陶瓷坯体焙烧时减小收缩的方法

文档序号:2424818阅读:1301来源:国知局
专利名称:陶瓷坯体焙烧时减小收缩的方法
技术领域
本发明涉及焙烧坯体过程中,很大程度地减少及控制其平面收缩,及减少瓷坯变形的方法。
互连电路板为由用电路和机械互连的若干极小的电路元件形成的电子电路或子系统的具体连的具体实现。经常需要将这些不同电子元件在一个布局中结合,从而可使之具体隔离,在一个紧凑的组件中相邻安装,电路接通,并且/或者连接组件的共同接点。
复杂的电子电路一般要求电路由绝缘电介层分隔的若干导体层构成。各导体层之间,用所谓通过电介质的导电通路互相连接。
制造多层电路的一种常见方法,是将若干陶瓷带电介质同时焙烧,电介质上印刷金属通路通过电介层将不同的导电层互连。(见斯坦因伯格(Steinberg)专利第4,654,095号)陶瓷带对正叠放,在预选定的温度和压力下压在一起形成单片结构,将该结构用高温焙烧,逐出有机粘合剂,将导电金属烧结,使电介质致密。这方法比典型的“厚膜”法有优点,因为焙烧仅需进行一次,节省制造时间和人力,并可限制流动的金属扩散,造成导体之间的短路。但是这方法有缺点,焙烧时的收缩量可能难以控制。对于大型的复杂电路,这种量度的不稳定特别有害,能在以后的装配作业中造成对准误差。
压力烧结或热压,在陶瓷坯体焙烧时,从外部对之加载荷或重量,是对陶瓷部件减小孔隙度及控制形状(量度)的常见方法。(见塔基达(Takeda)等人的美国专利第4,585,706号;金杰利(Kingery)等人著文《陶瓷介绍》第502-503页,1976年威利(Wily)出版。用简单模具加压烧结陶瓷电路,因部件有在模中粘附的倾向,并且/或者模具与部件之间发生交叉污染而出现困难。并且,在将有机粘合剂烧除时,在陶瓷件表面上加载荷或类似的约束力时,可能限制挥发物的逸出,造成烧除不完全,和/或变形。
同时待准的美国专利申请编号第07/466,937中,揭示了一种有限烧结法,在烧除有机粘合剂时可使挥发物逸出。在未焙烧的陶坯体表面上,加一个释放层。然后在释放层上加一个重体,减少X-Y方法上的收缩。重体与陶瓷坯体之间的释放层,设有挥发物逸脱通道。假如设定一种方法可用以将陶瓷电路不用模具作有限烧结,不需加外载荷,并且在烧除时不限制挥发物的逸出,而在完成的电路中,仍可大部分消除量度的不隐定性,那么与电路焙烧有关的减少收缩的加工步骤可以简化或取消。假如方法可做到在陶瓷电路外表面上,同时焙烧导电金属通路,则使优点可以扩大。
弗雷兹(Flaitz)等人(欧洲专利申请第0,243,858号)叙述了三种回避上述困难的方法。第一个方法为仅在陶瓷件的外缘(周缘)上加限制,形成挥发物逸出的开放通路,和进氧通路。在第二种方法中,用同面积的多孔板,或在待烧结的工件的表面上加空气载送力,在待烧结工件全部表面上加同范围的力。在第三种方法中,用有孔隙结构的接触片在烧结坯体上加摩擦力,接触片在加热循环中不烧结或收缩,并抑制基质收缩。接触片的结构经选定,在焙烧时保持多孔性,不与陶瓷熔接,有热稳定性,从而在烧结周期中不胀缩,有持续的机械完整性与刚性。在烧结周期中,接触片保持原有量度,从而抑制陶瓷件收缩。在将接触片在待烧结的工件上叠放后,烧结进行时不用外加的重体。
本发明在主要的方面是针对一种方法,在陶瓷坯体焙烧时,很大地减少X-Y方向的收缩,方法包括步骤如下A.设置一个未焙烧的陶瓷坯体,该坯体包括研细的固体陶瓷颗粒和散布在可挥发的固体聚合物接合剂中的可烧结的无机接合剂的混合物;
B.在未焙陶瓷坯的表面上,铺设一个柔性约束层,约束层与未焙烧陶瓷坯表面形状极相似,柔性约束层有非金属无机固体的研细颗粒,散布在可挥发的聚合物接合剂中,可烧结无机接合剂渗入约束层的渗透度不大于50μm;
C.组合件的焙烧温度及时间,足以将聚合物接合剂从陶瓷坯体及约束层中挥发,在约束层中形成互相连接的孔隙,无机接合剂在陶瓷坯体中烧结,而不发生烧结坯体的经向体积膨胀;
D.将烧成组合件冷却;
E.从烧结陶瓷坯体表面上,除去多孔约束层。
本发明在第二个方面,针对未焙烧复合材料陶瓷坯体,其中有研细的陶瓷固体颗粒和可烧结的,散布在可挥发固体聚合物接合剂中的无机接合剂的混合物,其表面贴附形状极一致的约束层,其中有非金属无机固体的研细颗粒,在可挥发固体聚合物接合剂中散布。
在另一个方面,本发明针对一种制造未焙烧复合陶瓷带的方法,其中包括有步骤,在未焙烧的陶瓷带的至少一个表面上,加一个约束层,其中有研细的非金属无机固体颗粒,在可挥发的有机介质中散布,介质中有固体聚合物接合剂,溶解在挥发性有机溶剂中,利用蒸发作用将有机溶剂清除。
弗来兹等人欧洲专利EPO87,105,868,1号专利针对一种有约束的烧结方法,利用Z方向上的约束力,在焙烧MLC(多路控制器)陶瓷基质时,抑制X-Y方向的变形,曲面及收缩。在焙烧前,将多孔、未焙烧刚性陶瓷的热稳定接触片,叠压在陶瓷工件的表面上,具体抑制陶瓷的收缩,而不需加额外的压力。在全部焙烧循环中,接触片保持其机械整体性,和尺寸稳定性,并通过打磨或产刮,将焙烧后的接触片清除。
