光学膜、液晶面板及使用它们的液晶显示装置的制作方法

文档序号:2777175阅读:191来源:国知局
专利名称:光学膜、液晶面板及使用它们的液晶显示装置的制作方法
技术领域
本发明涉及光学膜、液晶面板及使用它们的液晶显示装置。
背景技术
在传统的各种模式的彩色TFT液晶显示装置中,相位差板广泛地应用于光学补偿以获得在宽视角范围内更高的对比度和改善的色移。典型的相位差板为,例如,聚碳酸酯和降冰片烯-基聚合物的拉伸薄膜。然而,由于这些拉伸薄膜具有约25-100μm的极大的厚度,并且只能在窄范围内获得小的相位差值,因此必须将它们彼此重复层合才可用作具有足够特性的相位差板。因此,在将所述相位差板安装于液晶显示装置中时,会出现以下的问题。即,尽管对液晶显示装置在厚度和重量上期望减少的事实,但由于层合薄膜所致的光学轴位移或透射率减少导致所获得的显示装置既厚又重并且显示特性下降。
另外,作为薄的光学补偿层,已经发展了偏振片和晶体化合物的层合物。更具体地说,公开了由胆甾型液晶形成的具有负单轴双折射性的光学补偿层(见专利文件1)和应用了盘形分子液晶化合物的具有保护薄膜的偏振片(见专利文件2)等等。由于它们高的双折射性,液晶化合物有助于减少光学补偿层的厚度。对于利用这些液晶化合物形成用于光学补偿的透明薄膜,液晶分子必须均匀取向。为了使液晶化合物取向,必然需要用于确定取向方向的取向层或取向薄膜。取向薄膜通常是通过在基质上形成如聚乙烯醇或聚酰亚胺的聚合物薄膜,然后摩擦该薄膜,或通过在基质上沉积无机化合物而形成。另外,对于取向薄膜,优选使用PET(聚对苯二甲酸乙二酯)。然而,由于液晶化合物的均匀性取决于取向层或取向薄膜的种类,均匀性和处理条件,并且对周围环境敏感,因此容易发生倾斜度不规则性和取向不规则性,导致的问题是在大范围内极难实现均匀的取向。而且,由于许多液晶化合物不溶于有机溶剂,从而需要使用有限种类的具有高溶解能力的溶剂,导致的问题是用于形成光学补偿层的基质的种类也被限于为不溶于所用上述溶剂的种类。相应地,由液晶化合物构成的光学补偿层通常通过在已经处理的另一基质上形成待取向的液晶化合物薄膜,然后,仅将此薄膜层合至偏振片上形成,或者通过在偏振片的透明保护薄膜上形成许多层的取向层和防溶剂渗透层,然后将液晶化合物溶液涂布至这些层的表面而形成。因此,步骤的增加导致各种问题,例如低产率以及外观均匀性的变差。
因此,近年来,发展了通过流延聚酰亚胺溶液制得的作为具有负单轴双折射性的光学补偿层的薄膜。更具体地说,为了提高通常为白色扭曲向列(TN)液晶显示装置的视角特性,已公开了使用聚酰亚胺的负单轴双折射性薄膜,所述聚酰亚胺通过分子骨架的线性和刚性控制光学特性(专利文件3)。作为类似的负单轴双折射薄膜的材料,已公开了聚酰胺,聚酯,聚酯酰亚胺,聚酰胺酰亚胺,和它们的共聚物(专利文件4)。由于热塑性聚合物(非液晶聚合物)本身具有自动的分子取向性,通过利用这一性质,不使用上述的取向层,可以制备光学各向异性层。
上述聚合物材料随它们分子骨架刚性和线性度的增加,趋于获得在厚度方向具有更高双折射性的薄膜。因此,利用具有高双折射性的聚合物材料,可以获得更薄并且在厚度方向具有足够相位差的优异的光学补偿层。
然而,上述具有高双折射性的聚合物材料在通常的有机溶剂中具有差的溶解度。因此,只能使用有限的溶剂,如氯仿,二氯甲烷,二甲基甲酰胺,二甲基乙酰胺,N-氯仿,N-甲基吡咯烷酮,和它们的混合物。另外,上述具有高双折射性的聚合物材料倾于被染色,该染色会导致其光学特性出现问题。因而,这些聚合物材料不适合用作光学材料。
专利文件1JP 2002-533784 A专利文件2JP专利2565644专利文件3US专利5,344,916专利文件4JP 10(1998)-508048 A发明内容本发明解决的问题如上所述,存在的问题是当使用具有高溶解能力的溶剂时,涂布非液晶聚合物溶液的基质的种类是有限的。换言之,通过涂布溶液,基质被溶液中的溶剂腐蚀。因此,必须使用不受溶剂影响的材料形成的基质。另一方面,本发明人独立地发现,由于非液晶聚合物具有如上述的自动的分子取向性,可以将该聚合物溶液直接涂布于任何基质上而不论其是取向基质还是非取向基质,只要该基质不影响光学补偿层的光学特性,从而形成基质和双折射层的层合物,并将该层合物用作光学补偿板。然而,作为基质使用的不影响光学补偿层光学特性的TAC薄膜等可能被上述溶剂腐蚀。因此,实际中,有时希望在有限种类的基质上形成双折射层后,该双折射层还应单独地层合在TAC薄膜等上。因为溶剂对基质的腐蚀和双折射层的着色,尽管非液晶聚合物本身在厚度方向具有高的双折射性,通过直接在基质上形成双折射层获得的层合物在外观上存在问题,如基质中的暗影或裂纹,从而不能作为光学膜商业化。
因此,本发明的目的是提供一种光学膜,其包括基质和直接在该基质上形成的双折射层的层合物,所述光学膜具有优异的外观,如透明,并在其厚度方向实现了高相位差。
解决问题的方法为了实现上述目的,本发明的光学膜的制备方法是包括双折射层和透明薄膜的光学膜的制备方法。该方法包括直接在透明薄膜上涂布将双折射材料溶于溶剂中获得的溶液,并通过硬化形成的涂布薄膜形成双折射层。所述溶剂是甲基异丁基酮(MIBK),所述双折射材料包含非液晶聚合物,该非液晶聚合物在厚度方向具有的双折射率(Δnxyz)由下述方程式表示并至少为0.03,且溶于MIBK。在下述方程式中,nx,ny和nz各自代表当该非液晶聚合物形成薄膜时,在薄膜X轴方向,Y轴方向和Z轴方向的折射率,其中X轴方向为薄膜表面内具有最大折射率的轴方向,Y轴方向为该表面内与X轴方向垂直的轴方向,而Z轴方向为与X轴方向和Y轴方向垂直的厚度方向。
Δnxyz=[(nx+ny)/2]-nz发明效果对于聚合物,溶剂的溶解能力普遍已知。例如,N,N-二甲基乙酰胺,环戊酮,乙酸乙酯和MIBK的溶解能力关系是“N,N-二甲基乙酰胺>环戊酮>乙酸乙酯>MIBK”。另一方面,非液晶聚合物在厚度方向的双折射率随其种类而改变。随着厚度方向双折射性的增加,分子骨架的线性和刚性也增加,使得非液晶聚合物非常难溶于上述溶剂。因此,为了溶解在其厚度方向具有高双折射性的非液晶聚合物,已知的具有高溶解能力的溶剂,如N,N-二甲基乙酰胺是不可缺少的。在上述情形下,本发明人进行了仔细的研究,并发现非液晶聚合物可溶于溶解能力低的非极性MIBK中,在厚度方向还具有高双折射性,即Δnxyz为0.03或更大。本发明人首次发现,尽管事实是溶剂必须有高的溶解能力以溶解上述在厚度方向具有高双折射性的非液晶聚合物,但是非液晶聚合物可溶于低溶解能力的MIBK中。然后,通过使用这些非液晶聚合物和MIBK,即使当将非液晶聚合物的溶液涂布至基质,如TAC薄膜上,基质不会被溶剂MIBK腐蚀,因为尽管非液晶聚合物能充分溶于MIBK中,但MIBK具有低的溶解能力。结果是,即使如上所述当直接在基质上形成双折射层时,外观上的问题,如在所得的层合物中的暗影或基质中的裂纹,得以解决。由上,根据本发明的制备方法,即使在使用其厚度方向具有双折射率Δnxyz为0.03或更高的非液晶聚合物的情况下,可能获得基质和直接在基质上形成的双折射层的层合物,并且不会产生在外观上的任何问题。包含上述层合物的光学膜,即使当安装于各种图像显示装置如液晶显示装置时,可以实现优异的显示特性。
