多层光学薄膜的制作方法

文档序号:2425711阅读:1019来源:国知局
专利名称:多层光学薄膜的制作方法
技术领域
本发明
背景技术
本发明涉及一类聚合物薄膜,其中交替的层包括一种晶态的萘二甲酸聚酯和另一种选用的聚合物。
这类薄膜可用来制造通过许多低和高折射率的层之间的相长干涉对光进行反射的光学干涉滤光片。关于光从多层聚合物薄膜上反射的开拓性工作可见Alfrey et.al.,Polymer Engineering AndScience,Vol.9,NO.6,p400-404,Nov.1969,Radford et al.,Polymer Engineering And Scieuce,Vol.13,No.3,p216-221,May,1993和美国专利3,610,729(Rogers)美国专利4,310,584(Cooper等人)描述了聚酯在一种多层晕色反射薄膜中的使用。这种薄膜中是一种高折射率聚合物和一种低折射率聚合物交替组成的迭合层。该种高折射率聚合物是一浇铸非取向薄膜,其材料包括一种热塑性聚酯或共聚聚酯,如聚对苯二甲酸乙二酯、聚对苯二酸丁二酯和各种热塑性共聚聚酯,它们是用一种以上的二醇和/或一种以上的二元酸合成出来的。例如,PETG共聚聚酯是一种由乙二醇和环己烷二甲醇和对苯二酸制备的二醇改性的PET,或者PCTA共聚聚酯是一种环己烷二甲醇与对苯二酸和间苯二酸的酸改性共聚聚酯。最近美国专利5,122,905(Wheatley)叙述了由第一种和第二种性质各异的聚合物材料交替迭合制成的多层反射薄膜,它至少能反射30%的入射光。其单层的光学厚度至少有0.45微米,相邻层的折射率之差至少为0.03。美国专利5,122,906(Wheatley等人)叙述了类似的反射体,其中大多数单层的光学厚度不大于0.09微米或不小于0.45微米,相邻层的折射率之差至少为0.03。美国专利5,126,880(Wheatley等人)也叙述了多层反射体,其一部分层的厚度为0.09-0.45μm,其余层的光学厚度不大于0.09微米或不小于0.45微米。折射率之差至少0.03。所有三个Wheatley的专利均指出,很难制造工作时产生相长干涉而无显著晕色的高聚物材料1/4波长的多层叠。Wheatley′880专利指出,较厚的层可提供均匀的背景反差,使得1/4波长的峰值反射率肉眼看来起不那么显著。
美国专利3,610,729(Rogers)指出,可以将一多层聚合物薄膜制成单轴取向,使其能反射一个偏振面的光,同时基本上透过另一偏振面的光。这个专利描述了一种由交替聚合物层制成的片状偏振器,其中一些层是双折射的,另一些层是各向同性的。在一层中的双折射,基产生办法可以是令多层薄膜沿一方向拉伸而使其中的聚合物分子作单方向取向。多层薄膜被拉伸到获得最大的双折射,此时的限制条件是直至双折射层的折射率等于相邻各向同性层的折射率。聚苯乙烯、聚对苯二甲酸乙二酯、聚砜、聚碳酸酯、聚对二甲苯均被提到是适用材料。美国专利4,525,413(Rogers)描述了在交替层中采用折射率为0.5或更高的双折射聚合物。尽管在Rogers的′413专利中所列举的某些材料有极高的折射率,但这些材料由于透光性和挤出成形性能均差,成本又高,故在制造有用元件时存在一些严重问题。现今商业上提供的偏振器是基于取向染色聚合物薄膜(吸收偏振器),或是基于倾斜薄膜偏振器(MacNeille偏振器)。在吸收偏振器中,有一个偏振面的光被吸收转变为热,而倾斜薄膜偏振器的作用是反射偏振器。多宜采用反射偏振器,这是由于两个原因。首先,反射使热操作的问题减至最小,特别当偏振器用于液晶显示(LCD)投影系统时这很重要。其次,可使反射光的偏振面重新取向,从而增加一个偏振的光学通过量。
对于大面积器件,标准的倾斜薄膜偏振器显得体积太大,因此吸收偏振器是现在唯一的选择。但吸收偏振器除了有上述的热操作问题外,它在炽烈的光作用下,其染料还会褪色,还有聚乙烯醇(PVA)基聚合物熔化温度低以及PVA水溶性这些缺点。美国专利4,756,953(Utsumi)叙述了将一种二色性染料掺入到单轴取向的聚萘二甲酸乙二醇酯(PEN)。PEN的优点是它与通常的PVA基聚合物比较,熔化温度较高,水溶性较低。
通过在微棱柱体基材上引继沉积薄层,倾斜薄膜偏振器可以缩减为0.020英寸厚的薄膜(M.F.Weber,“Retroreflecting SheetPolarizer”,SID Conf.Proceedings,Boston,Massachusetts,May1992,p.427;M.F.Weber,“Retroreflecting Sheet Polarizer”,SID Conf.Proceedings,Seattle,Washington,May 1993,p.669)。这类偏振器的特点是成本颇高,因为用到真空沉积技术。
EPO专利申请488,544也叙述了一种由性质相异的聚合物层交替而成的偏振器。该偏振器的许多交替的取向层中至少有两种聚合物材料,它们的非零应力光学系数应差别足够大,能在不同聚合物材料之间产生折射率的失配。PEN被认为是一种合适的聚合物,据称它具有负的应力光学系数,表明PEN在拉伸方向上比相邻层的折射率小。
本发明简述本发明涉及一类多层聚合物的薄膜,它由许多交替层的一种晶态萘二甲酸聚酯和另一种选用的聚合物构成,其中层的厚度小于0.5微米,晶态萘二甲酸聚酯沿至少一个面内轴的折射率比所选用聚合物相邻层的折射率高。


本发明将结合附图作进一步说明。
图1a和1b是本发明偏振器的示意图。
图2是本发明PEN和共聚PEN(coPEN)的折射率曲线图。
图3是50层PEN/coPEN薄膜叠层根据图2中折射率计算机模拟的百分透射率曲线图。
图4是等双轴拉伸的300层PEN/coPET反射镜的计算机模拟的百分透射率曲线图。
图5是本发明51层I.R.偏振器所测百分透射率的曲线图,其一级峰值在1300nm附近。
图6是8个本发明51层偏振器叠压在一起的所测百分透射率的曲线图。
图7是本发明204层偏振器所测百分透射率的曲线图。
图8是2个本发明204层偏振器叠压在一起的所测百分透射率的曲线图。
图9是本发明的一种投影机的示意图。
图10表示一两层薄膜叠压,其中有一个界面。
图11和12表示一单轴双折射系统在折射率为1.60的介质中反射率随角度的变化。
图13表示一单轴双折射系统在折射率为1.0的介质中反射率随角度的变化。
图14、15和16表示一单轴双折射系统面内折射率与z轴折射率的各种关系。
图17表示两种不同的单轴双折射系统的离轴反射率与波长的关系。
图18表示一双轴折射薄膜中引入y轴反射率差别的影响。
图19表示一双轴折射薄膜中引入z轴反射率差别的影响。
图20是概括图18和19中数据的等高线图。
图21-26表示反射镜实施例中那些多层反射镜的光学性能。
图27-30表示偏振器实施例中那些多层偏振器的光学性能。
图1a、1b和9并非按比例绘制,所有的图均仅供说明,并无限制作用。
说明性实施方案的详述如图1a和1b所示,本发明包括一含有多层聚合物的薄膜10,它含有两相交替的晶态萘二甲酸聚酯(如2,6聚萘二甲酸乙二醇酯(PEN))层12和一选用聚合物的层14,该薄膜可作反射性偏振器或反射镜之用。将PEN/选用聚合物的这种薄膜在一定范围的单轴乃至双轴取向上进行拉伸,就产生了对不同取向平面偏振入射光具有一定范围反射率的薄膜。若双轴拉伸,薄膜可沿两个正交的轴作非对称拉伸或对称拉伸,以获得所需的偏振性能和反射性能。