阿诺尔德等人美国专利第4,521,449号阐述使用陶瓷材料的电介层,以便将有表面通路的生料陶瓷片,与有刻凹槽线连接的焊盘区烧结,凹槽中注导电金属糊。焙烧后在元件上涂覆适当的金属,使之有焊锡湿性,供焊接导线。发明人承认需作后金属化,以适应很大的(17%)基质收缩与变形,这是焙烧后的陶瓷材料的典型特点。
杜比茨基(Dubetsky)等人美国专利第4,340,436号揭示在一个生坯玻璃陶瓷叠层上,叠放一个可除去的轻质惰性同幅不粘附的平板,在焙烧中玻璃达到结合温度时,抑制横向X-Y收缩和变形。发明人报道,在制成的叠层材料上的平板,压力约为0.012-约0.058磅/英寸,对平面性和横向的完整性有提高。
附图有6图。

图1为本发明各部件在焙烧前安排的概略示意,其中约束层附在基质的两侧。图2为本发明各部件在焙烧前的安排的概略示意,其中约束层附在基质的一侧,一个刚性的基质贴基质的另侧上。图3为本发明各部件在焙烧前的安排的概略示意,其中有多个陶瓷部件组合成一个单块,其中每一部件有一个约束层贴放在相反两侧上。图4为陶瓷与约束层界面的脱层的概略示意,约束层不翘曲。图5为陶瓷与约束层界面的脱层的概略示意,约束层有翘风。图6为无机接合剂渗透性,和接合剂粘度与浸润角关系的曲线图。
本发明的一般目的是提出一种新颖的改进方法,在焙烧陶瓷坯体时,可减少X-Y收缩率。本发明的一个理想应用是用传统的导电金属化技术,制造多层陶瓷电路,其中有导体,电阻等,和介电带方式为在通路穿孔和印刷时确定的电路特征的尺寸,在焙烧时基本保持不变。因此本发明的方法加避陶瓷部件尺寸不稳的许多根源,并可免却为避免尺寸误差及对正误差所必须进行的许多设计及制造的程序,故方法比较经济。
在焙烧循环中,有机接合剂挥发后,带的无机成分在加热到足够的热度后,进行烧结。烧结时,颗粒多孔带经历结构变化,为多孔微粒结晶材料与非结晶材料中所常见。于是晶粒尺寸增大,孔隙形状变化,并且孔隙尺寸及数目变化。
本发明的中心,为使用柔性陶瓷约束层,将其加在陶瓷电路层表面上。约束层有若干功能(1)提供一个均匀的高摩擦接触层,很大减少烧结部分平面中的收缩;(2)提供逸出通路,供陶瓷带中的挥发成分在烧结前逸出。在某些情况下,便利上表面金属化的同时焙烧,而不致造成其损坏。
为使约束层可有效减小烧结部分平面中的收缩,将其作为一个柔性层,加在未焙烧的陶瓷电路层的表面上。约束层的柔性,使之可与未焙烧陶瓷表面的起伏极为相似。柔性约束层在未焙烧陶瓷表面上的层压,可用于压迫约束层,使之更为伏贴,这取决于约束层的应用方式。例如,以散布的形式,向未焙烧陶瓷上喷涂,或浸渍涂敷,或辊涂,或可制成柔性片,向未焙烧陶瓷上层压。层压对减小约束层与陶瓷坯体表面间的任何隙缝(瑕疵)的尺寸特别有效。
约束层在陶瓷部件上伏贴,是防止烧结时约束层脱层和与陶瓷部件翘曲分离所必须。焙烧时,当电介基质开始收缩时,由于电介部分的平面中的烧结应变,约束层受双轴压迫。假如约束层中的压应力达到一个临界点,约束层便脱层,并翘曲脱离烧结电介基层。与本发明有关的翘曲问题,可在承受平行于叠置层次的压载荷发生局部分离后,通过分析弹性叠层板及叠层壳进行检查。至于翘曲,在丁莫生科(S.P.Timosenko)及几尔(G.M.Geere)著的《弹性稳定理论》第二版,纽约麦格劳希尔公司1961年版,有广泛的分析。压缩薄膜翘曲的特殊问题,在埃文思(A.G.Evans)及赫金森(V.W.Hutchinson)著《压缩薄膜脱层及离散的力学讨论》原载《国际固体结构杂志》第20卷第5期,445-466页(1984)。
翘曲问题就一度空间(梁),二度空间(矩形或方形几何形状)及几何圆形等解决。几何圆形最适合作本发明的构形,故本文予以叙述。问题有关单个的界面裂纹,或与自由表面平行的裂缝,如图3所示。裂缝用半径a的圆形脱层表示,发生于双轴压缩σ。如裂纹或裂缝有相当大的尺寸,裂纹上方的薄膜便易于翘曲。与自由表面平行的界面裂缝或脱层不干扰应力场,因为应力场也平行于表面作用。因此,不造成裂缝或裂纹边缘上的应力集中。假如薄膜翘曲与基质分离,如图4所示,则分离将应力在界面裂纹的周围分布(即集中),翘曲便使裂纹延长并断裂。界面裂纹的状况涉及开口应力(模式Ⅰ)与剪应力(模式Ⅱ)的结合。在现条件下,薄膜为压缩粉末,一旦发生翘曲,裂纹尖部的剪力容易使粉膜断裂,因为粉末的抗剪和抗张力都极低。
如压应力超过薄膜的临界翘曲应力,则薄膜(约束层)将被翘曲。本例中的适当的圆形解决方案,为将薄膜边缘固定或夹定。临界翘曲应力σc表示如下
式中t为约束层的厚度,a为裂缝或裂缝的半径,夹定边缘中K=14.68(K为用于解几何圆形初始微分方程的贝塞尔函数求得的系数),E表示约束层杨氏模量,V泊松比。方程式(1)示,在加工过程中,如约束层与进行烧结部分之间的界面,有临界尺寸的裂纹或裂缝时,则将发生翘曲。方程式(1)还表明,在测定临界翘曲应力时,约束层厚度f及横量E有重要作用。