附图简述

图1为显示本发明光学膜实例的截面图。
图2为显示本发明光学膜另一实例的截面图。
图3为显示本发明液晶面板实例的截面图。
图4为显示本发明光学膜的照片。
图5为显示对比例中光学膜的照片。
图6为显示对比例中光学膜的照片。
具体实施例方式
如上所述,根据本发明的光学膜的制备方法是制备包括双折射层和透明薄膜的光学膜的方法。该方法包括直接在透明薄膜上涂布通过在溶剂中溶解双折射材料获得的溶液,和通过硬化形成的涂布薄膜形成双折射层。所述溶剂是MIBK,所述双折射材料包含非液晶聚合物,该非液晶聚合物在厚度方向具有的双折射率(Δnxyz)由下述方程式表示并至少为0.03,且该非液晶聚合物溶于MIBK。在下述方程式中,nx,ny和nz各自代表当该非液晶聚合物形成薄膜时,在薄膜X轴方向,Y轴方向和Z轴方向的折射率,其中X轴方向为薄膜表面内具有最大折射率的轴方向,Y轴方向为该表面内与X轴方向垂直的轴方向,而Z轴方向为与X轴方向和Y轴方向垂直的厚度方向。
Δnxyz=[(nx+ny)/2]-nz在双折射率(Δnxyz)的定义中,“当非液晶聚合物形成薄膜”意指直接在基质上涂布通过在溶剂中溶解双折射材料获得的溶液和通过硬化所形成的涂布薄膜形成薄膜,并且对所述薄膜的厚度没有限制的情形。
非液晶聚合物在厚度方向双折射率(Δnxyz)优选为0.03-0.1,更优选0.04-0.1,进一步优选0.05-0.1,尤其优选0.06-0.1。
对非液晶聚合物没有特别地限制,只要其如上所述的,在厚度方向具有双折射率为至少0.03并且是可溶于MIBK的聚合物,并优选其是具有优异的骨架刚性,线性和对称性的聚合物,因为这样可以实现在厚度方向大的相位差(Rth)。上述聚合物可以是例如,公开于US5071997,JP 8(1996)-511812 A或JP 10(1998)-508048 A中的聚酰亚胺和,尤其是具有由下式(1)和(2)表示的重复单元的聚酰亚胺。其中,优选单独由式(1)的重复单元形成的聚酰亚胺和单独由式(2)的重复结构单元形成的聚酰亚胺。由式(1)或(2)重复单元形成的聚酰亚胺溶于溶剂时不会被着色,因此在用于光学膜时极其有用。另外,尤其优选由式(2)的重复单元形成的聚酰亚胺,因为仅小的厚度其就可以实现在厚度方向上的大的相位差。
单独由式(1)的重复单元形成的聚酰亚胺在厚度方向具有的双折射率,例如为0.03-0.05,而单独由式(2)的重复结构单元形成的聚酰亚胺在厚度方向具有的双折射率,例如为0.05-0.1,优选为0.06-0.085,更优选为0.061-0.084。通过相对增加分子量可以使这些聚酰亚胺在厚度方向具有较高的双折射。通过传统已知的方法改变合成的反应条件可以调节聚酰亚胺的分子量。
上述由式(1)的重复单元形成的聚酰亚胺可以通过传统已知的方法合成,例如使用由下式表示的2,2’-二(3,4-二羧苯基)六氟丙烷酸二酐(6FDA)和2,2’-二(三氟甲基)-4,4’-二氨二苯(PFMB)。 本发明人最新发现了可以作为可溶于MIBK的非液晶聚合物的上述由式(2)的重复单元形成的聚酰亚胺,且其具有在厚度方向上的双折射率(Δnxyz)至少为0.03。以下将举例描述上述由式(2)的重复单元形成的聚酰亚胺的合成方法。
首先,合成由下式表示的作为单体的2,2’-二氯-4,4’,5,5’-二苯基四羧酸二酐(DCBPDA)。需要指出的是为了合成上述由式(2)的重复单元形成的聚酰亚胺,该单体是被本发明人最新发现。顺便提及,合成该单体的方法可以参考Polymer Vol.37,No.22,PP.5049-5057(1996)。
将3,3’,4,4’-二苯基四羧酸二酐(BPDA)溶于NaOH溶液。然后,将此溶液加热至100℃,再向该溶液中注入氯气,待气体注入后5分钟,获得的白色沉淀通过逐渐向其中加入NaOH水溶液而再次溶解。进一步,连续向该溶液注入氯气,由此再次形成沉淀(温度100℃)。待该溶液冷却至室温后,收集沉淀并经过冲洗处理和干燥处理,从而获得DCBTC-Na(2,2’-二氯-4,4’,5,5’-二苯基四羧酸钠盐)。将该DCBTC-Na悬浮于HCl水溶液中,并在90℃下搅拌。搅拌后,将该反应溶液冷却至室温,收集白色沉淀,从而得到DCBPTC(2,2’-二氯-4,4’,5,5’-二苯基四羧酸)。进一步,在减压下干燥DCBPTC使之脱水,获得DCBPDA(2,2’-二氯-4,4’,5,5’-二苯基四羧酸二酐)。
接下来,将DCBPDA和2,2’-二(三氟甲基)-4,4’-二氨二苯(PFMB)一起反应以合成一聚合物。首先,待PFMB完全溶于间甲酚后,向其中加入DCBPDA并在氮气气氛下搅拌。进一步,在向该溶液中投入异喹啉后,将溶液在约200℃下加热的同时搅拌该溶液,然后将其冷却至室温。用间甲酚稀释该溶液,然后将该稀释的溶液投入至强烈搅拌的甲醇中,由此形成纤维固态物质。收集该纤维固态物质,从而获得由式(2)的重复单元形成的聚酰亚胺。
聚酰亚胺的重均分子量为10,000-1,000,000,优选为20,000-500,000。具有10,000或更大的重均分子量的聚酰亚胺成膜后具有优异的强度,而重均分子量为1,000,000或更小的聚酰亚胺具有在MIBK中优异的溶解度,更具体的说,在由式(1)的重复单元形成的聚酰亚胺的情形,其重均分子量优选为50,000-200,000。同样在由式(2)的重复单元形成的聚酰亚胺的情形,其重均分子量优选为50,000-200,000。
需要指出的是,不同于液晶材料,对于非液晶聚合物如聚酰亚胺,由于其自身性质与上述基质的取向无关,因此可以形成具有光学单轴性(nx>nz和ny>nz)的薄膜。因此,上述透明薄膜不限于具有取向层的薄膜或取向薄膜,而可以是非-取向薄膜,因此可以将透明薄膜直接用于光学膜的构成部件。
另一方面,对用于形成透明薄膜的材料没有特别的限制,只要可以在其表面形成双折射层并且可以用作光学膜。换言之,即使在将透明薄膜包括为光学膜的构成部件的情形下,可以使用不影响双折射层光学特性的任何材料。上述材料优选为具有优异透明度的材料,并且可以是纤维素-基树脂,例如三乙酰纤维素(TAC),聚酯-基树脂,聚碳酸酯树脂,聚酰胺树脂,聚酰亚胺树脂,聚醚砜树脂,聚砜树脂,聚苯乙烯-基树脂,降冰片烯-基树脂,聚烯烃树脂,丙烯酸类树脂,乙酸酯-基树脂,聚甲基丙烯酸甲酯-基树脂等等。对于由上述降冰片烯-基树脂制成的透明薄膜,可以使用商品名ARTON(由JSRCorporation生产),商品名ZEONOR(由ZEON Corporation生产)等等。另外,作为透明薄膜的材料,可以使用侧链具有取代的亚氨基或未取代的亚氨基的热塑性树脂和侧链具有取代的苯基或未取代的苯基和腈基的热塑性树脂的混合物,参见JP 2001-343529 A(WO 01/37007)。其具体实例包括含有异丁烯和N-甲基马来酰亚胺的交替共聚物和丙烯腈-苯乙烯共聚物的树脂组合物。在这些材料中,优选在形成透明薄膜时可以将双折射率设置为相对低的材料。更具体的说,优选上述侧链具有取代的亚氨基或未取代的亚氨基的热塑性树脂和侧链具有取代的苯基或未取代的苯基和腈基的热塑性树脂的混合物。更进一步,这些透明薄膜可以含有作为相位差调节剂的含有至少两个芳环的芳香化合物,如EP 0911656 A2中所述。