对偏振器而言,薄膜的取向最好是沿单一的方向拉伸,结果PEN层的折射率,对于偏振平面平行于取向方面和平行于横断方向的入射光束就有很大的差别。与面内轴(与薄膜表面平行的轴)相关的折射率,对于其偏振平面平行于该轴的平面偏振入射光来说,乃是有效的折射率。取向方面是指薄膜拉伸的方向,而横断方向是指在薄膜平面中与薄膜取向方向成正交的方向。
PEN是一种适用的材料,由于它有很大的正应力光学系数和拉伸后的永久双折射,而其对550nm波长的偏振入射光的折射率,当偏振平面平行于拉伸方向时,由约1.64增加至约1.9。图2表示在拉伸比为5∶1条件下,PEN和70-萘二甲酸酯/30-对苯二甲酸酯共聚聚酯(coPEN)的不同面内轴上的折射率的差别。图2中,下部曲线上的数据代表PEN在横断方向的和coPEN的折射率,而上部曲线代表PEN在拉伸方向上的折射率。在可见光谱范围,PEN在此两个方向的折射率之差为0.25至0.40。可以通过增加分子取向来增加双折射(折射率的差异)。PEN的热稳定温度范围可高达155℃,乃至230℃,视应用的收缩要求而异。虽然在上面曾特别提到PEN是适用的聚合物,但聚对苯二酸丁二酯也是一种合适的材料,其它一些晶态的萘二甲酸聚酯也然。该晶态萘二甲酸聚酯对于不同的两个面内轴的折射率,其差别至少应有0.05,最好大于0.20。
可以在萘二甲酸聚酯中代入少量的共聚单体,只要其在拉伸方向的高折射率基本上不受影响。在折射率上一定程度的下降(因此反射率也有一定下降)可以因下述的好处获得补偿与所选聚合物层粘结性的改善,较低的挤出成形温度,熔体粘度的较佳匹配,对于拉伸而言玻璃化转变温度的较佳匹配。适合的单体有基于间苯二甲酸、壬二酸、己二酸、癸二酸、二苯甲酸、对苯二甲酸、2,7-萘二甲酸、2,6-萘二甲酸或环己烷二甲酸的单体。
本发明的PEN和选用的聚合物树脂,最好应具有相近的熔体粘度,为的是进行均匀的多层共挤出。这两种聚合物在有代表性的剪切速率条件下,熔体粘度宜相差不到4倍。
本发明的PEN层和适合选用的聚合物层之间具有良好的粘结性能,同时在多层薄膜中仍保留为分立的层。
本发明两种聚合物的玻璃化转变温度是相容的,因此不会发生诸如拉伸时有一组聚合物层发生开裂等不良的效应。所谓相容,是指所选用的聚合物的玻璃化转变温度比PEN的玻璃化转变温度低,但也可略高些,然而不得高40℃。
最好的是,层厚为1/4波长厚度,而不同的层组是设计来反射不同的波长范围。每一层不一定恰为1/4波长厚度。最重要的要求是高折射率和低折射率的相邻两层的总光学厚度为0.5波长。具有示于图2折射率差别的50层PEN/coPEN叠层的薄膜(其层厚度选为550nm波长的1/4),其带宽大约为50nm。这种50层的叠层在此波长范围大约有99%的平均反射率,其吸收测量不出。图3所示的计算机模拟曲线给出1%透射率(99%反射率)。图3-8给出了百分透射率的数据。应该理解,由于本发明的薄膜并无可测出的吸收,所以百分反射率可由下列公式近似给出百分反射率=100-百分透射率较优选用的聚合物层14在折射率上是各向同性的,并且与PEN层在横断方向的折射率基本上匹配,如图1a所示。偏振平面在此方向的光将由这种偏振器主要透过,而偏振平面在取向方向的光则被反射,如图1b所示。
此外,本发明的反射性偏振器还可用作红外线的薄片偏振器。关于红外线薄片偏振器的需要情况可见Baba等人的文章(Optics Let-ters,Vol.17,No.8,p622-624,April 15,1922)。Baba等人描述的偏振器,其制法是拉伸嵌埋有许多金质小岛的玻璃薄膜。但是这种偏振器的工作原理是共振吸收现象,故并非反射性偏振器。
本发明的反射性偏振器即偏光镜可用于一些光学元件如眼镜、反射镜和视窗中。这种偏振器的特点是外观如镜,这用在太阳眼镜上是很时髦的。此外,PEN对紫外光是很好的过滤器,能有效地吸收紫外线直至与可见光谱接界的波长。对于偏振器,这些PEN/选用聚合物层最好至少在一个轴上的折射率基本上相等。有了在此轴(一般是横断方向的轴)折射率的匹配,结果在该偏振平面的光就基本上不产生反射。选用聚合物的层也可能在拉伸方向上折射率产生了减少。选用聚合物负双折射,其优点是增加了相邻层的取向轴向折射率之差,而偏振平面与横断方向平行的光的反射仍然可以不计。拉伸之后,相邻层的横断方向折射率之差应小于0.05,最好小于0.02。另一可能是选用的聚合物具有一定程度的正拉伸双折射,但这一现象可藉热处理加以减轻,使得与PEN层的横断方向折射率相匹配。该热处理温度不应太高以致减少PEN层中的双折射。
本发明偏振器的选用聚合物,宜用一种萘二甲酸或其酯如萘二甲酸二甲酯(占20-80摩尔%)和间苯二甲酸或对苯二甲酸或它们的酯如对邻苯二甲酸二甲酯(占80-20摩尔%)与乙二醇的反应产生的共聚聚酯。属本发明范围的其它共聚聚酯均具有上面讨论的性质,其在横断方向的折射率约为1.59-1.69。当然所用的共聚聚酯必须是能与PEN共挤出的。其它适用的共聚聚酯是基于间苯二酸、壬二酸、己二酸、癸二酸、二苯甲酸、对苯二酸、2,7-萘二甲酸、2,6-萘二甲酸或环己烷二甲酸的。在共聚聚酯中,其它适合作为二醇反应物的有丙二醇、丁二醇、新戊二醇、聚乙二醇、1,4-丁二醇、二甘醇、环己烷二甲醇、4-羟基联苯酚、双酚A、1,8-二羟基联苯、1,3-二(2-羟乙氧基)苯等。在制备适用的共聚聚酯时,单体的折射率的体积平均是一个合适的参考值。此外,其玻璃化转变温度与PEN的玻璃化转变温度相容,其横断方向折射率约为1.59-1.69的共聚碳酸酯也可用作本发明的选用聚合物。在挤压系统中通过两或多个聚合物的酯交换作用生成共聚聚酯或共聚碳酸酯是获得可行的选用聚合物的另一条途径。
制造反射镜时,两块单轴拉伸的偏振薄膜10的设置是它们各自的取向轴相差90°,或者偏振薄膜10是双轴拉伸的。在后者的情况,在薄膜平面的PEN两个折射率都增加,而所选用的聚合物应具有尽可能低的折射率,从而能反射两个偏振面的光。将多层薄膜双向拉伸,会造成与对该两轴平行的平面上相邻层的折射率之间产生差别,结果引起在这两个偏振方向平面上光的反射。双轴拉伸PEN层会使这两个拉伸轴的折射率由1.64只增至1.75,而单轴的值是1.9。因此对于制造反射率为99%(故无可察觉的晕色)的介电反射镜,用低折射率的coPEN作为选用聚合物是很适宜的。光学模拟的结果表明,用折射率大约1.55可以做到。层厚标准偏差为5%的一300层薄膜(以其6个重叠的1/4波长叠层用来覆盖可见光谱的一半)具有图4所示的预期性能。较大程度的拉伸对称性就使得器件具有较为对称的反射性能和较小的偏振性能。
为了增加反射率或光学带宽,或为了增加两者,可以复合使用本发明的两块或多块薄膜。如果薄膜中层对的光学厚度基本上相等,此复合器件会以较大的效率。与单块薄膜基本上相同的带宽和反射谱范围(即“带”),进行反射。若薄膜中层对的光学厚度不是基本上相等,此复合器件比单块薄膜反射的带宽更宽。将反射镜薄膜与偏振器薄膜结合的复合器件对增加总的反射而仍能使透射光偏振化是有用的。也可以非对称地双轴拉伸一单块薄膜,使其具有选择性的反射和偏振性能。
用于双轴拉伸反射镜用途的较好选用聚合物是基于对苯二酸、间苯二酸、癸二酸、壬二酸或环己烷二甲酸的,这就可达到尽可能低的折射率,同时仍保持其与PEN层有良好的粘结性。也可仍采用少量萘二甲酸来改进其与PEN层的粘结性。二醇组分则可按前面所述取用。选用聚合物的折射率宜小于1.65,小于1.55尤为适宜。
选用聚合物不一定必需是共聚聚酯或共聚碳酸酯。由一些单体如乙烯基萘、苯乙烯、乙烯、马来酸酐、丙烯酸酯、甲基丙烯酸酯等制成的乙烯基聚合物或共聚物也可采用。聚酯和聚碳酸酯以外的缩聚物也可采用,例如有聚砜、聚酰胺、聚氨酯、聚酰胺酸、聚酰亚胺。萘基和卤素如氯、溴、碘对增加选用聚合物的折射率至所需值(1.59-1.69)是有用的,这种折射率增加是为了对于偏振器与横断方向上的PEN折射率相匹配。丙烯酸酯基与氟对于反射镜用途的折射率降低特别有用。
