冷阴极管点亮装置的制作方法

文档序号:2763527阅读:188来源:国知局
专利名称:冷阴极管点亮装置的制作方法
技术领域
本发明涉及一种冷阴极管点亮装置,特别是一种点亮多个冷阴极管的装置。
背景技术
荧光管根据其电极结构,大体分为热阴极管与冷阴极管。冷阴极管(也称作CCFL)中,电极由通过加载高电压可发射许多电子的物质构成。也即,与热阴极管不同,电极不包含热电子发射用灯丝。通过这样,冷阴极管与热阴极管相比,特别是在管径非常小、长寿、以及消耗功率较小这些方面很有利。根据这些优点,冷阴极管主要在液晶显示器的背光以及FAX/扫描仪的光源等、特别强烈要求薄型化(或小型化)以及省电化的产品中较多使用。
冷阴极管与热阴极管相比,具有放电开始电压较高、放电电流(以下称作管电流)较小、且阻抗较高的电气特性。冷阴极管,特别是还具有随着管电流的增大其电阻值急速下降这一负电阻特性。结合这样的冷阴极管的电气特性,对冷阴极管点亮装置的结构下功夫。特别是由于冷阴极管的用途中,重视装置的薄型化(小型化)以及省电化,因此强烈要求冷阴极管点亮装置也小型化(特别是薄型化)以及省电化。
作为以往的冷阴极管点亮装置,例如公知有以下的装置(参照例如专利文献1以及2)。图14为表示该以往的冷阴极管点亮装置的结构的电路图。该以往的冷阴极管点亮装置,具有高频振荡电路100、升压变压器T、以及阻抗匹配部200。
高频振荡电路100,将来自直流电源DC的直流电压变换成高频的交流电压,加载给升压变压器T的一次绕组L1。升压变压器T在二次绕组L2的两端产生比一次电压高很多的高电压。该高二次电压V,被通过阻抗匹配部200加载给冷阴极管FL的两端。阻抗匹配部200,例如包括扼流线圈L与电容器C的串联电路。这里,电容器C包括冷阴极管FL周边的寄生电容。通过调节扼流线圈L的电感与电容器C的电容,来在升压变压器T与冷阴极管FL之间匹配阻抗。
冷阴极管FL熄灭时,如果给变压器T的一次绕组L1加载电压,则因阻抗匹配部200的扼流线圈L与电容器C的共振,冷阴极管FL的两端电压VR急剧上升,超过放电开始电压。通过这样,冷阴极管FL开始放电,开始发光。之后,伴随着管电流IR的增大,冷阴极管FL的电阻值急剧下降(负电阻特性)。冷阴极管FL的两端电压VR也随之下降。此时,通过阻抗匹配部200的作用,不管冷阴极管FL的两端电压VR的变动如何,均稳定维持管电流IR。也即,稳定维持冷阴极管FL的亮度。
图14中,升压变压器T的二次绕组L2与扼流线圈L表示为不同的电路元件。但是,实际的冷阴极管点亮装置中,1个漏磁通型变压器的二次绕组,兼用作升压、扼流、以及阻抗匹配三者。通过这样,来将部件数目与尺寸均控制得较小。也即,以往的冷阴极管点亮装置中,漏磁通型变压器特别被小型化,并将此看作优点而广泛运用。
冷阴极管FL中,一般来说,在管壁与外部的接地导体(例如液晶显示器的外壳或反射板)之间产生寄生电容。例如,在像专利文献1中所公布的冷阴极管点亮装置这样,冷阴极管FL的一方电极接地的结构中,只有另一方电极的电位相对接地电位大幅变动。因此,在管壁与外部之间的寄生电容过大时,特别是上述另一方电极附近,管壁与外部之间漏电流过度增大。在冷阴极管FL特别长时,漏电流的过度增大有可能导致管电流的长度方向的一致性崩溃。其结果是,冷阴极管FL中有可能产生长度方向上的亮度偏差。
为了进一步提高长度方向上的亮度的一致性,可以将冷阴极管FL两端的电极电位的中间点保持为接地电位。例如,图14中所示的以往的冷阴极管点亮装置中,将升压变压器T的二次绕组L2在中性点M2接地,冷阴极管FL的两端分别连接等价的镇流器(参照专利文献2)。通过这样,冷阴极管FL中,两端的电极电位的中间点保持接地电位。也即,两端的电极电位相对接地电位保持反对称,且均等地变动。因此,冷阴极管FL中,管壁各部与外部之间所流通的漏电流的分布,相对冷阴极管的中央部对称。因此,降低了各个冷阴极管的长度方向上的亮度偏差,也即提高了其一致性。