透明薄膜通常具有12-200μm的厚度,优选20-150μm,更优选25-100μm。厚度等于或大于12μm的透明薄膜在后述的应用过程中可以获得更好的应用准确性,而厚度等于或小于200μm的透明薄膜当安装于液晶元件上时进一步改善了外观。
接下来,举例描述本发明光学膜的制备方法。需要指出的是对本发明没有特别的限制,只要如前所述使用MIBK作为溶剂并使用如上所述的材料作为形成双折射的材料。
首先,将形成双折射的材料溶于溶剂MIBK中以制备涂布溶液。为了获得优异的应用,非液晶聚合物溶于MIBK中的比率为基于100重量份的MIBK至少5重量份,优选5-50重量份,更优选10-40重量份。
涂布溶液可以含有通用的聚合物材料或液晶材料,如除上述非液晶聚合物之外的掺合材料。另外,可以在其中掺入UV吸收剂,抗氧化剂,过氧化物分解剂,自由基抑制剂,金属失活剂,酸俘获剂,防止氨等降解剂,稳定剂,增塑剂,金属,抗静电剂,用于提高透明薄膜粘性的添加剂等等。
然后将涂布溶液直接涂布于透明薄膜的表面从而形成涂布薄膜。对涂布溶液的涂布方法没有特别的限制,可以是如旋涂,辊涂,流涂,印刷,浸涂,膜扩流,棒涂或凹版印刷。需要指出的是,根据涂布溶液中非液晶聚合物的含量,双折射层的期望厚度等合适地确定涂布溶液的涂布量。
接下来,硬化透明薄膜上的涂布薄膜。由于不论透明薄膜是否取向,非液晶聚合物本身具有光学特性nx>ny,ny>nz,因此通过硬化涂布薄膜而形成的双折射层成为光学单轴层,即在其厚度方向具有相位差的层。
可以通过干燥处理硬化涂布薄膜。对处理条件并没有特别的限制,但可以是例如空气干燥或加热(如在40℃-350℃)。干燥处理优选分两步进行,其包括在40℃-140℃的第一干燥处理(优选为40℃-120℃,也称为预固化处理)和接下来的在150℃-350℃的第二干燥处理(也称为后固化处理)。采用这种方法,在上述的范围内进行的预固化处理可以实现更好的外观均匀性,而在上述范围内进行的后固化处理可以进一步抑制膜均匀性和透明度的变差。
在干燥处理后残留在所形成的双折射层中的MIBK会随时间并与其所含的量成比例地改变光学膜的光学特性,因此其残留量优选不大于1.0重量%,更优选不大于0.5重量%。
采用上述的制备方法,可以获得本发明的光学膜,其包含透明薄膜和直接在透明薄膜上形成的双折射层,该光学膜不会被着色,没有暗影或裂纹并具有极其良好的外观。由于其具有优异的外观,因此可以抑制由于差的外观造成的光学特性的变差,因此当将所述薄膜用于图像显示装置如液晶显示装置时可以实现极其良好的显示特性。
上述光学膜中的双折射层具有总透射比(T)在波长范围400-800nm优选至少为80%,更优选至少为90%。当双折射层两个表面的表面反射都被包括时,优选满足上述范围。
上述光学膜中的双折射层具有的厚度为0.2-20μm,优选1-15μm,更优选2-10μm。如果双折射层的厚度等于或大于0.2μm,它作为光学元件具有极好的功能。如果双折射层的厚度等于或小于20μm,它具有极好的均匀性。
另外,上述光学膜的制备方法可以包括在通过硬化所形成的涂布薄膜形成双折射层的步骤之后,拉伸或收缩该双折射层的步骤。通过拉伸或收缩处理,可以进一步改变直接在透明薄膜上形成的双折射层的光学特性。更具体地说,上述具有光学单轴性(nx>nz,ny>nz)的双折射层进一步具有光学双轴性(nx>ny>nz)。优选通过该拉伸或收缩步骤控制面内双折射率(Δnxy)和面内相位差(Δnd)。
首先,描述拉伸步骤。对拉伸双折射层的方法没有特别的限制,可以是例如在纵向单轴拉伸透明薄膜和双折射层的层合物的自由端纵向拉伸,薄膜纵向固定时在横向单轴拉伸薄膜的固定端横向拉伸,在纵向和横向均拉伸薄膜的连续或同时双轴拉伸等等。
可以通过一起拉伸透明薄膜和双折射薄膜而拉伸双折射层,但是基于以下原因优选通过单独拉伸透明薄膜而拉伸双折射层。在单独拉伸透明薄膜的情形下,产生于透明薄膜内的应力间接地拉伸在透明薄膜上的双折射层。另外,由于对单层的拉伸比对层合物的拉伸更均匀,因此如上所述的单独均匀拉伸透明薄膜也使得在透明薄膜上的双折射层均匀地被拉伸。
对拉伸条件没有特别的限制,但应根据用于形成透明薄膜和双折射层的材料的种类适当地确定。例如拉伸放大优选大于1倍且不大于5倍,更优选大于1倍且不大于4倍,并尤其优选大于1倍且不大于3倍。
现在描述收缩步骤。在进行收缩处理的情形下,可以使用可收缩的透明薄膜作为透明薄膜。然后,通过硬化涂布薄膜形成双折射层之后,收缩透明薄膜,由此可以收缩直接形成于透明薄膜上的双折射层。如上所述,这可以使双折射层具有光学双轴性。
通过将透明薄膜经受热处理而收缩透明薄膜,这也相应地使双折射层收缩。对热处理的条件没有特别的限制,但应根据透明薄膜所用材料的种类适当地确定。例如加热温度为25℃-300℃,优选50℃-200℃,尤其优选60℃-180℃。
通过预先将透明薄膜经受热处理使之具有可收缩性。为了使透明薄膜在其表面内的一个方向可收缩,优选使透明薄膜在其表面的任一方向经受预拉伸。通过该预拉伸,在与拉伸方向相反的方向产生收缩力,这样利用在透明薄膜表面内的收缩差异提供在双折射层中的具有面内不同折射率的非液晶聚合物。
对拉伸前透明薄膜的厚度没有特别的限制,但范围是10-200μm,优选20-150μm,更优选30-100μm。对拉伸放大倍数也没有特别限制,只要形成于透明薄膜上的双折射层经拉伸后具有光学双轴性(nx>ny>nz)。
除了上述的这些,还可以通过在透明薄膜上形成涂布薄膜,把这些薄膜固定在金属框架中并加热,从而收缩双折射层。
对本发明的光学膜没有特别的限制,只要它包括由上述制备方法通过直接在透明薄膜上形成双折射层而获得的层合物。可以单独使用该层合物,也可以根据各种光学应用的需要将其与其它光学部件结合使用。
本发明的光学膜可以是还包括偏振器的层合偏振片。对该偏振片的结构没有特别的限制,其实例示于图1和图2,图1和图2是各自显示了本发明层合偏振片实例的截面图,其具有的相同部分的引用标号也相同。本发明的偏振片并不限于以下所述的结构,可以进一步包括其它光学部件等。
图1所示的层合偏振片20包括上述的透明薄膜和双折射层的层合物1,偏振器2和两个透明保护层3。透明保护层3层合于偏振器2的两个表面上,并且层合物1进一步层合于其中一个透明保护层3上。作为如上所述的双折射层和透明保护薄膜的层合物的层合物1可以以其任一面面对透明保护薄膜3,然而优选通过透明保护层将偏振器层合于层合物的双折射层上。
如图所示,透明保护层可以层合于偏振器的两个表面上或者仅一个表面上。另外,当其层合于两个表面上时,透明保护层的种类可以相同或不同。
另一方面,如图2所示的层合偏振片30具有上述的层合物1,偏振器2和透明保护层3。层合物1层合于偏振器2的一个表面上而透明保护层3层合于偏振器2的另一表面上。
