权利要求1所述的复合材料,其中,所述纤维织物以规定的密度分布含有所述辅助纤维。
11.权利要求10所述的复合材料,其中,所述辅助纤维相对于所述纤维织物的密度分布按照板厚方向逐渐变化。
12.一种复合材料的制造方法,该方法是具备由规定的纤维构成的纤维织物、和附着形成于所述纤维织物的基质相的复合材料的制造方法,其特征在于,具有下述工序形成含有主要构成纤维和辅助纤维的纤维织物的工序,所述辅助纤维补偿所述主要构成纤维暴露在高温环境时的特性;使所述基质相附着形成于所述纤维织物的工序。
13.权利要求12所述的复合材料的制造方法,其中,所述基质相的至少一部分通过CVI法形成。
14.权利要求12所述的复合材料的制造方法,其中,所述基质相的至少一部分通过PIP法形成。
15.权利要求12所述的复合材料的制造方法,其中,所述基质相的至少一部分通过浆液法形成。
16.权利要求12所述的复合材料的制造方法,其中,所述基质相的至少一部分通过反应烧结法形成。
17.权利要求12所述的复合材料的制造方法,该方法在将所述主要构成纤维束和所述辅助纤维束合线后,形成所述纤维织物。
18.权利要求12所述的复合材料的制造方法,该方法在利用同类纤维将所述主要构成纤维和所述辅助纤维分散、混合合线后,形成所述纤维织物。
19.权利要求12所述的复合材料的制造方法,该方法在将所述主要构成纤维束和所述辅助纤维束按照规定比例配置,形成所述纤维织物。
20.权利要求12所述的复合材料的制造方法,该方法在将所述主要构成纤维束和所述辅助纤维束分线为规定的粗细后,形成所述纤维织物。
全文摘要
本发明的复合材料是具有由规定的纤维构成的纤维织物(2)和附着形成在所述纤维织物(2)上的基质相(3)的复合材料,所述纤维织物(2)含有主要构成纤维(21)和辅助纤维(22),所述辅助纤维(22)补偿所述主要构成纤维(21)暴露在高温环境时的特性。
文档编号C04B35/80GK1902143SQ20048003995
公开日2007年1月24日 申请日期2004年12月27日 优先权日2004年1月8日
发明者中村武志 申请人:石川岛播磨重工业株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1