另外,在冷阴极管FL的两端的电极电位的中间点保持为接地电位的情况下,与冷阴极管FL的一端电极接地的情况不同,保持冷阴极管FL的两端电压的振幅,同时电极电位相对接地电位的振幅减半。通过这样,由于上述漏电流自身降低,因此其分布的偏移降低。所以,进一步降低了冷阴极管FL的长度方向上的亮度偏差,也即进一步提高了其一致性。
专利文献1特开平8-273862号公报专利文献2特开平8-122776号公报液晶显示器的背光中,特别要求高亮度。因此,在使用冷阴极管作为该背光的情况下,最好设置多个冷阴极管。此时,必需在这多个冷阴极管之间统一亮度。另外,冷阴极管点亮装置必需小型化。为了适于这些要求,最好让这多个冷阴极管由公共的电源并行驱动。
但是,由公共的电源实施的多个冷阴极管的并行驱动,因以下原因而非常困难。
冷阴极管如上所述,具有负电阻特性。因此,若只将多个冷阴极管简单地并联连接起来,电流会只集中在任意1个冷阴极管中,结果只有这1个冷阴极管能够点亮。再有,在将多个冷阴极管与公共的电源相连接时,各自之间的布线、特别是其长度不同。因此,寄生电容因每个冷阴极管而异。所以,多个冷阴极管的并行驱动中,必需对每个冷阴极管控制管电流,并抑制管电流的偏差。
将1个漏磁通型变压器在多个冷阴极管中用作公共的扼流线圈、实现该漏磁通型变压器与各个冷阴极管之间的阻抗匹配、以及高精度控制各个管电流,要让这三项全部实现十分困难。这里,该困难在使用压电变压器来代替漏磁通型变压器的情况下也一样。因此,以往的冷阴极管点亮装置中,将电源(特别是漏磁通型变压器)对每个冷阴极管逐一设置,用各个电源将各自的管电流控制为一致。也即,以往的冷阴极管点亮装置中,需要与冷阴极管相同数目的电源。其结果是,很难减少部件数目,导致装置全体的进一步小型化很困难。
另外,在例如通过将漏磁通型变压器的二次绕组的中性点接地,并且在冷阴极管的两端分别连接镇流器,来将冷阴极管两端的电极电位的中间点保持为接地电位的情况下,必须高精度决定二次绕组的中间点与镇流器的阻抗。特别是,必须让分割为两个的二次绕组之间,阻抗高精度一致。同样,必须让两个镇流器之间阻抗高精度一致。这样的高精度的设定,使得由公共的漏磁通型变压器实现的多个冷阴极管的一致点亮更加困难。
此外,由于冷阴极管分别各需要两个镇流器,因此很难降低部件数目,导致装置全体的进一步小型化困难。

发明内容
本发明的目的在于,提供一种由公共的电源将多个冷阴极管一致点亮,特别是保持各个冷阴极管的长度方向上的亮度一致,通过这样来实现进一步的小型化以及品质提高的冷阴极管点亮装置。
本发明的冷阴极管点亮装置具有多个镇流器,其在多个冷阴极管各自的一端电极上至少分别连接一个;第1低阻抗电源,其通过镇流器与各个冷阴极管的一端电极相连接,具有比多个冷阴极管的合成阻抗低的输出阻抗;第2低阻抗电源,其与各个冷阴极管的另一端电极相连接,具有比多个冷阴极管的合成阻抗低的输出阻抗;以及,相位修正电路,其调节第1低阻抗电源的输出与第2低阻抗电源的输出之间的相位差,并使冷阴极管两端的电极电位彼此以相反相位变化。
该冷阴极管点亮装置,优选安装在如下所述的液晶显示器中。该液晶显示器,具有多个冷阴极管;以及设置在上述冷阴极管的前侧、且以给定的图形遮挡冷阴极管所发出的光的液晶面板。本发明的上述冷阴极管点亮装置,驱动作为该液晶显示器的背光的上述多个冷阴极管。
多个冷阴极管间,一般来说特性中存在偏差,并且因布线的不同,会导致周边的寄生电容中产生偏差。再有,温度等环境条件的变动,会使得冷阴极管的动作状态中产生偏差。