作为前述的双折射层和透明薄膜的层合物的层合物1,可以以任一面面对偏振器。然而,优选将偏振器2安置于层合物1的透明薄膜侧,原因如下,具有如上的结构,层合物1的透明薄膜也可用于偏振器的透明保护层。换言之,不在偏振器的两个表面层合透明保护层,而是在偏振器的一个表面层合透明保护层,在其另一表面层合将透明薄膜面对该表面的层合物。这样,透明薄膜也可以用作偏振器的另一透明保护层。结果是可以获得更薄的偏振片。
对偏振器没有特别的限制,可以是通过传统已知的方法如通过使各种类型的薄膜吸收二色性材料,如碘或二色性染料而染色,然后进行交联拉伸和干燥而制备的薄膜,而且,优选当使自然光进入该薄膜时可以透射线性偏振光的薄膜,和优选具有优异的光透射比和偏振度的薄膜。吸收二色性材料的各种类型的薄膜的实例包括亲水性聚合物薄膜如聚乙烯醇(PVA)-基膜,部分缩甲醛化的PVA-基膜,基于乙烯-乙酸乙烯酯共聚物的部分皂化的薄膜,和纤维素-基膜。除了以上所述之外,可以使用多烯排列的薄膜如脱水PVA和脱氯化氢的聚氯乙烯。其中,优选PVA-基薄膜。另外,偏振器的厚度通常为1-80μm,但不限于此。
对透明保护层没有特别的限制,可以是传统已知的透明薄膜。例如优选具有优异的透明度,机械强度,热稳定性,防潮性和各向同性的透明薄膜。用于该透明保护层的材料的具体实例可以与上述用于透明薄膜的材料类似。优选透明保护层是无色的。更具体的,在厚度方向薄膜的相位差值(Rth)由以下方程式表示,优选在-90nm至+75nm的范围内,更优选为-80nm至+60nm,尤其优选为-70nm至+45nm。当相位差值在-90nm至+75nm的范围内时,由保护薄膜造成的偏振片的着色(光学着色)可以完全解决。在下述方程式中,nx,ny和nz为保护薄膜中X轴,Y轴和Z轴的折射率,d为该薄膜的厚度。
Rth=[{(nx+ny)/2}-nz]·d透明保护层还可以具有光学补偿功能。作为具有光学补偿功能的上述透明保护层,还可以使用用于防止基于液晶元件相位差的可视角变化造成的着色或用于增大优选视角的已知层。其具体实例包括通过单轴或双轴拉伸上述透明树脂获得的各种拉伸薄膜,液晶聚合物等的取向薄膜,和通过在透明基质上提供液晶聚合物取向层的层合物。在以上所述中,优选液晶聚合物取向薄膜因为其可以实现具有优异可视性的宽视角。尤其优选通过在上述三乙酰纤维素薄膜等上提供光学补偿层获得的光学补偿相位差板,其中光学补偿层由盘形或向列的液晶聚合物的倾斜取向层形成。该光学补偿相位差板可以是可商购的产品,如由Fuji Photo Film Co.,Ltd.生产的“WV film”。另外,光学补偿相位差板也可以通过层合两层或多层相位差薄膜和薄膜支持体的三乙酰纤维素薄膜等而制备,从而控制其光学特性,如相位差。
对透明保护层的厚度没有特别的限制,但可以根据相位差或保护强度合适地确定。一般,厚度不大于500μm,优选为5-300μm,更优选5-150μm。
透明保护层可以通过传统已知的方法如用上述各种透明树脂涂布偏振薄膜的方法或将偏振薄膜与透明树脂薄膜,光学补偿相位差板等层合的方法而合适地形成,或可以是可商购获得的产品。
上述透明保护层可以进一步经受硬涂层处理,防反射处理,防粘附处理,散射处理,和防眩处理等等。硬涂层处理的目的在于防止偏振片表面的划伤,是在透明保护薄膜的表面上提供由可固化树脂形成的具有优异硬度和平滑度的硬化涂布薄膜的处理。可固化树脂可以是聚硅氧烷基,聚氨酯基,丙烯酸类和环氧基的紫外线固化树脂。该处理可以通过传统已知的方法进行。防粘附处理的目的在于防止相邻层彼此粘附。防反射处理的目的在于防止外来光在偏振片表面的反射,可以通过形成已知的防反射薄膜等进行。
防眩处理的目的在于防止外来光在偏振片表面的反射妨害通过偏振片的透射光的可视性,防眩处理可以通过传统已知的方法在透明保护层的表面提供微观的凹凸不平而进行。进行上述微观的凹凸不平可以通过砂磨或压纹或在当上述透明树脂形成透明保护层时,向其中掺入透明细颗粒使表面粗糙而实现。
上述透明细颗粒可以是二氧化硅,氧化铝,二氧化钛,氧化锆,氧化锡,氧化铟,一氧化镉,氧化锑等。除此之外,也可以使用具有导电性的无机细颗粒或包含如交联的或未交联的聚合物颗粒的有机细颗粒。尽管对透明细颗粒的平均粒径没有特别的限制,但范围为0.5-20μm。总的来说,透明细颗粒的掺入比率相对于100重量份的上述透明树脂优选为2-70重量份,更优选为5-50重量份,尽管没有特殊限制。
掺入透明细颗粒的防眩层可以本身用作透明保护层或作为涂布层涂布在透明保护层表面。另外,防眩层也可以起漫射层的作用,漫射通过偏振片的透射光,从而增大视角(即视角补偿作用)。
上述防反射层,防粘附层,漫射层和防眩层可以作为包含这些层的光学层的一片,独立于透明保护层,层合至偏振片上。
优选本发明的光学膜还包括粘合剂层和压敏粘合剂层的至少一个。这使得本发明的光学膜易于与其他部件如其它光学层和液晶元件粘合,且防止本发明的光学膜脱落。相应地,优选将粘合剂层和压敏粘合剂层层合于光学膜的最外层,并且将它们作为光学膜的一个或两个最外层层合。
对粘合剂层的材料没有特别的限制,可以是例如基于丙烯酸类物质,乙烯醇,聚硅氧烷,聚酯,聚氨酯,聚醚等的聚合物粘合剂,或橡胶-基粘合剂。也可以在这些材料中加入细颗粒从而形成具有光漫射性能的层。在这些材料中,优选具有优异吸水性和热阻性的材料。当将具有上述性能的材料用于液晶显示装置中时,可以提供高质量耐用的显示装置,该装置能防止由吸水导致的起泡或脱落,热膨胀系数不同导致的光学特性的下降和液晶元件的翘曲等等。
对各构成部件(偏振器和透明保护层等)的层合方法没有特别的限制,可以是传统已知的方法。一般,可以使用压敏粘合剂,粘合剂,或与上述类似的物质。其种类可以根据构成部件的材料合适地确定。粘合剂可以是基于丙烯酸类物质,乙烯醇,聚硅氧烷,聚酯,聚氨酯或聚醚的聚合物粘合剂,或橡胶-基粘合剂。另外,粘合剂可以含有水溶性的乙烯醇-基聚合物的交联剂,如戊二醛,蜜胺和草酸。上述压敏粘合剂和粘合剂即使当暴露于水或热时也不易脱落,具有优异的光透射比和偏振度。更具体地说,考虑到粘附处理的稳定性,当偏振器是PVA-基薄膜时优选这些压敏粘合剂和粘合剂是PVA-基粘合剂。这些粘合剂和压敏粘合剂可以直接涂布于偏振器和透明保护层的表面,或将由粘合剂或压敏粘合剂形成的带或片的层安置于偏振器和透明保护层的表面。另外,当将这些粘合剂和压敏粘合剂制备成水溶液时,可以根据需要掺入其它添加剂或催化剂,如酸催化剂。在涂布该粘合剂的情况下可以在该粘合剂的水溶液中进一步掺入其它添加剂或催化剂,如酸催化剂。对粘合剂层的厚度没有特别的限制,可以是1-500nm,优选10-300nm,更优选20-100nm。可以采用使用粘合剂如丙烯酸聚合物或乙烯醇-基聚合物的传统已知的方法,对此没有特别的限制。另外,因为可以形成即使当暴露于水或热时也不易从偏振片上脱落的具有优异的光透射比和偏振度的偏振片,优选粘合剂中含有水溶性的PVA-基聚合物的交联剂,如戊二醛,蜜胺和草酸。可以将这些粘合剂的水溶液涂布至上述每个构成元件的表面,然后干燥。在上述水溶液中,可以根据需要掺入其它添加剂或催化剂如酸催化剂。其中,优选粘合剂是PVA-基粘合剂,因为PVA薄膜可以实现优异的粘合性。