图9表示在一投影仪30中本发明多层光学薄膜作用热镜的使用。该投影仪30是透射型的,与通常投影仪的许多特点相同。它包括基架32和投射头34。投射头34藉一臂(图中未示)与基架32相连,该臂可藉一普通调节装置升降,令投影头34朝着基架32或离开它移动。基架32中有光源36、电源(图中未示)、某些光学器件如反射镜38将光投向到投射台40上。普通投影仪中的投射台40上是一块透明的板如玻璃,其中一般还装有至少一个菲涅耳透镜供将光聚焦到投影头34上。如果具有图象的透明软片放在投射台40上。该图象就被通常的光学器件例如装在投影头中的反射镜42和透镜44收集并投射到例如一个附近的投射屏或墙面上。
将本发明的反射镜46用在此投影仪中是十分有益的,因为它在透射可见光的同时能将产生热量的红外线由光源36发出的光中反射掉。当用来反射红外线时,反射镜46就作为热镜使用。对于白炽光源来说,这尤其重要,因为其发射能量的85%是红外波长的。未加控制的红外能量会使投射台40上所放置的厚的透明软片或LCD投射板受热过度。当用作热镜时,反射镜46通常放在投射台40和光源36之间。反射镜46可以是个独立的器件,也可作为涂层施涂到放在光源和投射台的一个光学器件上面。
反射镜46也可在投影仪30中用作冷镜,即反射可见光而透射红外光的镜子。本发明的反射镜也可作为一折叠镜(图中未示)放在光源36和投射台40之间。对于可见光,多层冷反射镜的反射率可达95%。本发明的反射镜还可以作为冷镜涂层施加在球形凹反光器的表面上,例如反光器38,它置于光源36的后面用来将发自光源的可见光收集并重新投影出去,同时能透射红外射线。
令挤出薄膜取向的做法是将其在热空气中拉伸。为了生产经济起见,拉伸可在一标准长度的取向机、拉幅机窑炉或在这两种设备中连续进行。这样就可获得标准聚合物薄膜生产在规模上和生产线速度上的经济性,此时制造成本显著低于商业上吸收性偏振器的制造成本。
为改善反光性或增大带宽,或者为从两个偏振器制造一反射镜,将两个或多片薄膜叠压在一起是有利的。无定形共聚聚酯可用作叠压材料,Goodyear Tire and Rubber Co.的VITEL Brand 3000和3300据报导是曾试验过的材料。叠压材料的选择范围很广,只要根据其对薄膜10的粘结性,光学洁净性、与空气的隔离作为主要的指导原则。
也可能对一层或多层添加一种或多种无机或有机的辅剂,如抗氧化剂、挤出助剂、热稳定剂、紫外线吸收剂、成核剂、表面投影形成剂(Surface projectoon forming agent)等,其加入量为常量,只要其加入不致显著影响本发明的性能。
下面一些实施例仅供说明,决非对本发明有何限制作用。
实施例1PEN和一种70萘二甲酸酯/30对苯二甲酸酯共聚聚酯(coPEN)在一标准聚酯树脂釜中用乙二醇作为二醇合成出来。PEN和coPEN的特性粘度均约为0.6dl/g。挤压出PEN和coPEN的单层薄膜,然后对其在大约150℃进行单轴拉伸,拉伸时两个边缘加以箝制。在挤出时,PEN显示的各向同性折射率约为1.65,coPEN的各向同性折射率约为1.64。所谓各向同性是指在薄膜平面上的任何轴向上,折射率均基本上相等。这两个折射率数值均系对波长550nm而测的。经过拉伸比为5∶1的拉伸后,PEN在取向轴方向的折射率增至约1.88,而其横断方向的折射率微降至1.64。coPEN薄膜的折射率在5∶1拉伸之后仍为各向同性,数值约为1.64。
然后由PEN和coPEN的交替层制造出满意的多层偏振器,其方法是通过一个51槽的进料头进行共挤出,该进料头向一标准挤压模供料。挤出是在大约295℃进行。PEN的挤出速度约为23磅/小时,coPEN的挤出速度约为22.3磅/小时。PEN表层的厚度约为挤出膜中诸内层厚度的三倍。所有内层具有1/4波长光学厚度(对1300nm的光)。这51层的薄膜挤出铸成厚约0.0029英寸,然后在约150℃以5∶1的拉伸比进行单轴拉伸,拉伸时其两边缘受到箝制。拉伸后的薄膜厚度约0.0005英寸。
然后在约230℃的空气炉内将经拉伸的薄膜进行热定形30秒钟。对拉伸后的薄膜和再经热固化的薄膜,其透射率曲线基本上相同。
图5表示此51层的薄膜所测的百分透射率,图中50的曲线是取向方向,52的曲线是横断方向,均为热定形之前。
将8片上述制造的51层偏振器用一液体结合形成一408光学层的偏振器,该液体能去除层间的空气隙。图6表示在取向方向(54)和横断方向(56)由350至1,800nm的百分透射率。
实施例2制成一满意的204层的偏振器,其制法是先如实施例1所述通过51槽进料头进行PEN和coPEN的挤出,然后在挤压中采用串联的双层加倍倍增器(doubling multipliers)。这些倍增器将由进料头出来的挤出物料分成两股半宽的物料流,然后将它们互相叠置起来。美国专利3,565,985描述了类似的共挤出倍增器。挤出在大约295℃进行,PEN的进料速度为22.5磅/小时,特性粘度为0.50dl/g;coPEN的进料速度为16.5磅/小时,特性粘度为0.60dl/g。挤出铸成的薄膜厚约0.0038英寸,在空气温度为140℃条件下两侧箝制地以5∶1的拉伸比进行单轴拉伸。除表层外,所有的层对均为1/2波长光学厚度(对550nm的光)。在图7的透射率曲线上,对于取向方向(60)有两个反射峰,两峰分立在550nm两侧。这双峰现象很可能是层倍增器引起的薄膜误差所致,而宽的背景则是挤出铸塑整个过程中累积薄膜误差的结果。横断方向的透射率曲线用数字58表示。将两块这种薄膜用一光学粘结剂叠在一起,可以很大地改善偏振器的光学消光。
将上述制造的两片204层偏振器用一种光学胶粘剂用手叠在一起,制成一408层的薄膜。该胶粘剂的折射率与各向同性的coPEN层的折射率应匹配。如图8所示,那些在图7所见的反射峰已经趋于平缓。这是因为对薄膜的不同区域,峰值反射混乱地发生在不同波长。这一现象常称为“晕色”。将两个薄膜叠置会减少晕色,因为此时不同薄膜之间的颜色上的随机差异并不匹配因而趋于抵消。
图8表示取向方向(64)和横断方向(65)上的透射率数据。对450到650nm波长范围,一个偏振面上百分之八十的光被反射。
晕色现象实质上是薄膜层的某一区域与相邻区域之间不均匀性的度量。只要有完善的厚度控制,集中用在一个波长的层叠薄膜,其整个样品不会产生颜色差异。多层薄膜用于反射整个可见光谱的光,如果由于层厚有误差因而有随机不同波长的相当量的光通过随机不同的区域漏泄的话,就会产生晕色。由于本发明聚合物体系的层之间有相当大的折射率差别,所以在薄膜中采用适当多的层数即可使其反射率大于99%。如果在挤出过程中能保证较好的厚度控制,这在消除晕色方面即有很大益处。计算机模拟的光学结果表明,只要层厚的值能控制在其标准偏差小于或等于10%,PEN/coPEN偏振器的薄膜仅用600层,就能在可见光谱的大部分波长范围获得大于99%的反射率。
多层薄膜的光学性能多层薄膜10的光学性能,如在上面图1a和1b中所示的,现对其作更为一般的描述。多层薄膜10中可有成百乃至成千的层,而每一层可由许多种不同材料中的任一种制成。对一特定薄膜,赖以选择其所用材料的特性则取决于该薄膜所需的光学性能。
薄膜中所含的材料种类数可以与其层数相等。但为制造方便计,适用的光学薄膜只含有为数不多的不同材料。为说明起见,本发明将叙述含有两种材料的多层薄膜。