本发明的上述冷阴极管点亮装置中,与以往的装置的前提相反,抑制电源的输出阻抗。另外,对各个冷阴极管逐一连接镇流器。此时,由于电源的输出阻抗较低,因此各个镇流器实质上彼此独立地进行工作。通过这样,上述的偏差被对每个冷阴极管高精度抵消。也即,多个冷阴极管之间不会产生管电流偏差。从而,能够在多个冷阴极管间保持亮度一致且稳定。
这样,本发明的上述冷阴极管点亮装置,能够通过共同的低阻抗电源将多个冷阴极管一致且稳定地点亮。
本发明的上述冷阴极管点亮装置中,由于电源的输出阻抗较低,因此各个镇流器实质上彼此独立地进行工作。通过这样,即使低阻抗电源与各个镇流器之间的布线较长,进而对每个镇流器大为不同,多个冷阴极管之间管电流也不会产生偏差。
优选第1低阻抗电源、第2低阻抗电源、以及相位修正电路,被安装在第1基板上;镇流器,被安装在第2基板上。还优选,冷阴极管的一端,被固定在第2基板上。
镇流器等其他电路元件,一般来说尺寸比低阻抗电源小。因此,在安装低阻抗电源的第1基板被从其他基板分离时,第2基板与冷阴极管构成的部分能够容易地薄型化。例如,在冷阴极管被用作液晶显示器的背光时,很容易实现该显示器的薄型化。
这样,本发明的上述冷阴极管点亮装置的布线布局的灵活性较高。特别是,能够保持多个冷阴极管的亮度一致,同时容易地实现上述基板的分离。从而,很容易实现装置全体的小型化。
本发明的上述冷阴极管点亮装置中,第1低阻抗电源改变多个冷阴极管各自的一端的电极电位,第2低阻抗电源改变多个冷阴极管各自的另一端的电极电位。这两个低阻抗电源之间,输出频率被设为相等。另外,设定两个低阻抗电源各自的输出振幅,通过这样,各个冷阴极管的两端的电极电位以相等的振幅进行变化。
再有,相位修正电路调节两个低阻抗电源的输出之间的相位差,使各个冷阴极管两端的电极电位彼此以反相位变化。
这样,各个冷阴极管中,两端的电极电位的中间点被保持为高精度等于接地电位,也即,两端的电极电位被相对接地电位保持为反对称。
本发明的上述冷阴极管点亮装置中,特别是,第1低阻抗电源与冷阴极管的一端电极之间的电路结构,可以与第2低阻抗电源与冷阴极管的另一端电极之间的电路结构大为不同。优选的是,镇流器只连接在第1低阻抗电源与各个冷阴极管的一端电极之间。
此时,第1低阻抗电源的输出,被与第2低阻抗电源的输出被设定为不同的振幅。例如,在镇流器是电感器时,第1低阻抗电源的输出,其振幅被设定得比第2低阻抗电源的输出小。此外,在镇流器是电容器时,第1低阻抗电源的输出,其振幅被设定的比第2低阻抗电源的输出大。这样,由于两个低阻抗电源间的输出振幅之差,将由镇流器引起的振幅变化抵消,因此冷阴极管的两端的电极电位以高精度相等的振幅进行变化。
再有,相位修正电路,将两个低阻抗电源的输出之间的相位差,从例如180°起错位给定量。通过这样,由于低阻抗电源的输出之间的相位差将由镇流器所引起的相位错位抵消,因此冷阴极管的两端的电极电位间的相位差被保持为高精度等于180°。
这里,低阻抗电源由于输出阻抗较低,因此上述振幅与相位差的设定,可对所有的冷阴极管与镇流器对共用。
这样,各个冷阴极管中,两端的电极电位被相对接地电位保持为反对称,且均等地进行变动。因此,各个冷阴极管中,管壁各部与外部之间所流通的漏电流的分布,相对冷阴极管的中央部对称。所以,降低了各个冷阴极管的长度方向上的亮度偏差,也即提高了其一致性。
再有,在冷阴极管的两端的电极电位的中间点被保持为接地电位的情况下,与冷阴极管的一端电极被接地的情况不同,在保持冷阴极管的两端电压的振幅的同时,接地电位所对应的电极电位的振幅减半。通过这样,由于漏电流自身降低,因此其分布的偏移也降低。所以,进一步降低了各个冷阴极管的长度方向上的亮度偏移,也即进一步提高了其一致性。