在实践中,在将约束层加在陶瓷坯体基质上时,以及在加热时,可能产生裂缝。假如约束层没有适当的柔性,不能与陶瓷电路层的起伏吻合时,或假如设放方法非最佳化,不能保证约束层与陶瓷电路层的起伏吻合时,于是约束层与陶瓷电路界面之间,便能造成裂缝或裂纹。加热时,约束层与陶瓷电路基质间的热膨胀不匹配,便可能产生裂缝。不与约束层及基质界面平行的热胀裂缝,起附加应力集中源的作用。使用热胀系数大于基质的约束层,有时可消除或减小热膨胀作用(裂纹等),于是在加热时将约束层压平。
为在焙烧后便于将约束层除去,在加工中,务必不使焙烧中的陶瓷部件中的玻璃向约束层有很大的渗透或相互作用。假如有大量的约束材料附在最终焙烧的部件上,则玻璃向约束层过多的渗透,便可能抑制约束层从焙烧中的工件上清除,可能对陶瓷瓷基质的性能有不利的影响。选定电介质的玻璃成分时,应考虑两个一般要求。首先,电介基质中的玻璃必须符合电介要求(即电介常数,气密性,可烧结性等等),其次,玻璃成分应能抑制玻璃渗入约束层。渗透抑制的控制,部分通过调节变数,诸如玻璃粘性,浸润角等等,下文将予讨论。
对液体流入多孔介质的分析,可用于检查玻璃渗透现象,和对过程的深入了解。在选择玻璃成分及约束层成分时,可将这分析结合上面讨论的对电介质中玻璃的具体要求作准则。在下面的分析中,多孔介质为约束层,液体为焙烧中的陶瓷里的玻璃。
分析的设计以达西定律作基础,预测粘性流体向多孔基础的渗透,尤适用于本发明的条件,无机接合剂向约束层的渗透率dl/dt定义如下(dl)/(dt) = (DΔP)/(ηLl)式中D为多孔介质的渗透性,ΔP为渗透的驱动压力,l为在时间t时,液体渗入介质的长度,ηL为液体的粘性。
假设将渗透距离上的压力 (ΔP)/(l) 改变,逼近渗透方向上的压力梯度VP时,则方程(2)有效。
在夏德格(A.E.Scheidegger)著《通过多孔介质的流体物理学》麦克米伦出版社(1960版)第68-90页,考虑到多孔介质中孔道半径r时,康采尼一卡曼方程示渗透性D可表示如下D=r2(l-ρ)/20 (3)式中ρ=ρ/ρT为多孔介质的比重,ρB为体积密度,ρT为理论密度。
ΔP为驱动压力,作用为将液体压入多孔介质,定义如下ΔP= (2γLVcosθ+Pa)/(r) (4)式中2γLVcosθ/r为毛细压力,Pa为任何外压差(即外部加载),γLV为液体蒸汽表面能量,cosθ为固液接触角。
将式(3),(4)代入式(2),代换方程积分如下l2= (tr(1-ρ)(2γLVcosθ+Par))/(10ηL) (5)由于本发明中不使用外部加载,故方程(5)可表示如下l2= (tr(1-ρ)2γLVcosθ)/(10ηL) (6)在恒定的驱动压力下,给定坯体的渗透深度与时间的平方根正比。文献中有若干推导式(6)的方法。在本发明中,多孔介质为约束层,粘性液体为焙烧中的基质中的玻璃。在实践中,玻璃的粘性,玻璃在约束层材料上的接触角度,约束层的孔隙率及孔隙半径,以及时间,可以调节,以给出需要的渗透度。还可理解,在活性或大或小的气氛中烧结,可改变液体与蒸汽的表面能量。图6为t=30分钟时,在各种接触角度中,渗透率作为液态玻璃粘性(ηL)函数的曲线图。也可用半径(r),多孔层密度(1-ρ)及液体与蒸汽表面能量(γLV),影响渗透率,如上所述。
如式(6)所示,以及利用图6所示的相互关系,可从无机接合剂的粘性及接触角,预测渗透率,于是可通过调节这两变数作控制。在本文中,术语“渗透率”用于指未焙烧陶瓷坯体的可烧结无机接合剂成分的渗透数值,由上述相关法测定。
约束层中含研细的非金属无机固体的颗粒,在用标准陶瓷带铸制法的挥发性有机介质中散布。无机固体在约束层中的低烧结率,和/或高烧结温度,将层中的互相连接的孔隙,保持通道,使焙烧中的陶瓷件和约束层中的挥发气体及其他气体可以逸出。烧结温差至少50℃为适宜。组合件的焙烧温度及时间,足以将有机接合剂从约束层及陶瓷带中挥发,并将无机接合剂在带中烧结。焙烧时,闭式烧结通过承载柱头在陶瓷坯体上加外部压力,用传统带式炉不能做到。与之对比,由于本发明的方法省却外部加压,故可用诸如带式炉的传统焙烧设备。在陶瓷带层完全烧结后,将组合件冷却,可随后将约束层从完成工件的表面上除去,通过掸除,或超声处理,不影响或损坯工件的陶瓷表面或导电通路。
在烧结过程中,在有机接合剂从约束层与待烧结的陶瓷坯体中挥发后,约束层作为无机粉末层存在。焙烧前,设放柔性带形式的约束层,可保证松散粉末层在陶瓷部件上均匀分布,约束层可与焙烧中的坯体表面密切吻合。
电介基质典型有烧结态(接合剂)和不烧结态(陶瓷固体)。可用于本发明的电介体中的陶瓷固体的成分,本身并无直接的关键性,惟需固体有相对于体系中其他材料的化学惰性,并有与电介体中无机接合剂成分相关的适当物理性。掺入非烧结固体主要作填充剂,以调节如热膨胀及介电常数等的性质。