不同材料之间,或者化学上相同但物理性质不同的材料之间,其边界可以是陡然的,也可以是渐变的。除了有解析解的某些简单情况外,对于折射率呈连续改变成层介质的后者情况(层性质渐变的情况)的分析,通常视为该介质含有非常多的均匀薄层,这些薄层有明显边界,但相邻层之间性质仅呈很小的改变。
在与任一膜面方面呈任一入射角的反射行为取决于薄膜中所有层的折射率。若我们假设薄膜中所有的层均接受相同的加工条件,则只需考虑双组分层的一个单一界面来了解整个多层薄膜的行为随入射角的变化。
为简单起见,仅讨论一个界面处的光学行为。但应理解,按照本发明所述原理制成的实际多层薄膜中可以有千百层。为了描述例示图10所示的一个界面的光学行为,要先作出对于s和p偏振光,反射率随着入射角度变化的关系图,该入射角在包含z轴和一个面内光学轴的入射平面之内。
图10表示形成一个界面的两个材料层,这两个材料层均浸在一种折射率为n。的各向同性介质中。为说明简便计,这里的讨论仅指一种正交多层双折射体系,其两个材料的光轴均取向为一个光轴(z)垂直于薄膜平面,另两个光轴则沿x和y轴。但应知这些光轴无需是正交的,非正交系统也在本发明的精神和范围之内。而且还应知这些光轴也无需与薄膜的轴重合这一点在本发明的范围之中。
计算任何厚度的薄膜叠层的光学行为的基本数学单元,乃是人们熟知的各个层界面的菲涅耳反射和透射系数。菲涅耳系数是根据对于s和p偏振光不同的公式给出一给定界面对于任意入射角的反射率的大小。
介电界面的反射率随入射角而变化,且对各向同性材料,对p和s偏振光也有很大的不同。p偏振光的反射率极小是由于所谓的布鲁斯特效应,而反射率趋于零的角度称为布鲁斯特角。
对于任意入射角,任一叠层薄膜在反射行为取决于其所有层的介电能量。对这一问题的一般理论处理可见1987年由North-Hol-land出版的R.M.A.Azzam和N.M.Bashara一书“Ellipsometryand Polarized Light”。书中结果直接来自人们熟知马克斯韦耳方程。
一个系统的一个界面的反射率,可将其对p和s偏振光的反射系数的绝对值进行平方,分别由式1和计算。式1和式2是对两分量轴重合的单轴正交系统适用的。1)rpp=n2z*n2o(n1z2-no2sin2θ)-n1z*n1o(n2z2-no2sin2θ)n2z*n2o(n1z2-no2sin2θ)+n1z*n1o(n2z2-no2sin2θ)]]>2)rss=(n1o2-no2sin2θ)-(n2o2-no2sin2θ)(n1o2-no2sin2θ)+(n2o2-no2sin2θ)]]>式中θ在各向同性介质中测量。
在单轴双折射系统中,n1x=n1y=n1o,且n2x=n2y=n2o。
对双轴双折射系统,式1和式2只对其偏振平面平行于x-z或y-z平面的光(如图10所示)才适用。因此对双轴系统,对x-z平面中的入射光,式1(对p偏振光)中n1o=n1x,n2o-n2x,式2(对s偏振光)中n1o=n1y,n20=n2y。对y-z平的中的入射光,式1(对p偏振光)中n1o=n1y,n2o=n2y,式2(对s偏振光)中n1o=n1x,n2o=n2x。
式1和2表明,折射率依赖于薄膜叠层中每一材料的x,y,z方向的折射率。在各向同性材料中,三个折射率均相等,即nx=ny=nz。nx,ny,nz的关系决定材料的光学特性。根据这三个折射率间的不同关系,可将材料分为三个大类各向同性的,单轴双折射的,双轴双折射的。
单轴双折射材料定义为该材料在一方向的折射率与其它二方向的折射率不同。在本讨论中,我们讨论单轴双折射系统即取nx=ny≠nz。x轴和y轴定义为面内轴,因此对称的nx,ny称为面内折射率。
产生单轴双折射率系统的一个方法是对一聚合物多层材料进行双轴拉伸(即沿两个方向拉伸)。其结果是对于平行于两个轴的平面,相邻层的折射率产生差别,因而在两个偏振面均产生光的反射。
单轴双折射材料的单轴双折射可以是正的或负的。当z轴折射率大于面内折射率(nz>nx,nz>ny),产生正的单轴双折射,反之产生负的单轴双折射。
双轴双折射材料定义为该材料在所有三个轴的折射率均不相等,即nz≠ny≠nz。这里nx和ny也称为面内折射率。双轴双折射系统的制法可是将多层薄膜沿一个方向拉伸,即作单轴拉伸。在本讨论中,拉伸方向作为x方向。
单轴双折射系统(反射镜)现讨论单轴双折射系统的光学性质。如前所述,单轴双折射材料的一般条件是nx=ny≠nz。即图10中的层102和104都是单轴双折射的,n1x=n1y,n2x=n2y。讨论中设层102的面内折射率大于层104,即在x,y方向上n1>n2。可以改变n1z和n2z的值来引入不同程度的正或负双折射,从而调节单轴双折射多层系统的光学行为。
上面的式1可以用来求出如图10所示的两层单轴双折射系统中单一界面的反射率。对于s偏振光,不难证明式2与各向同性薄膜这一简单情况(nx=ny=nz)的公式相同,因此只需考察式1。为说明起见,对两层的折射率给以某些特定但也通常的数值。令n1x=n1y=1.75,n1z=变量,n2x=n2y=1.50,n2z=变量。为在这系统中能给出各种可能值的布鲁斯特角,设周围各向同性介质的no=1.60。
图11给出由各向同性介质入射到双折射层的p偏振光的反射率与角度的曲线,系对n1z数值上大于或等于n2z(n1z≥n2z)的情况。图11的曲线是对于下列的z轴折射率数值a)n1z=1.75,n2z=1.50;b)n1z=1.75,n2z=1.57;c)n1z=1.70,n2z=1.60;d)n1z=1.65,n2z=1.60;e)n1z=1.61,n2z=1.60;f)n1z=1.60=n2z。随着n1z接近n2z,布鲁斯特角(折射率趋于零的角)就增大。曲线a-e与角度的依赖性很大。但当n1z=n2z(曲线f),反射已无角度依赖性,即曲线f的反射率对所有入射角均恒定。在该点,公式1即化为与角度无关的形式(n2o-n1o)/(n2o+n1o)。当n1z=n2z,已无布鲁斯特效应,对一切入射角,反射率均相等。
图12给出n1z数值上小于或等于n2z时反射率随入射角变化的曲线。光是由各向同性介质进入双折射层。对此情况,反射率是单调地随入射角而增大。这是对s偏振光观察到的行为。图12的曲线a表示s偏振光的一种情况、曲线b-e则表示各种不同值nz的p偏振光的情况b)n1z=1.50,n2z=1.60;c)n1z=1.55,n2z=1.60;d)n1z=1.59,n1z=1.60;e)n1z=1.60=n2z。这里当n1z=n2z(曲线e),也无布鲁斯特效应,对一切入射角,反射率不变。
图13与图11,图12相同,但是入射介质的折射率no=1.0(空气)。图13的曲线是对于p偏振光,一个正单轴双折射材料(折射率n2x=n2y=1.50,n2z=1.60)和一个负单轴双折射材料(n1x=n1y=1.75,n2z依序为a)1.50;b)1.55;c)1.59;d)1.60;f)1.61;g)1.65;h)1.70;i)1.75)之间的单一介面的情况。如图11和12一样,这里也是当n1z与n2z相等时(曲线d),反射率与角度无关。
图11、12、13表明,由一种类型的行为转变为另一种类型发生在一层的z轴折射率与另一层的z轴折射率相等时,对几种正和负单轴双折射的组合以及对于各向同性材料,情况是如此。还会发生布鲁斯特角移到较大值或较小值的其它情况。
面内折射率和z轴折射率之间各种可能的关系表示于图14、图15、图16中。纵轴表示折射率的相对值,横轴仅仅是对不同的情况分别进行讨论。这每个图均在左面从两片各向同性薄膜开始(z轴折射率等于面内折射率)。由左向右,面内折射率保持不变。但各种z轴折射率增加或减小,表示着正或负双折射的相对大小。