此外,通过使用两个低阻抗电源,各个电源中所包含的电路元件的耐压与使用1个低阻抗电源时相比能够减半。另外,由于镇流器可以只与各个冷阴极管的电极的一方相连接,因此镇流器可以与冷阴极管数目相同。所以,本发明的上述冷阴极管点亮装置中,其小型化很容易实现。
本发明的上述冷阴极管点亮装置中,优选,相位修正电路具有延迟电路,其使第1脉冲信号和第2脉冲信号的一方从另一方起延迟一定量,第1脉冲信号对第1低阻抗电源指示输出时刻,第2脉冲信号对第2低阻抗电源指示输出时刻。
本发明的上述冷阴极管点亮装置中,各个冷阴极管的动作状态的变动,被与各个冷阴极管相连接的镇流器所吸收。因此,两个低阻抗电源的输出之间的相位差,不易受到多个冷阴极管间的动作状态的偏差的影响。因此,该相位差可被对所有的冷阴极管实质上保持一定量。上述相位修正电路通过上述延迟电路,能够容易地将两个低阻抗电源间的输出之间的相位差保持为与一定量相等。
还优选,本发明的上述冷阴极管点亮装置具有检测器,其检测出冷阴极管中所流通的电流(即管电流)、或冷阴极管的一端的电极电位,相位修正电路,根据由该检测器得到的检测值,改变两个低阻抗电源的输出间的相位差相位差。
由于在冷阴极管熄灭时,管电流较小,因此两端的电极间被开放。此时,各个电极电位的振幅较大。再有,不会产生镇流器所引起的相位错位。
例如在检测器没有检测到一定阈值以上的管电流的期间中、或没有在给定的范围内检测到冷阴极管的一端的电极电位的振幅的期间中,相位修正电路可以停止电源输出间的相位差的调节,并将该相位差固定为1 80°。此时,由于不会产生镇流器的输出的相位错位,因此不管相位修正电路有无作用,冷阴极管两端的电极电位都彼此以反相位进行变化。特别是,在相位修正电路通过上述延迟电路将两个低阻抗电源的输出间的相位差保持为与一定量相等时,通过在上述期间停止延迟电路,能够避免其误动作。
本发明的上述冷阴极管点亮装置中,优选,低阻抗电源具有与镇流器相连接、且具有比多个冷阴极管的合成阻抗低的输出阻抗的变压器。这样,由于与以往的装置前提相反,抑制变压器的输出阻抗,因此实现了低输出阻抗的电源。
作为有效降低该变压器的输出阻抗的手段,例如该变压器具有铁心、缠绕在该铁心上的一次绕组、以及缠绕在该一次绕组的内侧或外侧或者内外两侧上的二次绕组。通过这样,由于降低了漏磁通,因此抑制了输出阻抗。再有,抑制了漏磁通对周边机器的不良影响(例如噪声的产生)。
这里,该变压器的二次绕组可具有分割缠绕或蜂窝式缠绕的结构。通过这样,由于降低了线间电容,因此能够将二次绕组的自共振频率设置的足够高。因此,本发明的上述冷阴极管点亮装置,能够在稳定维持多个冷阴极管的发光的同时,将冷阴极管的动作频率设定得足够高。所以容易实现变压器的小型化、乃至装置全体的小型化。
本发明的上述冷阴极管点亮装置中,可以让低阻抗电源具有与镇流器相连接的功率晶体管,来代替上述变压器。功率晶体管的应用,能够容易且有效地降低输出阻抗。因此,本发明的上述冷阴极管点亮装置,能够将更多的冷阴极管一致点亮。
本发明的上述冷阴极管点亮装置中,优选让镇流器含有电感器。通过这样,该电感器作为扼流线圈发挥功能。也即,通过该电感器与冷阴极管周边的寄生电容的共振,给该冷阴极管加载放电开始电压以上的高电压。这里,实际的放电开始电压,在多个冷阴极管之间存在偏差。但是,本发明的上述冷阴极管点亮装置中,镇流器对各个冷阴极管至少逐一连接。因此,不管实际的放电开始电压的偏差如何,来自共同的低阻抗电源的电压加载,都能够使多个冷阴极管全部可靠地点亮。
上述镇流器中,该电感器可具有分割缠绕或蜂窝式缠绕的线圈。通过这样,由于降低了线间电容,因此能够将电感器的自共振频率设置得足够高。因此,本发明的上述冷阴极管点亮装置,能够在稳定维持多个冷阴极管的发光的同时,将冷阴极管的驱动频率设定得足够高。所以容易实现镇流器的小型化、乃至装置全体的小型化。