另外,除上述偏振器以外,本发明的光学膜还可以与传统已知的光学部件,如各种类型的相位差板,漫射控制薄膜和亮度增强薄膜结合使用。上述相位差板的实例包括通过单轴或双轴拉伸聚合物薄膜获得的薄膜,Z轴取向处理的薄膜,和液晶聚合物的涂布薄膜。上述漫射控制薄膜可以是利用漫射,散射和反射并应用于控制视角,控制与分辨率相关的眩光或散射光的薄膜。上述亮度增强薄膜可以是利用胆甾型液晶和1/4波片(λ/4片)的选择性反射的亮度增强薄膜,或者是利用归因于偏振方向的各向异性散射的散射薄膜。光学膜还可以与栅网分析器结合使用。
在实际应用中,除了本发明的光学膜,本发明的层合偏振片还可以包括其它光学层。上述光学层的实例包括用于形成液晶显示装置的各种传统已知的光学层,例如如下所述的偏振片,反射器,半透明反射器和亮度增强薄膜。这些光学层可以是一种或两种或多种。另外,可以提供这些光学层的一层或两层或多层。层合的偏振片还包括上述光学层,并优选用作具有光学补偿功能的整体的偏振片和合适地用于各种图像显示装置,如置于液晶元件的表面。
上述整体的偏振片将解释如下。
首先,将描述反射偏振片或半透明反射偏振片的实例。为形成反射偏振片,将反射器进一步提供于本发明的层合偏振片上,为形成半透明反射偏振片,将半透明反射器进一步提供于本发明的层合偏振片上。
一般来说,上述反射偏振片安置于液晶元件的背面以使液晶显示装置(反射型液晶显示装置)从可视侧(显示侧)反射入射光。反射偏振片的优点是对光源如背面光的装配可以省掉,因此液晶显示装置可以做得更薄。
可以以任意已知的方法形成反射偏振片,如在具有弹性模量的偏振片的一个表面形成金属反射器等。如果需要,通过对一个表面(暴露的表面)消光制备偏振片的透明保护层。在该表面涂布包含反射金属如铝的金属箔或沉积薄膜形成反射偏振片。
反射偏振片的另一实例包括上述在其表面由于包含于各种透明树脂中的细粒所致的微观凹凸不平的透明保护层,和相应于该微观凹凸不平的反射器。具有微观凹凸不平表面的反射器通过不规则反射漫射入射光,从而可以防止方向性和眩光并可以控制色调的不规则性。该反射器可以以任一传统已知的方法包括沉积如真空沉积,和电镀如离子电镀和喷镀,通过直接在透明保护层的微观凹凸不平表面安置金属箔或金属沉积薄膜而形成。
另外,作为反射器,可以使用通过在类似于透明保护薄膜的合适的薄膜上提供反射层而形成随反射片。由于反射器的反射层通常由金属形成,优选使用在反射层的反射表面涂覆有薄膜、偏振片等以防止由于氧化导致的反射速率降低的反射器。结果是初始反射速率可以保持长时间不变,并且可以省去单独的透明保护层。
另一方面,通过在上述的反射偏振片中以半透明反射器代替反射片可以提供半透明反射偏振片,例如在反射层反射和透射光的半透镜。
一般来说,将上述半透明反射偏振片安置于液晶元件的背面。在包含该半透明反射偏振片的液晶显示装置中,当该液晶显示装置用于相对亮的环境中时,从可视侧(显示侧)的入射光被反射从而显示图像,当该液晶显示装置用于相对暗的环境中时,通过使用在半透明反射偏振片背面的内部光源如背面灯而显示图像。换言之,该半透明反射偏振片可用作在亮环境中能为光源如背面灯节省能源而在相对暗的环境中使用内部光源的液晶显示装置。
现在描述通过进而在本发明的层合偏振片上层合亮度增强薄膜而获得的偏振片的实例。
对于亮度增强薄膜并没有特别的限制,可以是具有透射具有预定的偏振轴的线性偏振光和反射其他光的性能的薄膜,例如,为介电多层薄膜或具有不同反射率各向异性的薄膜的多层层合物。上述亮度增强薄膜可以是由3M Corporation生产的商品名为“D-BEF”的薄膜。也可以使用胆甾型液晶层,尤其是胆甾型液晶聚合物的取向薄膜,以及提供于基质薄膜上的该取向液晶层。这些薄膜具有反射右旋和左旋圆偏振光之一并透射其他光的性能,例如,由Nitto Denko Corporation生产的商品名为“PCF 350”或Merck Ltd.生产的商品名为“Transmax”。
上述根据本发明的各种类型的偏振片可以是除本发明的层合偏振片之外,通过由两个或多个光学层成层而获得的光学部件。
上述包括两个或多个层合的光学层的光学部件可以在液晶显示装置的每个生产步骤中通过顺序层合各层而形成。然而,使用预先已层合的光学部件具有的优点是可以实现优异的质量稳定性和安装操作性,提高了液晶显示装置的生产效率。顺便提及的是,与上述相类似,可以将各种粘合剂装配如压敏粘合剂层用于层合过程。
而且,优选上述各种偏振片还包括压敏粘合剂层或粘合剂层,这样可以使得在其它元件如液晶元件上的层合更容易。这些粘合剂层可以安置于偏振片的一个或两个表面。对用于压敏粘合剂层的材料没有特别的限制,可以是传统已知的材料如丙烯酸类聚合物。考虑到防止由于吸水造成的起泡或脱落,防止热膨胀系数不同造成液晶元件的光学特性下降和翘曲,以及为了形成具有高质量和优异耐用性的液晶显示装置,优选具有低吸水系数和优异的热阻性的压敏粘合剂层。也可以加入细颗粒以形成具有优异漫射性能的压敏粘合剂层。可以通过以下方法在偏振片表面形成压敏粘合剂层通过展开法(an expansionmethod)如扩流或涂布,直接在偏振片的预定表面涂布各种压敏粘合剂材料的溶液或熔融物,或以相同的方法在后述的隔离层上形成压敏粘合剂层并将其转移至偏振片的预定表面。所述层可以形成于偏振片的任一表面上,例如它可以形成于偏振片的相位差板的暴露表面上。
当提供于偏振片的压敏粘合剂层的表面被暴露时,为了防止压敏粘合剂层在使用前被污染,优选在其表面覆盖一隔离层。该隔离层可以通过根据需要向合适的薄膜如上述的透明保护薄膜提供至少一释放涂层如聚硅氧烷-基剥离剂,长链烷基剥离剂,氟碳剥离剂或硫化钼而形成。
压敏粘合剂层可以是单层或层合物。层合物可以是具有不同组分或种类的单层的组合。另外,当安置于偏振片的两个表面上时,这些压敏粘合剂层在组分或种类上可以相同或不同。
可以根据偏振片的结构适当地确定压敏粘合剂层的厚度,通常为1-500μm。
优选由具有优异光学透明度,适宜的可湿性和压敏粘合性能如粘结性和粘合性的压敏粘合剂形成压敏粘合剂层。其具体实例包括基于合适聚合物如丙烯酸类聚合物,聚硅氧烷-基聚合物,聚酯,聚氨酯,聚醚和合成橡胶制得的压敏粘合剂。
压敏粘合剂层的粘合性能可以通过传统已知的方法合适地控制。例如,其交联度和分子量可以根据用于形成压敏粘合剂层的基础聚合物的组成或分子量,交联的方法,所含交联功能团的比率,和掺入交联剂的比率来调节。
如上所述本发明的构成光学膜的各层如偏振薄膜、透明保护层、光学层和压敏粘合剂层,偏振片和各种光学元件(由层合光学层获得的各种偏振片)可以合适地经受UV吸收剂如水杨酸酯化合物,苯甲酸苯酯化合物,苯并三唑化合物,氰基丙烯酸酯化合物或镍络合物盐-基化合物的处理,从而使之具有UV吸收能力。
如上所述,本发明的光学膜和偏振片优选用于形成各种装置,如液晶显示装置。本发明的光学膜和偏振片可以安置于液晶元件的一个或两个表面从而形成液晶面板,并可用于反射型,半透明型或透明反射型液晶显示装置。