对电介质中陶瓷固体重要的基本物理性,是(1)烧结温度高于无机接合剂的烧结温度,(2)在本发明的焙烧步骤中不被烧结。因此,在本发明的条件下,术语“陶瓷固体”指无机材料,一般为氧化物,在实施本发明的焙烧条件下,基本不经烧结。
因此,以上述标准作转移,几乎可用任何高熔点无机固体,作电介带的陶瓷固体成分。例如,材料有如BaTiO,CaTiO,SrTiO,PbTiO,CaZrO,BaZrO,CaSnO,BaSnO,Al O,金属碳化物诸如碳化硅,金属氮化物诸如氮化铝,矿物诸如莫来石和蓝晶石,锆氧和各形式的硅。甚至可用有高软化点的玻璃,作为陶瓷成分,如其软化点相当高。此外,为与使用的任何基质的热膨胀特点匹配,可用这些材料的混合物。
可在本发明使用的陶瓷坯体中使用的无机接合剂的成分,本身也并非有直接的关键作用,仅需有相对于体系中其他材料的化学惰性,有与陶瓷坯体中陶瓷固体及约束层中非金属固体相关的适当物理性。
具体而言,焙烧时,陶瓷坯体的无机接合剂成分渗入约束层,务必不超过50微米,最好不超过25微米。如渗透超过约50微米,则约束层的清除可能变为困难。虽然本发明不限于这温度,但一般使用的最高温度为800-950℃,在最高温度中至少保持10分钟。
在本发明方法使用的陶瓷坯体中,无机接合剂的理想基本性质为(1)烧结温度低于坯体中的陶瓷固体,(2)在使用的焙烧温度中,经过粘性态的烧结,(3)无机接合剂的浸润角与粘性为使之在焙烧时没有可察觉的约束层渗入。
无机接合剂,一般为一种玻璃,其浸润特性通过测量在约束层中的无机固体的光滑平表面上的烧结无机接合剂的接触角测定。测量过程如下文所述。
经测定;如无机接合剂的接触角至少为60°在本发明中,没有足够的使用浸润性。然而按理想玻璃的接触角至少为70°。在本发明方法的条件下,接触角越大则约束层的脱离性能越好。
在一般情况下,如不焙烧陶瓷带的无机接合剂成分为玻璃,在焙烧状态中,便可能是结晶玻璃或不结晶玻璃。
无机接合剂的颗粒尺寸和颗粒尺寸的分布,也同样也没有很窄的临界范围,颗粒尺寸一般在0.5至20微米之间。但是按理想,无机接合剂的50%点等于或小于陶瓷固体,50%的定义是大颗粒部分与小颗粒部分的重量相等。烧结率与无机接合剂与陶瓷固体的比例成正比,与玻璃过渡温度(Tg)及无机接合剂的颗粒尺寸成反比。
有玻璃及耐火无机固体在里面散布的有机介质由聚合物接合剂构成,可随意在里面溶解其他材料,诸如增塑剂,防粘剂,分散剂,剥离剂,防污剂及湿润剂。
为取得较好的接合效率,最好在重量的95%的陶瓷固体中,至少使用重量5%的聚合物接合剂。但是在重量80%的陶瓷固体中,使用重量不超过20%的聚合接合剂更为理想。但是在这限度内,最好相对于固体,使用尽可能少量的接合剂,以减少必须通过热解清除的有机物的用量,并取得焙烧时减少收缩的较好的颗粒堆集。
过去,陶瓷接合剂使用过各种聚合材料,例如聚(乙烯醇缩丁醛),聚(乙酸乙烯酯),聚(乙烯醇),纤维素聚合物,诸如甲基纤维素,乙基纤维素,羟乙基纤维素,甲基羟纤维素,无规立构聚丙烯,聚乙烯,硅聚合物,诸如聚(甲基苯基硅醚),聚苯乙烯,丁二烯/苯乙烯共聚物,聚苯乙烯,聚(乙烯吡咯烷酮),酰胺,高分子量聚醚,环氧乙烷与氧化丙烯共聚物,聚丙烯酰胺,和各种丙烯酸聚合物,诸如聚丙烯酸钠,聚(下烷基丙烯盐),聚(下烷基异丁烯盐)及二者的共聚物。过去已用甲基丙烯酸乙酯,异丁烯酸酯及丙烯酸乙酯,异丁烯酸甲酯及异丁烯酸的三元共聚物作滑移浇铸材料的接合剂。
较近日来,乌沙拉在美国专利第4,536,535号中揭示了一种接合剂,是重量0-100%的C1-8烷基异丁烯盐,重量100-0%的C1-8烷基丙烯盐,和重量0-5%的不饱和烯的羧酸胺的兼容性共聚物的混合物。由于共聚物可使用最低量的接合剂,和最高量的电介固体,故在本发明的电介质成分中使用有利。因此,上述乌沙拉专利中的揭示,本文中引述以作参考。
常常在聚合物接合剂中,还含有相对于接合剂聚合物的小量的增塑剂,用于降低接合剂聚合物的玻璃过度温度(Tg)。当然增塑料的选择主要取决于必须经改性的聚合物。已在各种接合剂体系中已使用了的塑料剂有磷苯二甲酸二乙酯,磷苯二甲酸二丁酯,磷苯二甲辛酯,丁苄磷苯二甲酸盐,磷酸烷基酯,聚二醇,甘油,聚(环氧乙烷),羟乙基化的烷基酚,二烷基二硫代磷酸酯(dialkyldithiophosphonate)和聚(异丁烯)。其中的磷苯二甲酸丁,苄酯在丙烯酸聚合物体系中最常使用,因可在相对低浓度中有效使用。
未焙烧带的制作,是将有介电颗粒及无机接合剂在接合剂聚合物,增塑剂及溶剂等的溶液中散布的浆质,涂布在如聚丙烯,迈拉(Mylar)聚酯薄膜,或不锈钢上,然后将涂浆在一个刮刀上通过,调节涂浆膜的厚度。于是可将本发明使用的带条按传统方法制造,方法在乌沙拉的美国专利第4,536,535号中有较详细的叙述。
应理解在本发明的方法中使用的未焙烧带常含有电接通层的通路,对正孔及其他穿孔用于容纳器件及晶片安装件。然而据发现,即使带条上有孔,这方法仍有减少X-Y收缩的效果。