根据图11、12、13,将上面所述的情况表示于图14中。材料1的面内折射率大于材料2,材料1具有负双折射(n1z小于面内折射率),材料2具有正双折射(n2z大于面内折射率)。相应于布鲁斯特角消失并且折射率对于一切入射角不变的点是位于两个z轴折射率相等之处。这个点对应于图11的曲线f、图12的曲线e或图13的曲线d。
图15中,材料1的面内折射率大于材料2,但材料1的双折射是正的,而材料2双折射是负的。在此情况下,布鲁斯特极小只能向低角度偏移。
图14和图15在两个薄膜中有一个薄膜是各向同性的极限情况下都是有效的。这两种情况,一是材料1为各向同性而材料2为正双折射,二是材料2为各向同性而材料1为负双折射。不产生布鲁斯特效应的点是当双折射材料的z轴折射率等于各向同性薄膜折射率之时。
另一情况是两个薄膜均属同一类型,即两个都是负或正折射的。图16是两个薄膜均为负双折射的情况。但应知两个均是正折射与图16的均是负双折射的情况类似。与前一样,只当一个薄膜的z轴折射率等于或相交于另一薄膜的z轴折射率时,布鲁斯特极小消失。
还有一个情况是两种材料的面内折射率相等,但z轴折射率不同,此时(即图14-16所示的三种情况的一小类),对于s偏振光在任意角度均无反射,而对于p偏振光,反射率随入射角而单调增大。这种类型的器件,随入射角增大,其p偏振光反射率增大,但对s轴偏振光都是透明的。这种器件可称为“p-偏振器”。
本领域的技术人员不难知道,上述描述单轴双折射系统行为的原理可用来为种种用途产生所需的光学效应。可以调节多层薄膜中各层的折射率来生产具有所需光学性能的器件。可以采用种种不同的面内折射率和z折射率来制成负和正单轴双折射系统,利用这里所述的原理可以设计制造许多有用的器件。
双轴双折射系统(偏振器)
再结合图10,现描述两元件正交双轴双折射系统。这里的系统也可有许多层,但仍然可以只需考察一个界面的光学行为就能了解整个多层薄膜的光学行为。
可以设计一种双轴折射系统,来产生对于其偏振面平行于一个轴的光在一切入射角情况下都有很高的反射率,并且同时对于其偏振面平行于另一轴的光在一切入射角情况下,反射率都是很低的。结果,这种双轴双折射系统的作用就是偏振器,对于一种偏振光透射,而反射另一种偏振光。只要控制每个薄膜的三个折射率nx,ny,nz,即可获得所需的偏振器性能。
上述的多层PEN/coPEN反射性偏振器是双轴双折射系统应用的一个例子。但应知,一般来说,用来制造这些多层的材料不必一定是聚合物。任何符合所述一般原理的材料均可用来制造这种多层薄膜。
仍结合图10,为便于说明,我们对两层的折射率给出下列的数值n1x=1.88,n1y=1.64,n1z=变量;n2x=1.65,n2y=变量,n2z=变量。x方向称为消光方向,y方向为透射方向。
公式1可用来给出双轴双折射系统在入射平面或为拉伸方向或为非拉伸方向这两种重要情况下其光学性质的角度行为。偏振器在一个偏振方向上是反射镜,而在另一方向上是透过窗。在拉伸方向,具有成百层的多层膜中很大的折射率差别1.88-1.65=0.23对于s偏振光会产生很高的反射率。对p偏振器光,在各个角度的反射率取决于n1z/n2z折射率之差。
在多数用途中,理想的反射性偏振器对于所有的入射角在一个轴向应有很高的反射率,在另一方向的反射率应为零。如果在透过轴出现某种程度的反射,并且对不同波长其反射率不同,则偏振器的效率降低,而且在透射光中有颜色。这两种效果都不好。这一现象的产生是由于z轴折射率有很大的不匹配,即使面内y折射率是匹配的,因此这样所得的系统对p偏振光有大的反射率,而对s偏振光高度透明。这一情况在上述对反射镜的分析中称为“p偏振器”。
图17表示800层PEN/coPEN薄膜对于偏振平面在非拉伸方向的p偏振光的75°反射率(作图时用-Log[1-R]),是反射率对可见光谱(400-700nm)的波长作图。在550nm曲线a的有关折射率为n1y=1.64,n1z=1.52,n2y=1.64,n2z=1.63。这种模型叠层设计是对四分之一波长层对的简单线性厚度级差,即每一层对比前一层对厚0.3%。所有的层给予高斯分布的随机厚度误差,标准偏差为5%。
曲线a表明沿透射轴(y轴)的可见光离轴反射率很高。并且在不同波长有不同的反射率。由于反射率随波长的变化曲线对层厚误差和空间不均匀性很灵敏(就象厚度测微器一样),曲线a就表明是一个外观很不均匀且有色的双轴双折射系统。虽然对某些用途可能需要较高色度,但对那些需要均匀低色度外观的用途,例如LCD显示或其它类型的显示,需要控制离轴颜色的程度。
如果多层薄膜的设计需要对所有可见光波长提供相同的反射率,其结果就是均匀的中性灰色反射。这就需要几乎完善的厚度控制。但可以通过使产生离轴布鲁斯特条件的非拉伸面内折射率(n1y和n2y)不匹配来减小离轴反射率和离轴颜色,同时保持s偏振反射率为最小。
图18测定了对一双轴双折射系统使y轴折射率不匹配来减少沿透射轴的离轴反射率的效果。在n1z=1.52,n2z=1.63(Δnz=0.11)的条件下,对p偏振光是下述条件a)n1y=n2y=1.64;b)n1y=1.64,n2y=1.62;c)n1y=1.64,n2y=1.66。曲线a表示面内折射率n1y和n2y相等时的反射率。该曲线在0°有一反射率极小,但20°后陡然上升。曲线b是n1y>n2y,反射率增加迅速。曲线c是n1y<n2y,在38°有个反射率极小,以后急剧上升。曲线d表明,在n1y≠n2y情况下,s偏振光也发生相当大的反射。图18的曲线a-d表明,要存在一个布鲁斯特极小,y轴折射率不匹配(n1y-n2y)的符号应与z轴折射率不匹配(n1z-n2z)的符号相同。对n1y=n2y的情况,s偏振光的反射率在一切角度均为零。
减小层间z轴折射率的差别,可以进一步降低离轴反射率。若n1z等于n2z,图13表明,在消光轴上如同在法线入射一样,也有一很高的反射离轴角,并且因为两个折射率都匹配(如n1y=n2y,n1z=n2z),所以沿非拉伸轴在一切角度都无反射。
在有些聚合物材料体系中,可能做不到两个y轴折射率和两个z轴折射率的完全匹配。如果在偏振器结构中z轴折射率不匹配,对面内折射率n1y和n2y可能需要微小程度的不匹配。在图19中绘制了另一个例子,设n1z=1.56,n1z=1.60(Δnz=0.04),而y折射率如下a)n1y=1.64,n2y=1.65;b)n1y=1.64,n2y=1.63。曲线c是在这两种条件下s偏振光的情况。曲线a是y轴折射率不匹配符号与z轴折射率不匹配相同的情况,其结果是离轴角反射率最低。
图17的曲线b是在75°入射角条件的800层薄膜的计算离轴反射率,其它条件与图19曲线a相同。将图17的曲线b与曲线a比较,可见对于曲线b的情况,离轴反射率小得多,因此可察觉的颜色也较小。曲线b在550nm有的关折射率是n1y=1.64,n1z=1.56,n2y=1.65,n2z=1.60。
图20是根据公式1绘制的等高线图,它概括了图10对p偏振光所讨论的离轴反射率。对于此图,在非拉伸方向涉及的四个独立折射率已归结为两个折射率不匹配程度Δnz和Δny。此图是由0°至75°相隔15度增量的6个不同角度图的平均。等高线a的反射率为0.4×10-4,等高线j的反射率4.0×10-4,其间相邻等高线的反射率增量相等,为0.4×10-4。这些曲线表明,沿一个光轴的折射率不匹配如何可以用沿另一光轴的折射率不匹配加以抵消。