可以自由选择用于形成液晶显示装置的液晶元件的种类,该液晶元件可以是任一类型,如由薄膜晶体管型代表的激活基质驱动型或扭曲向列型或超扭曲向列型代表的简单基质驱动型。本发明的光学膜尤其在用于上述的TN(扭曲向列)元件,VA元件或OCB元件时具有优异的光学补偿功能,因此,在包含这些液晶元件的液晶显示装置中极其有用。
液晶元件通常具有以下结构,其中在相对液晶元件基质之间的空间可以注入液晶。液晶元件基质可以由玻璃,塑料等等制成,没有特别的限制。塑料基质的材料可以从传统已知的材料中选择,没有特别的限制。
当偏振片或光学元件安置于液晶元件的两个表面时,他们的种类可以相同或不同。而且,对于形成液晶显示装置,可以将合适的部件如棱镜列阵片,透镜列阵片,光学漫射器,和背面光的一层或两层或多层安置于合适的位置。
本发明的液晶显示装置没有特别的限制,只要将本发明的液晶面板用作该液晶显示装置的液晶面板。在提供光源的情况下,尽管对光源没有特别的限制,但优选发射偏振光的平面面光源,因为可以有效地利用光能。
图3是显示本发明液晶面板一个实例的截面图。如图所示,液晶面板40具有液晶元件21,透明薄膜和双折射层的层合物1,偏振器2和透明保护层3。在层合物1的一个表面上提供液晶元件21,而层合物1的另一表面按序层合偏振器2和透明保护层3。液晶元件21具有的结构是其中在两个液晶元件基质(未示出)之间可以保留液晶。在层合物1中,双折射层和透明薄膜如前述成层,其中双折射层侧面对液晶元件21而透明薄膜侧面对偏振器2。
在本发明的液晶显示装置中,还可以在可视侧的光学膜(偏振片)上安置漫射片,防眩层,防反射薄膜,保护层或板。另外,用于补偿的相位差板等可以合适地安置于液晶面板的液晶元件和偏振片之间。
顺便提及,本发明的光学膜和偏振片并不限于用于上述液晶显示装置中,还可以用于自发射光显示装置,如有机电致发光(EL)显示装置,PDP和FED中。当用于自发射光平面显示装置时,本发明的双折射光学膜可以作为防反射过滤器使用,因为其可以通过将面内相位差值Δnd设为λ/4而获得圆偏振光。
以下对包括本发明的光学膜的电致发光(EL)显示装置进行描述。根据本发明的EL显示装置具有本发明的光学膜,并且其可以是有机EL显示装置或无机EL显示装置。
近年来,对于EL显示装置,建议使用与λ/4波片一起的光学膜如偏振器或偏振片以防止在黑色状态下来自电极的反射。本发明的偏振器和光学膜尤其在当由EL层发射线性偏振光,圆偏振光和椭圆偏振光之一时或当即使从正面方向发射自然光而斜发射的光被部分偏振时非常有用。
以下描述典型的有机EL显示装置。一般来说,有机EL显示装置具有发光元件(有机EL发光元件),该发光元件通过以特定顺序在透明基质上层合透明电极,有机发光层和金属电极而制得。在此,有机发光层是各种有机薄膜的层合物。其已知的实例包括由三苯氨衍生物等制得的空穴注入层和由亚磷有机固体如蒽制得的发光层的层合物;发光层和由茈衍生物等制得的电子注入层的层合物,或空穴注入层,发光层和电子注入层的层合物。
总之,有机EL显示装置基于以下原理发光向阳极和阴极施加电压以向有机发光层中注入空穴和电子,通过这些空穴和电子重新键合产生的能量激发无机发光材料,和当被激发的无机发光材料回到基态时发光。过程中重新键合的机理与普通二极管中的类似。这意味着相对于施加的电压,电流和发射光的强度经校正显示的极大的非线性。
对于有机EL显示装置,有必要使其至少一个电极是透明的以获得在有机发光层的发光。一般,将透明导电材料如氧化锡铟(ITO)的透明电极用作阳极。将具有小的逸出功的物质用于阴极有助于电子的注入,从而提高发光效率,可以使用金属电极,如Mg-Ag和Al-Li。
在如上所述构造的有机EL显示装置中,优选由极薄的如约10nm的薄膜制成有机发光层。因此,有机发光层可以如透明电极一样基本上透射所有的光。结果是,当发光层不发光时,光束从透明基质的表面进入,通过透明电极和有机发光层,然后在金属电极被反射,再次从透明基质的表面射出。由此,有机EL显示装置的显示表面当从外面观测时像镜面。
根据本发明的有机EL显示装置包括通过在有机发光层表面上提供透明电极形成的有机EL发光元件和在有机发光层背面的金属电极,并且优选将本发明的光学膜(如偏振片)安置于透明电极的表面。更优选的是,将1/4波片安置于偏振片和EL设备之间。通过如上所述安置本发明的光学膜,有机EL显示装置具有抑制外部反射和增加可视性的作用。优选再将一相位差板安置于透明电极和光学膜之间。
相位差板和光学膜(如偏振片等)起偏振从外部进入并经金属电极反射的光的作用,因此,该偏振的效果是金属电极的镜面反射不能从外部被观察到。尤其是通过形成具有1/4波片的相位差板和调整由偏振片和相位差板的偏振方向形成的角为π/4,可以完全阻止金属电极的镜面反射。也即,偏振片仅透射由外部进入有机EL显示装置的光中的线性偏振光部分。一般,通过偏振片,线性偏振光被转换为椭圆偏振光。然而,当相位差板是1/4波片并当上述角度是π/4时,光被转换为圆偏振光。
该圆偏振光通过透明基质,透明电极和有机薄膜,在被金属电极反射后,该光通过有机薄膜,透明电极和透明基质,然后在相位差板转换为线性偏振光。而且,由于线性偏振光以直角通过偏振片的偏振方向,所以它不能通过偏振片。结果是,如前所述可以完全阻止金属电极的镜面反射。
实施例以下通过实施例和对比例更详细地描述本发明,但本发明并不限于此。另外,如下评价光学膜的特性。
(结构式的确定)通过将50mg聚酰亚胺试样溶于0.6mL氘化的二甲基亚砜(DMSO)中制备样品,并利用商品名LA400(由JEOL,Ltd生产)在400MHz进行’H-NMR测量。
(分子量的测量)
将每种聚酰亚胺样品溶于DMF(N,N-二甲基甲酰胺)中以制得0.1重量%的溶液。用0.45-μm膜滤器对该溶液过滤后,利用商品名HLC-8120GPC(由TOSOH CORPORATION生产)按环氧乙烷标准测量分子量。
(折射率的测量)利用阿贝折射计测量所获光学膜的折射率。
(相位差,双折射率和透射比的测量)使用自动双折射分析仪(商品名KOBRA-21ADH,由OjiScientific Instruments生产)测量在590nm波长处的值。对于在厚度方向的相位差(Rth),测量入射光以偏离光学膜法线40度的值。
(薄膜厚度的测量)利用自动多光度系统(instant multiple photometry system)(商品名MCPD-2000,由Otsuka Electronics Co.,Ltd.生产)测量双折射层的厚度。
(实施例1)利用2,2’-二(3,4-二羧苯基)六氟丙烷酸二酐(6FDA)和2,2’-二(三氟甲基)-4,4’-二氨二苯(PFMB)合成由式(1)所示的重复单元形成的聚酰亚胺(Mw=177,000)。将该聚酰亚胺溶于MIBK中,制备14重量%的聚酰亚胺溶液。将该聚酰亚胺溶液直接涂布于后述的透明薄膜(厚度为约55μm)上后,在100℃下干燥5分钟然后在150℃下干燥20分钟。用这种方法,直接在上述TAC薄膜上形成聚酰亚胺层(双折射层)(厚度为约5.0μm)。在形成的光学膜中,该聚酰亚胺层的折射率为1.55,厚度方向的双折射率(Δnxyz)为0.041,透射比为92.1%。