在某些情况下带可含有填充料,诸如陶瓷纤维,为焙烧带提供导热性或抗张强度等特殊性能。虽然发明的研制及上面的叙述,主要与陶瓷带层制造的陶瓷坯体的焙烧有关,但应理解本发明还可用于在焙烧特殊形状的非平面工件,诸如浇注或模制陶瓷工件时减少X-Y收缩。
本发明的方法使用的约束层,有非金属颗粒在有机固体聚合物接合剂中散布。如上所述,按理想约束层中的非金属颗粒,焙烧率低于在焙烧条件下焙烧中的基质的无机接合剂,无机接合剂在约束材料上的浸润角,和无机接合剂的粘性使接合剂向约束层的渗入在前述的范围内。因此,仅需符合上述标准,则约束层的无机固体组分的配方,也同样并非关键。只要材料在焙烧中不被烧结,在焙烧过程中,无机接合剂烧结时,焙烧中的陶瓷坯体(工件)中的无机接合剂在约束带上的浸润角及陶瓷坯体在无机接合剂中的粘性处在无机接合剂渗入约束层的理想范围内,则任何非金属无机材料都可使用。虽然用于约束层中的无机非金属固体可与陶瓷坯体所用相同,但最好使用莫来石,石英,Al2O3,CeO2,SnO2,MgO,ZrO2,BN,及其混合物。但是,光泽材料可以使用,如其软化点相当高,在按本发明焙烧时材料不被烧结即可。
约束层可以柔性带,厚糊膜,喷雾,浸渍,辊涂等形式施加。无论施加的形式如何,重要之处在于膜层柔软,以取得与陶瓷坯体表面的密切吻合,减少乃至尽可能减小约束层与陶瓷坯体表面界面间间隙(裂缝)的尺寸,并增高界面的临界应力值。一般而言,适合未焙烧陶瓷带的接合剂聚合物也适合作带形约束层施加。
在本文中,术语“厚膜”及“厚糊膜”,指研细固体在有机介质中的散布,这种散布有糊液质地,其流变性质使之可以通过传统网版印刷施加。其他的散布方法,质地与流变性质适宜喷雾;也可用浸渍和辊涂。这种糊液的有机介质一般包括液态接合剂聚合物,和在溶剂中溶解的各种流变剂,全部在焙烧过程中可完全热解。这种糊液可为电阻型或导电型,在某些情况下甚至可有电介性质。这种配方可有或没有无机接合剂,取决于焙烧时功能性固体是否烧结。在厚糊膜中使用的类似的传统有机介质,也适合作约束层用。关于适当的有机介质材料的详细讨论,可参看乌拉的美国专利4,536,535号。
为保证在约束层中形成互相连接的孔隙,以形成聚合物分解产物逸出的通道,约束层中各别颗粒间的气孔释放槽(空隙或孔隙结构)必须有适当的尺寸,加热时保持开放。约束层材料的烧结率必须比焙烧中的陶瓷工件的烧结率低,如前文所讨论。约束层中的气孔结构,取决于约束层中颗粒特征性的安排或组合。颗粒在层中的安排或填实,受若干因素的影响,包括固体的体积比例,固体的颗粒尺寸,尺寸分布状况和形状,在初始涂布时颗粒的分散程度,涂布的干燥特点,涂布通过在浆液中浸渍或喷涂浆液,以及约束层的施加方法。并且,含有聚合物基料的带形层,喷涂层或浸渍层中的孔隙或空隙结构,在聚合物热解后,在层中极可能有差异。注意到上述情况,便可能将颗粒填实到固体体积的~90%的整体密度。在另一方面,固体体积~10%的整体密度下限,应可用于提供适当大的气孔槽,而不严重降低约束层抗X-Y压应力的能力,玻璃向约束层也没有很大的渗透。
本发明方法的主要特点,在于约束层与基质表面的密切吻合。其约束层作柔性片施加,将柔性片在未焙烧电介带组合上层叠,可取得密切吻合。
本发明方法的焙烧周期,受陶瓷坯体及约束层中固体的物理性的影响,又受焙烧材料的炉或窑的加热速度的限制。可作许多用途的典型批量炉焙烧周期是将组装件在每分钟3℃的速度下,加热到600℃,然后以每分钟5℃加热到最高温度850℃,将组合件在最高温度中保持30分钟,然后将炉熄灭,使组合件冷却。在典型的商品设备中,选定材料的焙烧特点,使之适合可用的炉或窑的运转特点。当然焙烧可按批进行,或间歇进行,或连续进行。
焙烧完成后,约束层有干燥多孔层的形式,在层中仅由范德华力将颗粒松弛集合,因为在焙烧时,有机接合剂挥发,层中的颗粒没有烧结。因为约束层的集结强度低,便很容易扫去。然而,清除焙烧过的约束层有仅需非常少的机械能的特点,当然不需要研磨,不似先有领域使用热压方法所要求。
本发明常用较复杂的多层工件,其一个或多个电介层有厚膜电功能图案印刷在上面,诸如电阻,或导线,或有两者在上面印刷。在这种情况下,可将介电的与有电功能的层次,依次焙烧或同时焙烧。此外,可将多个工件在垂直方向上叠放,成为单个的单块,并同时焙烧。在这种单块中,约束层夹在各工件之间,并在单块的上方或下方,从而每一工件有一个约束层在陶瓷的上下表面上密切吻合,如图3所示。无论焙烧单个的多层工件,或在一个单块中组合的多个多层工件,必须选定焙烧温度分布,和/或电介层的组分,及电功能层的组分,使全部各层的有机介质都完全挥发,各层中的无机接合剂完全烧结。在某些情况下,可能还必须将厚膜金属化的导电相也烧结。当然,有这些相关性能的成分的选择,是熟悉厚膜技艺领域的人力所能及。
本发明还使用有多个电介带层,及导电厚膜糊在预焙烧的刚性基质上的多层工件可焙烧。这些工件的各层可在一个步骤中同时焙烧,或依次焙烧,如上所讨论,而保持各电介层的X-Y方向上的良好稳定性。