上述镇流器中,该电感器还可以包含可饱和电抗器。在冷阴极管中的放电突然中断,且该冷阴极管的两端电压急剧上升时,由于镇流器的电感饱和,因此抑制进一步的电压上升。这样,由于防止了过压的产生,因此本发明的上述冷阴极管点亮装置其安全性较高。
本发明的上述冷阴极管点亮装置中,上述镇流器可以包含电容器(以下,称为镇流电容器)。该镇流电容器,优选为基板的层间电容。这里,该基板例如是叠层基板或挠性印刷布线板,在其上安装本发明的上述冷阴极管点亮装置,特别是与冷阴极管的连接部。这样,由于镇流电容器很容易小型化,因此本发明的上述冷阴极管点亮装置全体的小型化很容易实现。
本发明的上述冷阴极管点亮装置,优选具有匹配电容器,其在与镇流器相连接的各个冷阴极管的一端的电极与接地电位之间,至少各连接一个。该匹配电容器,例如可以是基板的层积电容。特别优选的是,镇流器的阻抗与该匹配电容器的阻抗相匹配。还优选的是,镇流器的阻抗、该匹配电容器与冷阴极管周边的寄生电容的合成阻抗、以及冷阴极管的点亮时的阻抗相匹配。这样,对每个镇流器与冷阴极管的组合,实现镇流器与冷阴极管(及其周边的寄生电容)的阻抗匹配。通过这样,不管多个冷阴极管间的特性、周边的寄生电容、以及两端电压的偏差如何,多个冷阴极管间管电流都被保持一致,因此亮度被保持一致。
本发明的上述冷阴极管点亮装置,通过对多个冷阴极管分别至少逐一连接的多个镇流器与共同的低阻抗电源,与以往的装置不同,由公共的电源将多个冷阴极管一致且稳定地点亮。再有,电源与镇流电容器之间的布线可以较长,且可对每个镇流器大为不同,因此布线的布局灵活性较高。因此,装置全体的小型化比以往的装置更容易实现。
本发明的上述冷阴极管点亮装置中,两个低阻抗电源分别改变多个冷阴极管各自的两端的电极电位。这里,两个低阻抗电源之间,输出的频率被设定为相等。另外,两个低阻抗电源各自设定输出的振幅。此后,相位修正电路,调节这两个低阻抗电源的输出间的相位差。通过这样,两个低阻抗电源各自与冷阴极管间的电路构成即使大为不同,各个冷阴极管中,两端的电极电位也被相对接地电位保持为反对称。因此,进一步提高了各个冷阴极管的长度方向上的亮度的一致性。
本发明的上述冷阴极管点亮装置中,优选镇流器只连接在第1低阻抗电源与各个冷阴极管的一端的电极之间。通过这样,只通过与冷阴极管相同数目的镇流器,就能够提高各个冷阴极管的长度方向上的亮度的一致性。
再有,在如上使用两个低阻抗电源时,各个电源中所具有的电路元件的耐压,能够比使用1个低阻抗电源时减半。
这样,本发明的上述冷阴极管点亮装置更容易实现其小型化。
例如,在将本发明的上述冷阴极管点亮装置用作液晶显示器的背光时,容易实现该显示器的薄型化。


图1为表示安装本发明的实施方式1的冷阴极管点亮装置的液晶显示器的内部的主视图。
图2为沿着图1中所示的直线II-II得到的液晶显示器的剖面图。
图3为表示本发明的实施方式1的冷阴极管点亮装置之构成的电路图。
图4为对本发明的实施方式1的冷阴极管点亮装置,示出原脉冲信号P0、第1脉冲信号P1、延迟脉冲信号Pd、比较器8A的输出Pe、以及第2脉冲信号P2的波形图。
图5为示意表示本发明的实施方式1的冷阴极管点亮装置所采用的升压变压器5之构成的分解组成图。
图6为沿着图5中所示的直线VI-VI得到的升压变压器5的剖面图。
图7为对本发明的实施方式1的冷阴极管点亮装置,示出升压变压器5A与5B的二次侧等价电路的示意图。
图8为对本发明的实施方式1的冷阴极管点亮装置,示出冷阴极管20的电压-电流特性的曲线图。
图9为对本发明的实施方式1的冷阴极管点亮装置,示出升压变压器5A与5B各自的二次电压VA与VB、冷阴极管20的第1电极21的电位V1以及冷阴极管20的两端电压VF、各自的变化的波形图。