如下制备上述的透明薄膜,首先将65重量份的N-甲基戊二酰亚胺和甲基丙烯酸甲酯(N-甲基戊二酰亚胺含量75重量%,酸含量不大于0.01毫当量/g,玻璃化转化温度147℃)的戊二酰亚胺共聚物和35重量份的丙烯腈和苯乙烯的共聚物(丙烯腈含量28重量%,苯乙烯含量72重量%)熔融并混合。将所得的树脂组合物提供于T-模头熔融挤压机,由此获得厚度为135μm的薄膜。于160℃下在MD方向拉伸该薄膜至原长度的1.7倍,并在TD方向拉伸至其原长度的1.8倍。所得的双轴拉伸透明薄膜具有55μm的厚度,面内相位差(Δnd)为1nm,厚度方向相位差(Rth)为3nm。
(实施例2)如后所述,利用2,2’-二氯-4,4’,5,5’-二苯基四羧酸二酐(DCBPDA)和2,2’-二(三氟甲基)-4,4’-二氨二苯(PFMB)合成式(2)所示的重复单元形成的聚酰亚胺(Mw=82,500)。除使用该聚酰亚胺,与上述实施例1相似地直接在TAC薄膜上形成聚酰亚胺层(双折射层)由此制得光学膜。在所得的光学膜中聚酰亚胺层的反射率为1.57,厚度方向的双折射率(Δnxyz)为0.075,透射比为90.4%。
如下合成上述的DCBPDA。首先,将27.2g(0.68mol)NaOH溶于400ml水中,将5.0g(0.17mol)3,3’,4,4’-二苯基四羧酸二酐(BPDA)溶于该NaOH水溶液中。将所得溶液加热至100℃,并向其中注入氯气,注入完成后5分钟,形成白色沉淀。当逐渐向其中加入NaOH水溶液(20.0gNaOH溶于50ml水中)再次溶解该白色沉淀后,进一步注入氯气,从而再次形成沉淀。反应一直进行直至不再形成沉淀(约45分钟),将溶液冷却至室温,过滤所形成的沉淀。用30ml水冲洗该沉淀并干燥,从而获得64.4g DCBTC-Na(2,2’-二氯-4,4’,5,5’-二苯基四羧酸钠盐)接下来,将该干燥的60.0g DCBTC-Na悬浮于HCl水溶液(60mlHCl和200ml水)中,并在90℃下搅拌3h。将反应溶液冷却至室温,过滤白色沉淀,从而获得45.0g DCBPTC(2,2’-二氯-4,4’,5,5’-二苯基四羧酸)。进一步在减压(3-5mmHg),260-280℃下干燥DCBPTC,使其脱水,获得DCBPDA(2,2’-二氯-4,4’,5,5’-二苯基四羧酸二酐)。通过用甲苯和二噁烷重结晶纯化该DCBPDA。对所获DCBPDA的分析结果如下所示。’H-NMR(DMSO-dσ)σ8.28(s,2H,芳香的),σ8.53(s,2H,芳香的)。
如下合成由上式(2)表示的重复单元形成的聚酰亚胺。将PFMB(1.7mmol)完全溶于间甲酚后,向其中加入DCBPDA(1.7mmol)和合适量的间甲酚(从而相对于固体该溶液的浓度为10重量%)并在氮气气氛下搅拌3h。然后,向该溶液中加入5滴异喹啉,然后加热至约200℃并同时搅拌。此时,由酰亚胺化反应生成的水与1至2ml间甲酚一起蒸馏。然后将溶液冷却至室温并通过再加入间甲酚稀释至5重量%。将该稀释的溶液投入强烈搅拌的5倍于其体积的甲醇中,由此形成纤维固态物质。通过过滤收集该纤维固态物质,从而获得聚酰亚胺。通过重复两次再次将该聚酰亚胺浸入高纯的甲醇并过滤的操作,从间甲酚,异喹啉和低分子量的聚酰亚胺中分离出理想的聚酰亚胺。最后,在150℃-200℃干燥经过滤的聚酰亚胺24h,由此除去残余溶剂。所获聚酰亚胺的收率为91%-95%。
(实施例3)除了使用厚度为约80μm的TAC薄膜(商品名UZ-TAC,由FujiPhoto Film Co.,Ltd.生产)代替透明薄膜,以与上述实施例1类似的方法制备光学膜。
(实施例4)除了使用厚度为约80μm的TAC薄膜(商品名UZ-TAC,由FujiPhoto Film Co.,Ltd.生产)代替透明薄膜,以与上述实施例2类似的方法制备光学膜。
(对比例1)除了使用乙酸乙酯代替MIBK,以与上述实施例1类似的方法制备光学膜。顺便提及,由于所获的光学膜具有如后所述的差的外观,由此无法测量其某些光学特性。与上述类似地在玻璃板上形成聚酰亚胺层,测量该聚酰亚胺层的光学特性。
(对比例2)除了使用环戊酮代替MIBK,以与上述实施例1类似的方法制备光学膜。顺便提及,由于所获的光学膜具有如后所述的差的外观,由此无法测量其某些光学特性。与上述类似地在玻璃板上形成聚酰亚胺层,测量该聚酰亚胺层的光学特性。
(对比例3)
除了使用乙酸乙酯代替MIBK,以与上述实施例2类似的方法制备光学膜。顺便提及,由于所获的光学膜具有如后所述的差的外观,由此无法测量其某些光学特性。与上述类似地在玻璃板上形成聚酰亚胺层,测量该聚酰亚胺层的光学特性。
(对比例4)除了使用环戊酮代替MIBK,以与上述实施例2类似的方法制备光学膜。顺便提及,由于所获的光学膜具有如后所述的差的外观,由此无法测量其某些光学特性。与上述类似地在玻璃板上形成聚酰亚胺层,测量该聚酰亚胺层的光学特性。
(对比例5)使用2,2’-二(3,4-二羧苯基)六氟丙烷酸二酐(6FDA)和2,2’-二甲基-4,4’-二氨二苯(DMB)合成由下式表示的重复结构单元形成的聚酰亚胺(Mw=59,900)。将该聚酰亚胺加入类似于实施例1中的溶剂中,但是不能溶于MIBK。
然后,除了将上述聚酰亚胺溶于代替MIBK的环戊酮,与上述实施例1类似地制备光学膜。顺便提及,由于所获的光学膜具有如后所述的差的外观,由此无法测量其某些光学特性。与上述类似地在玻璃板上形成聚酰亚胺层。该聚酰亚胺层的折射率为1.56,厚度方向的双折射率(Δnxyz)为0.028,透射比为87.2%。
(对比例6)使用酸二酐(2,2’-二(4-(3,4-二羧基)苯基)丙烷,BisADA)和2,2’-二(三氟甲基)-4,4’-二氨二苯(PFMB)合成由下式表示的重复结构单元形成的聚酰亚胺(Mw=51,800)。将该聚酰亚胺加入类似于实施例1中的溶剂中,但是不能溶于MIBK。
然后,除了将上述聚酰亚胺溶于代替MIBK的环戊酮,与上述实施例1类似地制备光学膜。顺便提及,由于所获的光学膜具有如后所述的差的外观,由此无法测量其某些光学特性。与上述类似地在玻璃板上形成聚酰亚胺层。该聚酰亚胺层的折射率为1.55,厚度方向的双折射率(Δnxyz)为0.022,透射比为88.5%。
(对比例7)使用酸二酐(3,3’,4,4’-二苯基四羧酸二酐BPDA)和对二氨苯(PDA)合成由下式表示的重复结构单元形成的聚酰胺酸。代替聚酰亚胺,将此聚酰胺酸加入类似于实施例1中的溶剂中,但是不能溶于MIBK。
然后,代替上述聚酰亚胺,将此聚酰胺酸溶于代替MIBK的N-二甲基乙酰胺,与上述实施例1类似地制备光学膜。顺便提及,由于所获的光学膜具有如后所述的差的外观,由此无法测量其某些光学特性。与上述类似地在玻璃板上形成聚酰胺酸层。该聚酰胺酸层的折射率为1.71,厚度方向的双折射率(Δn)为0.166,透射比为85.9%。