可将多层介电带在刚性基质上同时焙烧,有多个原因使之具有吸引性。如同高强度材料制造刚性基质,例如用氧化铝,便提供了机械性支承。假如刚性基质用高导热材料制造,诸如AlN或氧化铍制造,则提供了一种电子组件散热的方法。用其他材料制造的刚性基质,诸如Si或其他电介质,也有潜在的吸引性。可多层同时焙烧,因减少焙烧步骤的数目,也降低了成本。
可将电介带在刚性基质上同时焙烧,比用其他带放在基质上的方法(TOS法)有优点,因为组件的多层电介带部分可用传统方法制作。在电介层上切削,印刷导电或其他电介材料,填充通路,将电介层叠放并层压都用传统的多层制作法。然后将约束层放在未焙烧电介带的表面上。用带形的约束层是理想的方法,将约束层带层压在未焙烧电介带的暴露表面上,达到电介带和约束层之间的相贴接触和密切吻合。电介带,刚性基质,和约束层带,可用一个同时层压步骤,或逐件层压步骤压在一起。作逐件层压时,首先将电介带层在刚性基质上层压,然后将约束层带向在先已层压的刚性基质与电介带的叠层上层压。作同时层压时,将刚性基质,电介带,和约束层带在一个步骤中层压。假如将约束层作糊液或喷雾形式涂敷,则首先将电介带与刚性基质层压在一起,然后将约束层材料以适当的形式加覆。也可用其他的叠放和层压方法,为熟悉本领域者所易了解。
层压后,按工艺过程将全部的刚性基质,电介带组件,和约束层等在一个步骤中焙烧。通路填充在本方法中不成问题。
至于逐件焙烧的组件,将刚性基质,电介带,和约束层制成复合材料,然后按上述焙烧,但是再加附加电介带层,再与已焙烧的组件层压。在这情况下,在先已焙烧的刚性基质与电介带的组件起刚性基质的作用,再在上面加电介带和约束层材料,增加电介带的附加层。
在混合用途中,导热刚性基质与高强度刚性基质有极大吸引性。大功率集成电路晶片应用中的一个具吸引性的构形,是在电介带中布置一个空穴,按本发明将空穴构形在一个刚性AlN基质上同时焙烧,然后将空穴中的一个集成电路晶片,直接放在AlN上。然后将一个盖固定在空穴上,形成气密密封。刚性AlN基质形成机械支承,起组件散热的作用。形成里面安放晶片的空穴或电介材料壁的构思具吸引性,因可提高组件的集成水平。
将各电介带层放在刚性基质上同时焙烧的可能性,受刚性基质,电介带和约束质材料间的热膨胀不协调的限制。假如压层复合材料的材料间热膨胀不协调很大,则在加热时材料的界面间可能发生缺陷,可能引发翘曲。并且,在混合用途中,方法要求刚性基质至少一面平坦(平面),从而可将带层附在平表面上。
图1-3示本发明的三个实施方案。这些方案对发明的组合件为解说性质而无界定意义。
图1 概示本发明方法组成部分的安排,其柔性约束层固定在陶瓷带件的两侧上。
未焙烧陶瓷带件5的两侧(金属化或不金属化),与柔性约束层3及3a层压,使约束层在工件表面上密切吻合。这样层压的陶瓷件可用传统炉焙烧,将组合件在烘炉的运送带1上进行。
图2 概示本发明方法组成部分的一种安排,柔性约束层仅附在陶瓷带部分的一侧上。
将一个预焙烧陶瓷基质7(金属化或不金属化)和一个未焙烧陶瓷带部分5(金属化或不金属化)对正,同时层压。不将一个柔性约束层3在陶瓷带部分5的暴露表面上分别层压,或将三个组分,即约束层3,带部5及预焙烧基质7同时层压。然后通过将组合件放在炉具运送带1上,使组合件在一个传统炉具中焙烧。
图3 概示本发明各组成部分的一种安排,将多个(n个)陶瓷与n+1个约束层交替放置形成单块。在图中n为3。但n可为任何正整数。
未焙烧陶瓷带工件(金属化或不金属化)5a,5b,5c与柔性约束层3a,3b,3c互相交替对正放正放置。可将整个组合件同时层压,也可将组合件层压,形成整个组合件。例如,可将陶瓷带部5a和约束层3a层压。然后可将组合件的约束层3b及其他层次轮流与分组合件层压。或者,可将诸如陶瓷带部5a和约束层3a及3b的分组合件对正并层压。可将诸如陶瓷带部5b及5C和约束层3c及3b的第二分组合件对正并层压。然后可将第一分组合件与第二分组合对正燕层压。层压后将组合件或单块放在炉具运送带1上,在传统的炉具中焙烧。
下面一组实验是为说明本发明的方法可在焙烧时消除径向收缩(即X-Y收缩),提出一种有量度紧公差的多层组件制造条件。实施例说明本工艺提供了精确线量度控制。调查用的抽样,用杜邦生坯带(Du Pont Green Tape Tm)(电介常数约6)。并检查了用于在焙烧时测量线形尺寸变化的技术。
抽样用标准多层杜邦生坯带加工技术制造,包括将电介带坯层切割,在低温(例如70℃)和压力(例如3000磅/英寸)下层压,产生未焙烧的单块多层体。在某些情况下,如下文所示,在层压前将金属导电糊在带层上作网板印刷。在某些情况下,层压前,将约束带放在多层叠垛的上、下方。在其他情况下,首先不用约束层将电介层层压。在这情况下,仅将约束层放在经层压的电介层的上、下方,并将整垛叠层再加压一次,使约束层粘附。