因此,减少双轴双折射系统的层间z轴折射率不匹配,并/或者引入y轴折射率的不匹配来产生布鲁斯特效应,多层反射性偏振器沿透射轴的离轴反射率可以减小,因而离轴颜色也可减小。
还应指出,使用这里所述的原理还可以设计在狭窄波长范围工作的狭带偏振器。例如,用此原理可制出红、绿、蓝、青绿、品红或黄色频带的偏振器。
材料选择和制造掌握了上述设计原理之后,本领域的普通技术人员不难认识到,许多种类的材料在产生所需折射率关系的条件下进行加工,即可形成本发明的多层反射镜或偏振器。一般而言,所需的是一种材料在一所选方向上应具有与另一种材料不同的折射率。折射率的差别可以用种种方法达到,包括在薄膜形成过程中或之后进行拉伸(例如有机聚合物)、挤出(例如液晶材料)或涂覆。此外,两种材料宜具有类似的流变性质(如熔体粘度),使之能够共挤出。
一般而言,可以选用一种结晶或半结晶有机聚合物作为第一种材料,而也选用一种有机聚合物作为第二种材料来获得适当的材料组合。第二种材料本身可以是结晶的、半结晶的或无定形的,或者还可以具有与第一种材料相反的双折射。
适用材料的一些具体例子有聚苯二甲酸乙二酯(PEN)和其同分异构物(如,2,6-,1,4-,1,5-,2,7-和2,3-PEN),聚对苯二甲酸二酯(例如,聚对苯二甲酸乙二酯、聚对苯二酸丁二酯、聚对苯二甲酸环己烷二甲酯,聚酰亚胺(如,聚丙烯酰亚胺),聚醚酰亚胺,无规聚苯乙烯,聚碳酸酯,聚甲基丙烯酸酯(如,聚甲基丙烯酸异丁酯、聚甲基丙烯酸丙酯,聚甲基丙烯酸乙酯、聚甲基丙烯酸甲酯),聚丙烯酸酯(如,聚丙烯酸丁酯、聚丙烯酸甲酯),纤维素衍生物(如,乙基纤维素、醋酸纤维素、丙酸纤维素、醋酸丁酸纤维素、硝酸纤维素),聚烯烃类聚合物(如,聚乙烯、聚丙烯、聚丁烯、聚异丁烯,聚(4-甲基戊烯),氟化聚合物(如,全氟烷氧基树脂、聚四氟乙烯、氟化乙烯、丙烯共聚物、聚偏二氟乙烯、聚氯三氟乙烯),氯化聚合物(如,聚偏二氯乙烯、聚氯乙烯),聚砜,聚醚砜,聚丙烯腈,聚酰胺,硅酮树脂,环氧树脂,聚醋酸乙烯酯,聚醚酰胺,离子树脂,弹体(如,聚丁二烯、聚异戊二烯、氯丁橡胶),聚氮酯。有些共聚物也适用,如PEN的共聚物(如,2,6-,1,4-,1,5-,2,7-,和/或2,3-萘二甲酸或其酯与(a)对苯二甲酸或其酯;(b)间苯二甲酸或其酯;(c)苯二甲酸或其酯;(d)链烷二元醇;(e)环烷二元醇(如,环己烷二甲醇二醇);链烷二酸;和/或环烷二甲酸(如,环己烷二甲酸)的共聚物),聚对苯二甲酸二酯和共聚物(如,对苯二甲酸或其酯与(a)萘二甲酸或其酯;(b)间苯二甲酸或其酯;(c)苯二甲酸或其酯;(d)链烷二醇;(e)环烷二醇(如环己烷二甲醇二醇);(f)链烷二酸;和/或(g)环烷二甲酸(如,环己烷二甲酸)的共聚物),以及苯乙烯共聚物(如,苯乙烯-丁二烯共聚物、苯乙烯-丙烯腈共聚物),4,4′-联苯甲酸、乙二醇。此外,每单层还可以用两种或多种上述聚合物或共聚物(如SPS和无规聚苯乙烯)的共混物。
就偏振器而言,特别适用的双层组合包括PEN/coPEN、聚对苯二甲酸乙二酯(PEN)/coPEN、PEN/SPS、PEN/SPE、PEN/East-air、PET/Eastair,coPEN是指基于萘二甲酸的共聚物或共混物(如上所述,Eastair是Eastman Chemical Co的聚对苯二甲酸环己烷二甲酯。
就反射镜而言,特别适用的双层组合包括PET/Ecdel、PEN/Ecdel、PEN/SPS、PEN/THV、PEN/coPET、PET/SPS,coPET是指基于对苯二酸的共聚物或共混物(如上所述),Ecdel是EastmanChemical Co的一种热塑性聚酯,THV是3M Co的一种含氟聚合物。
薄膜器件中层数的选择应是使用最少的层数获得所需光学性质,以获得经济效益。对于偏振器和反射镜这两种情况,层数宜少于10,000,少于5,000更宜,少于2,000尤宜。
如前所述,获得所需的各不同折射率之间关系(因而多层薄膜器件的光学性能)的能力是受其制造条件影响的。若是可以进行拉伸的有机聚合物,器件的一般制造方法是将两种聚合物共挤出形成多层薄膜,然后在一选定温度对其拉伸,有时随后还在一选定温度进行热定形。或者挤出步与拉伸步可同时进行。若是制造偏振器,薄膜基本上在一个方向上进行拉伸(单轴拉伸),而对反射镜,薄膜是基本上在两个方向上拉伸(双轴拉伸)。
可以让这个薄膜在垂直于拉伸方向的方向上发生尺寸松弛,此松弛是由垂直于拉伸方向的自然缩减(等于拉伸比的平方根)直到相当于边缘被箝制状态(即垂直于拉伸方向的尺寸无显著变化)。薄膜可用例如一长度拉伸机在纵向进行拉伸,或用一拉幅机在宽度方向拉伸,或沿对角线方向拉伸。
预拉伸温度、拉伸温度、拉伸速度、拉伸比、热定形温度、热定形时间、热定形松弛、垂直于拉伸方向上的松弛等等,均应加选择,以产生具有所需折射率关系的多层器件。这些变量都是互相关联的;例如,可采用较低的拉伸速率,若与例如较低拉伸温度耦合的话。普通技术人员不难对这些变量作适当选择来获得所需的多层器件。但一般来说,偏振器宜用拉伸比1∶2-10(更宜用1∶3-7);反射镜,沿一个轴的拉伸比宜为1∶2-10(更宜为1∶2-8,尤宜为1∶3-7),沿另一轴的拉伸比宜为1∶0.5-10(更宜为1∶1-7,尤宜为1∶3-6)。
适用的多层器件还可以用一些方法如旋转涂布法(如J.Polym.Sci.Part B,301321(1922)中所述)和真空沉积法来制造;后一方法特别适用于制造结晶有机聚合物和无机材料的多层器件。
现通过下面的一些实例描述本发明。在这些实例中,因为光吸收可以忽略,所以反射率等于1减去透射率(R=1-T)。
反射镜例子PETEcdel,601在一顺序平板膜生产线上通过共挤出法,制造出一个含有601层的共挤出薄膜。由一挤出机以75磅/小时的速率提供聚对苯二甲酸乙二酯(PET),其特性粘度为0.60dl/g(60重量%苯酚/40重量%二氯苯);由另一挤出机以65磅/小时的速率提供Ecdel 9966(Eastman Chemical公司的热塑性弹性体)。用供料头法(如美国专利3,801,429所述)产生151层,然后再通过两个倍增器产生601层的挤出物。美国专利3,565,985叙述了共挤出倍增器的范例)。所得的片材然后以拉伸比大约3.6沿长度方向进行拉伸,此时片材温度大约210°F。然后将薄膜在大约50秒内预热至235°F,接着在横断方向以约4.0的拉伸比再进行拉伸,拉伸速率为每秒约6%。将薄膜在400°F的热定形炉中松弛约其最大宽度的5%。这样加工成的薄膜厚度为2.5密耳。
这样铸塑的片材在其空气的一面结构粗糙,其透射率示于图21。以60°角入射的p偏振光百分透射率(曲线b)与法线入射的(曲线a)相似,但有波长偏移。
可作比较,图22表示一种Mearl Corporation制造的薄膜(认为是各向同性材料)对60°角度(曲线b)的p偏振光与法线方向入射的(曲线a)相比,有显著的反射率损失。
PETEcdel,151在一顺序平板膜生产线上通过共挤出法,制造出一个含有151层的共挤出薄膜。由一挤出机以75磅/小时的速率提供聚对苯二甲酸乙二酯(PET),其特性粘度为0.60dl/g(60重量%苯酚/40重量%二氯苯);由另一挤出机以65磅/小时的速率提供Ecdel 9966(Eastman Chemical公司的热塑性弹性体)。用供料头法产生151层,所得的这151层片材然后以拉伸比大约3.5沿长度方向进行拉伸,此时片材温度大约210°F。然后将薄膜在大约12秒内预热至215°F,接着在横断方向以约4.0的拉伸比再进行拉伸,拉伸速率为每秒约25%。将薄膜在400°F的热定形炉中在6秒钟内松弛约其最大宽度的5%。这样加工成的薄膜厚度为0.6密耳。