下表1显示了如上所述实施例1-4和对比例1-7的光学膜的光学特性。另外,图4-6是显示这些光学膜的外观的照片。图4是显示如实施例1的光学膜的外观的照片,其它实施例2-4也显示了类似的结果(未示出)。图5是显示如对比例1的光学膜的外观的照片,对比例3也显示了类似的结果(未示出)。图6是显示如对比例2的光学膜的外观的照片,其它对比例4-7也显示了类似的结果(未示出)。在图4-6中,是将聚酰亚胺溶液涂布于10cm宽的中间部分。更进一步,将所获得的光学膜经受拉伸处理,测量当光学膜在其厚度方向获得相位差(Rth)为200nm时的厚度和当光学膜在其厚度方向获得相位差(Rth)为400nm时的厚度。表1也显示了这些结果。顺便提及的是,在厚度方向相位差(Rth)为200nm是用于补偿VA-型液晶元件的优选相位差值,而(Rth)为400nm是用于补偿OCB-型液晶元件的优选相位差值。


如上述图5和图6所示,在对比例1和3中,涂布聚酰亚胺溶液的部分有暗影,在对比例2,4-7中,透明薄膜在涂布聚酰亚胺溶液的部分产生裂纹和褶皱,因而发现它们在光学应用中不可行。作为对照,如图4所示,在实施例1-4中的光学膜没有暗影和褶皱并且具有很好的外观。显而易见,这些薄膜在光学应用中也将显示优异的特性。
特别地是,对比例1和2使用与实施例1中相同的聚酰亚胺,对比例3和4使用与实施例2中相同的聚酰亚胺。但是,不同于实施例1和2,使用具有比MIBK溶解能力强的乙酸乙酯和环戊酮代替MIBK,从而导致光学膜出现如图5和图6中所示的外观问题。这也表明了使用MIBK作为溶剂可以实现优异的外观。进一步,尽管对比例5和6中的聚酰亚胺具有在厚度方向的双折射(0.028,0.022)比实施例1和2中的低,但它们也不能溶于MIBK。这表明即使聚酰亚胺具有在厚度方向的折射率小于0.003,它也不是总能溶于MIBK并且改变溶剂会造成与传统情形类似的外观问题。在当将双折射层直接在基质上形成的情形中,对比例5和6具有在外观上的问题,从而不能测量各种光学特性。即使在将双折射层单独在玻璃板上形成的情形下,由于在厚度方向的双折射小于0.003,需要足够大的厚度以获得在厚度方向足够的相位差(例如Rth为200nm,Rth为400nm),从而导致需要更大的厚度。而且对比例7具有在厚度方向的双折射(Δn=0.166)高于实施例1和2中聚酰亚胺在厚度方向的双折射,但不能溶于MIBK。这表明即使当聚酰亚胺在厚度方向具有大的双折射,它也不总能溶于MIBK。
(参照例1)与实施例2类似,利用2,2’-二氯-4,4’,5,5’-二苯基四羧酸二酐(DCBPDA)和2,2’-二(三氟甲基)-4,4’-二氨二苯(PFMB)合成由式(2)所示的重复单元形成的具有不同分子量的聚酰亚胺。
然后,与实施例1类似,将所获得的每种聚酰亚胺在TAC薄膜上以形成聚酰亚胺层(厚度为5μm),测量每层在厚度方向的双折射率(Δnxyz)。结果示于如下,由下表2可以看出,厚度方向的双折射率随分子量的增加可以设得更大。


工业实用性如上所述,通过使用将含有非液晶聚合物的双折射材料溶于甲基异丁基酮获得的溶液,所述非液晶聚合物在成膜后在厚度方向的双折射率(Δnxyz)为至少为0.03且溶于甲基异丁基酮(MIBK),可以防止双折射层的着色和透明薄膜中的裂纹,从而在即使当将双折射层直接形成于透明薄膜上的情形下,可以获得具有优异外观的光学膜。因此,当将通过本发明生产方法获得的光学膜安装于各种图像显示装置时,可以实现优异的显示特性。
权利要求
1.光学膜的制备方法,所述光学膜包含双折射层和透明薄膜,所述方法包括将由双折射材料溶解于溶剂中而获得的溶液直接涂覆于透明薄膜上;通过硬化所形成的涂布薄膜形成双折射层;其中所述溶剂是甲基异丁基酮,和所述双折射材料包含非液晶聚合物,所述非液晶聚合物在厚度方向具有由以下方程式表示的至少为0.03的双折射率(Δnxyz)并且可溶于甲基异丁基酮,Δnxyz=[(nx+ny)/2]-nz其中,nx,ny和nz各自代表当所述非液晶聚合物形成薄膜后,在薄膜X轴方向,Y轴方向和Z轴方向的折射率,所述X轴方向为薄膜表面内具有最大折射率的轴方向,Y轴方向为该表面内与X轴方向垂直的轴方向,和Z轴方向为与X轴方向和Y轴方向垂直的厚度方向。
2.如权利要求1所述的方法,其中,所述非液晶聚合物是聚酰亚胺。
3.如权利要求2所述的方法,其中,所述聚酰亚胺包含由下式(1)表示的重复单元[式1]
4.如权利要求3所述的方法,其中,所述聚酰亚胺具有在10,000-1,000,000范围内的重均分子量。
5.如权利要求2所述的方法,其中,所述聚酰亚胺包含由下式(2)表示的重复单元[式2]
6.如权利要求5所述的方法,其后,所述聚酰亚胺具有在10,000-1,000,000范围内的重均分子量。
7.如权利要求1所述的方法,其中溶于所述溶剂中的所述非液晶聚合物的比率为相对于每100重量份的甲基异丁基酮,5重量份的非液晶聚合物。
8.如权利要求1所述的方法,其中所述将形成的双折射层在测量波长为590nm处具有至少为90%的透射比。
9.如权利要求1所述的方法,还包括在通过硬化所形成的涂布薄膜而形成所述双折射层之后拉伸所述双折射层。
10.如权利要求9所述的方法,其中,在所述拉伸时进行单轴拉伸处理或双轴拉伸处理。
11.如权利要求1所述的方法,其中,将可收缩的透明薄膜用作所述透明薄膜,并且所述方法还包括在通过硬化所形成的涂布薄膜而形成所述双折射层之后,通过收缩所述透明薄膜而收缩所述双折射层。
12.如权利要求11所述的方法,其中,所述透明薄膜通过加热被收缩。
13.如权利要求1所述的方法制备的光学膜,其包括透明薄膜和直接形成于所述透明薄膜上的双折射层的层合物。
14.如权利要求13所述的光学膜,其还包括偏振器。
15.如权利要求14所述的光学膜,其中所述偏振器层合于所述层合物中的透明薄膜侧,并且所述透明薄膜也用作所述偏振器的透明保护层。
16.如权利要求13所述的光学膜,其还包括相位差板。
17.如权利要求13所述的光学膜,其还包括反射器。
18.包含液晶元件和光学部件的液晶面板,所述光学部件置于所述液晶元件的至少一个表面上,其中,所述光学部件是如权利要求13所述的光学膜。
19.如权利要求18所述的液晶面板,其中所述液晶元件是至少一种选自OCB模式、VA模式和TN模式的液晶元件。
20.如权利要求18所述的液晶面板,其中排列所述光学膜的光学补偿层侧以使其面对所述液晶元件。
21.包含如权利要求18所述的液晶面板的液晶显示装置。
22.包含如权利要求13所述的光学膜的图像显示装置。
全文摘要
本发明提供了一种光学膜,所述光学膜的特征如下其相位差分布是均匀的,其虹状不规则性被抑制,其颜色是透明的并且其光学特性极其优异。将含有非液晶聚合物的双折射材料溶于甲基异丁基酮以制得涂布液。将所述涂布液涂覆于透明薄膜上,从而形成涂布薄膜。通过干燥所述涂布薄膜,获得具有直接形成于透明薄膜上的双折射层的光学膜。作为所述非液晶聚合物,可以使用聚酰亚胺,所述聚酰亚胺可溶于甲基异丁基酮,并且在成膜后在厚度方向具有至少为0.03的双折射率(Δn
文档编号G02B5/30GK1784615SQ200480011959
公开日2006年6月7日 申请日期2004年6月25日 优先权日2003年8月7日
发明者林政毅, 吉见裕之 申请人:日东电工株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1