表1中实例1至5之2英寸×2英寸的样本,用3英寸×3英寸的平坯制作。对于标明已金属化的样本,将八层中的两层或六层,用杜邦6142银导体金属化,用网板印刷交叉阴影线试验图案。试验图案的设计为复制一个高密度导体图案。在实例5中,仅将金属加每一印刷层一半的表面上。将四个3密耳(1/1000英寸)厚的约束层加在每一叠垛的上、下侧,总共有带16层。将全部16层在3000磅/英寸和70℃下加压10分钟,使之层压在一起。然后将样本切成2英寸×2英寸的尺寸。将未焙烧的约束层带和电路部分放在平坦的无孔氧化铝窑具上,在275℃下进行一小时的烧除。不将工件从窑具上取下,而从带式炉中通过,在850℃下烧结。冷却后,将约束层掸除。
表1中实例6至9中之5英寸×5英寸样本,用5英寸×5英寸的平电介坯料制作。在实例6及7中,在层压前,将三个约束层加在叠垛的上、下侧。然后在标示的压力下,将14层带以70℃进行10分钟的层压。至于实例8及9,先将8个电介层,分别在3000磅/英寸2及1000磅/英寸2下,在70℃温度中层压5分钟。然后将三个约束层各加在上下侧上,将14个叠层的带件,在70℃与3000磅/英寸2下,第二次再加压5分钟。
为在焙烧时精确测量直线量度的变化,其公差符合多层组件的要求,便采用照相平版印刷工艺,将分辨率相当高的25至28个线宽1密耳的金十字形,印在简单母基的白坯电介带层上。将有这种记号的电介层作各试验件的上电介层。对有十字形的母基用自动化行走光学显微镜在焙烧前后检查。将每一个十字在母基中的位置数字化,在计算机存储器中记录。用计算机驱动一个精密X-Y台,将母基投影,对样本表面上任何地方的各别十字间的直线距离进行精确到±0.2密耳的计算。对表1中九个样本构形中每一个,总共测得300至378个线性量度变化。
表1示平均直线量度变化Δl/l,式中Δl表示由于焙烧,两个选定的十字形之间的直线距离的变化,
表示其初始的直线距离。“交替的”指样本中各带层的定向。在用刮板涂布时,颗粒有在机器涂布方向上自行互相对正的倾向,说明在焙烧时可影响收缩。因此,将各带层的涂布方向交替,对尽量减小涂布的影响常属可取。
表1实例号 样本构形 收缩率 标准误差(Srd.Dev)1 2英寸×2英寸,8层交替型 0.001304 0.000291无金属2 2英寸×2英寸,8层非交替型 0.001404 0.000245无金属3 2英寸×2英寸,8层交替型 0.000285 0.000401二金属层4 2英寸×2英寸,8层交替型 -0.00017 0.000581六金属层5 2英寸×2英寸,8层交替型 -0.00015 0.000647六层半金属化6 5英寸×5英寸,8层非交替型 0.002000 0.000265无金属3000磅/英寸 层压7 5英寸×5英寸,8层非交替型 0.002546 0.000360
8 5英寸×5英寸,8层非交替型 0.000865 0.000337无金属,2阶段层压电介层为3000磅/英寸2带约束层为3000磅/英寸29 5英寸×5英雨,8层非交替型 0.001067 0.000413无金属,两阶段层压电介层为1000磅/英寸2带约束层为3000磅/英寸2从这些部分测得的微小量度变化,大部分由于材料的热胀效果和约束层的压实作用,并非由于烧结造成。实验结果表明,在若干样本构形焙烧时,收缩几乎消除,直线量度控制可达到过去未能达到的精度。结果还表明,样本的几何形状及金属化密度不影响收缩的表现。为作对比,典型自由烧结的(即无约束的)多层杜邦生坯带件,其(Δl/l)为0.12,标准误差为+0.002,收缩率受工件的几何形状及导电金属的密度的影响很大。由于工艺提供了加工中的这种尺寸紧公差,故用本技术制作多层工件时,尺寸控制并非重要问题。
权利要求
1.一种在陶瓷坯体焙烧时减小X-Y收缩的方法,序列步骤如下a.设未焙烧陶瓷坯体,其中混入研细的陶瓷固体颗粒,与可烧结的无机接合剂,在可挥发的固体聚合物接合剂中散布;b.在未焙烧陶瓷坯体表面上,敷设柔性约束层,使约束层在未焙烧陶瓷坯体上密切吻合,约束层有非金属无机固体的研细颗粒,在可挥发的聚合物接合剂中散布,陶瓷坯体的可烧结无机接合剂,向约束层中渗透,深度不超过50微米;c.将组合件在某一温度中焙烧一定时间,足以使陶瓷坯体及约束层中的聚合物接合剂挥发,形成约束层中互相连接的孔隙,并将陶瓷坯体中的无机接合剂烧结;d.将焙烧后的组合件冷却;e.将多孔约束层从烧结陶瓷坯体的表面上消除。
2.如权利要求1之方法,其特征为无机接合剂为无定形结晶玻璃(amorphous crystallizable glass)。
3.如权利要求1之方法,而特征为无机接合剂为非晶质透明玻璃(amorphous vitreous glass)。
4.如权利要求1之方法,其特征为无机接合剂在约束层的非金属固体上的接触角大于60度。
5.如权利要求1之方法,其特征为可烧结无机接合剂的粘度至少为1×105泊。
6.如权利要求1之方法,其特征为焙烧约束层的互相连接的孔隙体积至少为焙烧后的约束层的总体积的10%。