这个薄膜的透射率表示在图23中。以60°角入射的p偏振光的百分透射率(曲线b)与法线入射的(曲线a)相似,但有波长偏移。在相同的挤出条件下,以较慢的片材速度制造厚约0.8密耳的红外反射薄膜。其透射率见图24,曲线a是法线入射,曲线b是入射角为60°。
PENEcdel,225将铸塑的片材一步挤出,然后在一实验室薄膜拉伸设备上进行拉伸制成含225层的共挤出薄膜。由一挤出机以18磅/小时的速率提供聚萘二甲酸乙二酯(PEN),其特性粘度为0.5dl/g(60重量%苯酚/40重量%二氯苯);由另一挤出机以17磅/小时的速率提供Ecdel 9966(Eastman Chemical公司的热塑性弹性体)。PEN在表层。用供料头法产生57层,然后再通过两个倍增器产生225层的挤出物。所得的铸塑片材厚12密耳,宽12英寸。然后此片材用一实验室拉伸设备进行拉伸,该设备用一类似缩放仪的动臂装置夹住一块正方形薄膜,能以均匀速度在两个方向上同时对其拉伸。在约100℃下将7.46cm见方的薄膜装入该拉伸设备中,然后在60秒内加热至130℃。接着以100%/秒(基于原来尺寸)的速度进行拉伸,直至样品拉伸到3.5×3.5。拉伸完毕后,立即将室温空气鼓吹到样品上令其冷却。
图25表示这种多层薄膜的光学性能,曲线a为法线方向入射,曲线b为60度入射。可注意到60度的p偏振光百分透射率与法线方向入射的相似,但有一定波长偏移。
PENTHV 500,449
将铸塑的片材一步挤出然后在一实验室薄膜拉伸设备上进行拉伸,制成含449层的共挤出薄膜。由一挤出机以56磅/小时的速率提供聚萘二甲酸乙二酯(PEN),其特性粘度为0.53dl/g(60重量%苯酚/40重量%二氯苯);由另一挤出机以11磅/小时的速率提供THV500(3M Co的含氟聚合物)。PEN在表层,并且50%的PEN是在两个表层。用供料头法产生57层,再通过三个倍增器产生449层的挤出物。所得的铸塑片材厚20密耳,宽12英寸。然后此片材用与上述PENEcdel,225实例中相同的拉伸装置,以相同条件进行双向拉伸,不同的仅是拉伸速度为10%/秒。
图26表示这种多层薄膜的透射率,其中也是曲线a为法线入射,曲线b为60度入射。偏振器实例PENCoPEN,449-低色将铸塑的片材一步挤出然后在一实验室薄膜拉伸设备上进行拉伸,制成含449层的共挤出薄膜。由一挤出机以43磅/小时的速率提供聚萘二甲酸乙二酯(PEN),其特性粘度为0.56dl/g(60重量%苯酚/40重量%二氯苯);由另一挤出机以25磅/小时的速率提供一种CoPEN(70摩尔%2,6NDC和30摩尔%DMT),其特性粘度为0.55dl/g(60重量%苯酚/40重量%二氯苯)。PEN在表层。40%PEN是在两个表层中。用供料头法产生57层,再通过三个倍增器产生449层的挤出物。所得的铸塑片厚10密耳,宽12英寸。然后此片材用一实验室拉伸设备进行单轴拉伸,该设备用一类似缩放仪的动臂装置夹住一块正方形薄膜,能以均匀速度在一个方向上对其拉伸,此时在另一方向的边缘上箝制住。在约100℃下将7.46cm见方的薄膜装在该拉伸设备中,然后在60秒内加热至140℃。接着以100%/秒(基于原来尺寸)的速度进行拉伸,直至样品拉伸到大约5.5×1。拉伸完毕后,立即将室温空气鼓吹到样品上令其冷却。
图27表示这种多层薄膜的透射率,曲线a是法线入射的p偏振光的透射率,曲线b是60度入射p偏振光的透射率。注意到在法线与60度入射的p偏振光透射率都很高(85-100%)。因为空气/PEN界面的Brewster角接近60°,故60°入射的p偏振光透射率较大,接近100%,而且曲线c表示在可见光范围(400-700nm),对于s偏振光有很高的消光。
PENCoPEN,601-高色通过挤出成形制造包含601层的共挤出薄膜,两天后在一种与其它实例中所述均不同的拉幅机上进行拉伸,由一挤出机以75磅/小时的速率提供聚萘二甲酸乙二酯(PEN),其特性粘度为0.5dl/g(60重量%苯酚/40重量%二氯苯);由另一挤出机以65磅/小时的速率提供一种CoPEN(70摩尔%,2,6NDC和30摩尔%DMT)。其特性粘度为0.55dl/g(40重量%苯酚/60%重量二氯苯)。PEN在表层。用供料头法产生151层,然后再通过两个倍增器产生601层的挤出物。美国专利3,565,985描述了类似的共挤出倍增器。所有拉伸均在拉幅机上进行。薄膜在约20秒内预热至280°F,然后在横断方向上以大约6%/秒的速度拉伸至拉伸比大约为4.4。薄膜随后在460°F的热定形炉内松弛约其最大宽度的大约2%。这样制成的薄膜厚1.8密耳。
图28表示这种多层薄膜的透射率,曲线a是法线方向入射的p偏振光的透射率,曲线b是60°入射p偏振光的透射率,曲线c是法线方向入射的s偏振光的透射率。注意到在法线与60°入射的p偏振光透射率都很不均匀。而且曲线c表示在可见光范围(400-700nm)对于s偏振光的消光也不均匀。
PETCoPEN,449采用一步挤出成形法制成含有449层的共挤出薄膜,然后在一实验室薄膜拉伸设备上拉伸。由一挤出机以26磅/小时的速率提供聚对苯二甲酸乙二酯(PET),其特性粘度为0.60dl/g(60重量%苯酚/40重量%二氯苯);由另一挤出机以24磅/小时的速率提供EoPEN(70摩尔%2,6NDC和30摩尔%DMT)。PET在表层上。用供料头法产生57层,然后再通过三个倍增器产生449层的挤出物。美国专利3,565,985叙述了类似的共挤出倍增器。这样铸塑的片材厚7.5密耳,宽12英寸。然后将此片材在一实验室拉伸设备上进行单轴拉伸,该设备用一类似缩放仪的动臂装置夹住一块正方形薄膜,以均匀速度放在一个方向上拉伸,此时在另一方向的边缘上箝制住。在约100℃下将7.46cm见方的薄膜装在该拉伸设备中,然后在60秒内加热至120℃。接着以10%/秒(基于原来尺寸)的速度进行拉伸,直至样品拉伸到大约5.0×1。拉伸完毕后,立即将室温空气鼓吹到样品上令其冷却。制成薄膜的厚度约1.4密耳。这种薄膜内部的粘结性很高,能经受拉伸过程,不发生分层。
图29表示这样多层薄膜的透射率。曲线a是法线方向入射的p偏振光的透射率,曲线b是60°入射p偏振光的透射率,曲线c是法线方向入射的s偏振光的透射率。注意到在法线与60°入射的p偏振光透射率都很高(80-100%)。
PENCoPEN,601在一顺序平板膜生产线上通过共挤出法,制造出一个含有601层的共挤出薄膜。由一挤出机以75磅/小时的速率提供聚萘二甲酸乙二酯(PEN),其特性粘度为0.54dl/g(60重量%苯酚/40重量%二氯苯);由另一挤出机以65磅/小时的速率提供CoPEN,该CoPEN是70摩尔%2,6萘二甲酸甲酯、15摩尔%间苯二甲酸二甲酯、15%对苯二甲酸二甲酯与乙二醇的共聚物。用供料头法产生151层,供料头是设计成能产生PEN的光学层厚度比为1.22,CoPEN为1.22的层梯度分布。在此光学叠层和外部对PEN表层共挤出,结果其总厚度占共挤出层的8%。这个光学叠层再用两个顺序倍增器进行倍增。这两个倍增器的标称倍增比各为1.2和1.22。然后将薄膜在大约40秒内预热至310°F,接着在横断方向以约5.0的拉伸比再进行拉伸,拉伸速率为每秒约6%。这样加工成的薄膜厚度为2密耳。
图30表示这种多层薄膜的透射率,曲线a和b分别是p偏振光在法线方向入射和60°入射的透射率,曲线c是s偏振光在法线方向入射的透射率。可以见到法线方向和60°入射的p偏振光的透射率都很高(80-100%)。曲线c表明在可见光范围(400-70nm)s偏振光的消光也很高,在500至650nm,消光几乎为100%。
对于采用57层供料头的实例,所有的层均设计为仅有一个光学厚度(550nm的1/4),但挤出设备会对整个薄膜的各层厚度引入偏差,结果产生带宽颇大的光学性能。在用151层供料头的那些实例中,该供料头是设计成产生能覆盖一部分可见光范围的层厚分布。此时就用非对称倍增器来加宽层厚分布以覆盖可见光范围的大部分,如美国专利5,094,788和5,094,793所述。
尽管本发明已结合上述的较佳实施方案作了叙述。但本领域的技术人员不难认识到在不偏离本发明精神和范围的条件下可以在形式和细节方面进行修改。
权利要求
1.一种多层聚合物的薄膜,它是由许多交替层的一种晶态萘二甲酸聚酯和另一种选用的聚合物构成的第一膜体,其中基本上所有层的厚度小于0.5微米,晶态萘二甲酸聚酯沿至少一个面内轴的折射率比所选用聚合物相邻层的折射率高。
2.如权利要求1所述的薄膜,其中晶态萘二甲酸聚酯是聚萘二甲酸乙二酯。
3.如权利要求1所述的薄膜,其中相邻层的至少一个面内轴的折射率在此多层体经一个方向拉伸以后是基本上相等的。
4.如权利要求3所述的薄膜,其中晶态萘二甲酸聚酯层在薄膜的不同面内轴的折射率相差至少0.05。
5.如权利要求4所述的薄膜,其中晶态萘二甲酸聚酯层沿一薄膜平面在不同面内轴的折射率相差至少0.20。
6.如权利要求3所述的薄膜,其中相邻层沿取向轴的折射率之差至少为0.05。
7.如权利要求6所述的薄膜,其中相邻层沿取向轴的折射率之差至少为0.20。
8.如权利要求3所述的薄膜,该薄膜是一偏振器。
9.如权利要求1所述的薄膜,其中所述的选用聚合物含有萘基团。
10.如权利要求1所述的薄膜,其中所述的选用聚合物是一种共聚聚酯或共聚碳酸酯。
11.如权利要求10所述的薄膜,其中该共聚聚酯是占20-80摩尔%的萘二甲酸或其酯和占80-20摩尔%的间苯二甲酸或对苯二甲酸或它们的酯与乙二醇的反应产物。
12.如权利要求10所述的薄膜,其中选用的聚合物具有的玻璃化转变温度比晶态萘二甲酸聚酯的玻璃化转变温度低。
13.如权利要求1所述的薄膜,其中选用的聚合物经单轴拉伸后其横向轴的折射率大约为1.59-1.69。
14.如权利要求1所述的薄膜,其中选用的聚合物是间苯二甲酸、壬二酸、己二酸、癸二酸、二苯甲酸、2,7-萘二甲酸、2,6-萘二甲酸或环己烷二甲酸的反应产物。
15.如权利要求1所述的薄膜,其中选用的聚合物是乙二醇、丙二醇、丁二醇、新戊二醇、聚乙二醇、1,4-丁二醇、二甘醇、环己烷二甲醇、4-羟基联苯酚、双酚A或1,8-二羟基联苯、1,3-二(2-羟乙氧基)苯的反应产物。
16.如权利要求1所述的薄膜,该薄膜是经单轴拉伸的。
17.如权利要求1所述的薄膜,该薄膜是经双轴拉伸的。
18.如权利要求17所述的薄膜,其中选用的聚合物的折射率小于1.65。
19.如权利要求17所述的薄膜,其中选用的聚合物的折射率小于1.55。
20.如权利要求1所述的薄膜,该薄膜体是装入另一光学元件的。
21.如权利要求1所述的薄膜,它还含有由许多交替层的一种晶态萘二甲酸聚酯和另一种选用的聚合物构成,其中层的厚度小于0.5微米,晶态萘二甲酸聚酯沿至少一个面内轴的折射率比所选用聚合物相邻层的折射率高,该薄膜是第一膜体和第二膜体互相叠合而成。
22.如权利要求21所述的薄膜,其中第一膜体的频带与第二膜体的频带基本上相等。
23.如权利要求21所述的薄膜,其中第一膜体的频带与第二膜体的频带不同
24.如权利要求21所述的薄膜,其中两个膜体均经一个方向的拉伸,并且其叠置的位置应使它们各自的取向轴互成90°。
25.如权利要求21所述的薄膜,其中一个所述膜体经过单轴拉伸,另一膜体经过双轴拉伸。
26.如权利要求25所述的薄膜,其中所述经双轴拉伸的膜体是沿正交轴非对称拉伸的。
27.如权利要求25所述的薄膜,其中所述经双轴拉伸的膜体是沿正交轴对称拉伸的。
28.一投影机,它包括一个基架;一个与基架相连,能够使图象投影的投影头;一个位于基架上的投影台,上面放置着图象软片供投影头进行投影之用;一个在基架内部的光源;一块多层的聚合物薄膜,它由许多交替层的一种晶态萘二甲酸聚酯和另一种选用的聚合物构成,其中层的厚度小于0.5微米,晶态萘二甲酸聚酯层沿至少一个面内轴的折射率比所选用聚合物相邻层的折射率高,这块薄膜是放在投影台与光源之间。
29.如权利要求28所述的投影机,其中的多层聚合物薄膜在透射来自光源的可见光的同时,反射其红外光。
30.如权利要求28所述的投影机,其中的多层聚合物薄膜在透射来自光源的红外光的同时,反射其可见光。
31.对光进行反射的方法,该方法是形成一种由晶态萘二甲酸聚酯的层和另一种选用的聚合物的层交替而成的第一叠层,其中层的厚度小于0.5微米,晶态萘二甲酸聚酯沿至少一个面内轴的折射率比所选用聚合物相邻层的折射率高。
32.如权利要求31所述的方法,其中将该叠层进行单轴拉伸,使相邻层之间在取向轴上的折射率相差至少0.05。
33.如权利要求32所述的方法,该方法进一步包括将两个叠层叠置在一起,使其各自的取向轴相差90°以形成反射镜。
34.如权利要求31所述的方法,其中该叠层经单轴拉伸直至相邻层的在取向轴的折射率相差至少0.20。
35.如权利要求31所述的方法,其中该叠层经单轴拉伸直至晶态萘二甲酸聚酯层在薄膜的不同面内轴的折射率相差至少0.05。
36.如权利要求31所述的方法,其中该叠层经单轴拉伸直至晶态萘二甲酸聚酯层在薄膜的不同面内轴的折射率相差至少0.20。
37.如权利要求31所述的方法,其中的晶态萘二甲酸聚酯是聚萘二甲酸乙二酯。
38.如权利要求31所述的方法,其中的选用聚合物是间苯二甲酸、壬二酸、己二酸、癸二酸、二苯甲酸、2,7-萘二甲酸、2,6-萘二甲酸或环己烷二甲酸的反应产物。
39.如权利要求31所述的方法,其中选用的聚合物是乙二醇、丙二醇、丁二醇、新戊二醇、聚乙二醇、1,4-丁二醇、二甘醇、环己烷二甲醇、4-羟基联苯酚、双酚A或1,8-二羟基联苯、1,3-二(2-羟基乙氧基)苯的反应产物。
40.如权利要求31所述的方法,其中的晶态萘二甲酸聚酯的一个面内轴的折射率与另一面内轴的折射率相差至少0.05,并且至少沿一个轴,相邻层在此轴上的折射率基本上相等。
41.如权利要求31所述的方法,其中该叠层经双轴拉伸使相邻层的折射率相差至少0.05以形成反射镜。
42.如权利要求31所述的方法,在此方法中该叠层是装入另一光学元件中。
43.如权利要求31所述的方法,该方法进一步包括形成一个含有许多交替层的一种晶态萘二甲酸聚酯和另一种选用的聚合物的第二叠层,其中层的厚度小于0.5微米,晶态萘二甲酸聚酯沿至少一个面内轴的折射率比所选用聚合物相邻层的折射率高,并且将第一和第二叠层叠合在一起。
44.如权利要求31所述的方法,其中该叠层是单轴拉伸的。
全文摘要
本发明涉及一种多层的聚合物薄膜(10),该膜体是由交替层的晶态萘二甲酸聚酯(12)和另一选用的聚合物(14)构成,其中层的厚度小于0.5微米,晶态萘二甲酸聚酯层的至少一个面内折射率比所用聚合物相邻层的大。
文档编号B32B27/08GK1137772SQ94194547
公开日1996年12月11日 申请日期1994年12月20日 优先权日1993年12月21日
发明者A·J·奥德柯克, M·F·韦伯, J·M·琼乍, C·A·斯托弗 申请人:美国3M公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1