7.如权利要求1之方法,其特征为约束层中非金属无机固体的烧结温度比陶瓷坯体中无机接合剂的烧结温度至少高50℃。
8.如权利要求7之方法,其特征为陶瓷坯体中无机接合剂的烧结温度为600-900℃。
9.如权利要求1之方法,其特征为约束层中非金属无机固体为陶瓷固体。
10.如权利要求9之方法,其特征为约束层中的陶瓷固体,选自莫来石,石英,Al2O3,CeO2,SnO2,MgO,ZrO2,BN及其混合物。
11.如权利要求9之方法,其特征为陶瓷坯体及约束层中的陶瓷固体为同一材料。
12.如权利要求1之方法,其特征为约束层与未焙烧陶瓷坯体层压。
13.如权利要求12之方法,其特征为陶瓷坯体有一层或多层未焙烧陶瓷带。
14.如权利要求13之方法,其特征为未焙烧带中的陶瓷固体,选自Al O,SiO及混合物和其母体。
15.如权利要求13之方法,其特征为未焙烧陶瓷带中的陶瓷固体及无机接合剂的成分构成未焙烧陶瓷带的体积的30-70%,约束层的非金属无机固体成分构成焙烧过的约束层的体积的10-90%。
16.如权利要求13之方法,其特征为未焙烧陶瓷带与约束层中的固体的平均颗粒尺寸为1-20微米,这种颗粒的体积中30%以下的颗粒尺寸小于1微米。
17.如权利要求13之方法,其特征为在焙烧前,将未焙烧的陶瓷带与预焙烧的平陶瓷基质层压。
18.如权利要求17之方法,其特征为将未焙烧的陶瓷带在平陶瓷基质的两侧上层压。
19.如权利要求17或18之方法,其特征为至少基质的一个表面有导电图案。
20.如权利要求19之方法,其特征为预焙烧平陶瓷基质含有选自有Al O,AlN及Si的一组材料。
21.如权利要求13之方法,其特征为在清除约束层后,将一个厚膜导电图案加在焙烧过的带上,将图案焙烧,使其有机介质挥发,并将导电固体在其中烧结。
22.如权利要求21之方法,其特征为图案中的导电材料为贵金属或其混合物或其合金。
23.如权利要求22之方法,其特征为贵金属为金,银,钯,或其合金。
24.如权利要求21之方法,其特征为图案中之导电材料为铜或其前身。
25.如权利要求13中之方法,其特征为至少一层未焙烧陶瓷带上面,印刷厚膜电功能糊的未焙烧图案,组合件同时被焙烧。
26.如权利要求25之方法,其特征为厚膜电功能糊为导体。
27.如权利要求25之方法,其特征为厚膜电功能糊为电阻。
28.焙烧陶瓷坯体时减少X-Y收缩的方法而有序列步骤如下a.设置一个单块,其中有几个未焙烧陶瓷坯体,与n+1个柔性约束层,n为正整数,每一未焙烧陶瓷坯体有一层或多层陶瓷带,其中混入陶瓷固体的研细颗粒,烧结无机接合剂在挥发固体聚合物接合剂中散布,每一约束层有研细的非金属无机固体颗粒,在挥发聚合物接合剂中散布,每一约束层与一相邻陶瓷坯体的表面密切吻合,但陶瓷坯体的烧结无机接合剂,向约束层中渗透不超过50微米;b.将单块在某一温度中焙烧一定时间,使聚合物接合剂从陶瓷坯体与约束层中挥发,形成约束层中的互相连接的孔隙,并将无机接合剂在陶瓷坯体中烧结;c.将焙烧后的单块冷却;d.从烧结陶瓷坯体的表面上清除多孔约束层。
29.一种复合未焙烧陶瓷坯体,包括将陶瓷固体的研细颗粒掺入,并将可烧结的无机接合剂在挥发固体聚合物接合剂中散布,在其表面上附加一个柔性约束层,与之密切吻合,约束层有非金属无机固体研细颗粒,在挥发固体聚合物接合剂中散布,陶瓷坯体的可烧结无机接合剂向约束层中的渗透不超过50微米。
30.一种制造如权利要求29之复合未焙烧陶瓷坯体的方法,包括序列步骤如下a.在未焙烧陶瓷坯体的至少一个表面上施加一个约束层,使约束层在陶瓷坯体的表面上密切吻合,未焙烧陶瓷坯体有研细的非金属无机固体颗粒,在挥发有机介质中散布,介质有固体聚合物接合剂在挥发有机溶剂中溶解,约束层有非金属无机固体研细颗粒,在挥发性聚合物接合剂中散布,陶瓷坯体的可烧结无机接合剂向约束层中渗透不超过50微米。b.通过蒸发将有机溶剂清除。
31.如权利要求30之方法,其特征为将约束层在陶瓷坯体的表面上层压。
32.如权利要求29之复合未焙烧坯体,其特征为至少其一个表面上印刷有厚膜电功能糊的未焙烧图案。
33.如权利要求32之复合未焙烧陶瓷坯体,其特征为厚膜图案印刷在陶瓷坯体的约束层侧上。
34.如权利要求33之复合未焙烧陶瓷坯体,其特征为厚膜图案为导体。
35.如权利要求33之复合未焙烧陶瓷坯体,其特征为厚膜图案为电阻。
36.如权利要求32或33之复合未焙烧陶瓷坯体,其特征为有电阻和导电体图案印刷在坯体上面。
全文摘要
焙烧陶瓷坯体时减小X-Y收缩的方法,有柔性约束层在焙烧时变为多孔,将其加在陶瓷坯体上,柔性约束层在焙烧组合件时,在未焙烧的陶瓷坯体的表面上密切吻合。
文档编号B32B18/00GK1061585SQ911095
公开日1992年6月3日 申请日期1991年10月4日 优先权日1990年10月4日
发明者K·R·米克斯卡, D·T·谢弗 申请人:纳幕尔杜邦公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1