图10为表示本发明的实施方式2的冷阴极管点亮装置之构成的电路图。
图11为表示本发明的实施方式3的冷阴极管点亮装置之构成的电路图。
图12为表示本发明的实施方式4的冷阴极管点亮装置之构成的电路图。
图13为表示本发明的实施方式5的冷阴极管点亮装置之构成的电路图。
图14为表示以往的冷阴极管点亮装置之构成的电路图。
图中DC-直流电源,1-第1模块(低阻抗电源),4A-第1高频振荡电路,4B-第2高频振荡电路,Q1-第1晶体管,Q2-第2晶体管,In-变换器,Lr-电感器,Cr-共振电容器,5A-第1升压变压器,5B-第2升压变压器,51A-第1一次绕组,51B-第2一次绕组,M1-一次绕组的中性点,52A-第1二次绕组,52B-第2二次绕组,6-相位修正电路,Os-振荡器,7-延迟电路,Rd-电阻器,Cd-电容器,Vr-基准电压源,8A比较器,8B-第1触发器,8C-第2触发器,2-第2模块,LB-镇流电感器,CP-过流保护电容器,CM-匹配电容器,3-连接端子,20-冷阴极管。
具体实施例方式
下面对照附图对本发明的最佳实施方式进行说明。
《实施方式1》图1为表示安装本发明的实施方式1的冷阴极管点亮装置的液晶显示器的内部的主视图。图2为沿着图1中所示的直线II-II得到的液晶显示器的剖面图(图1中所示的箭头表示视线方向)。
该液晶显示器,具有外壳10、多个冷阴极管20、反射板30、第1基板40、第2基板50、第3基板60、以及液晶面板70。本发明的实施方式1的冷阴极管点亮装置,主要分为2个模块1、2,分别安装在第1基板40与第2基板50上。
外壳10例如是金属制的箱体,并被接地。外壳10的前侧开放,其内侧分别从里面起依次收置反射板30、冷阴极管20、以及液晶面板70(图1中未图示)。冷阴极管20具有多根(例如16根),分别水平固定,且在纵向上等间隔排列。外壳10的两侧,设有第2基板50与第3基板60。各个冷阴极管20的两端,被固定于第二基板50与第3基板60上。各个冷阴极管20的一端电极21,与冷阴极管点亮装置的第2模块相连接。各个冷阴极管20的另一端电极22,与第3基板60上的连接端子3相连接。第2模块2与连接端子3,被与第1基板40上的第1模块1相连接(其布线未图示)。第1基板40被设置在与外壳10不同的部位中,例如液晶显示器的电源单元(未图示)中。第1模块1与直流电源(未图示)相连接。冷阴极管点亮装置将直流电源所供给的电,通过两个模块1、2以及连接端子3,分配给各个冷阴极管20。通过这样冷阴极管20分别发光。冷阴极管20所发出的光,直接入射、或被反射板30反射后入射到液晶面板70中(参照图2中所示的箭头)。液晶面板70,通过给定的图形遮挡来自冷阴极管20的入射光。通过这样,在液晶面板70的前面映出该图形。
图3为表示本发明的实施方式1的冷阴极管点亮装置之构成的电路图。该冷阴极管点亮装置,主要由上述2个模块1、2构成。
第1模块1具有一对高频振荡电路4A与4B、一对升压变压器5A与5B,以及相位修正电路6。
一对高频振荡电路4A与4B,具有彼此相似的结构,分别具有电感器Lr、共振电容器Cr、第1晶体管Q1、第2晶体管Q2、以及变换器In。
一对升压变压器5A与5B,具有彼此相似的结构。各个一次绕组在中性点M1分为两根一次绕组51A与51B。
直流电源DC的正极与电感器Lr的一端相连接,负极接地。电感器Lr的另一端与升压变压器5A(或5B)的一次绕组51A和51B之间的中性点M1相连接。第1一次绕组51A的另一个端子53A与第2一次绕组51B的另一个端子53B之间,连接有共振电容器Cr。第1一次绕组51A的端子53A,还与第1晶体管Q1的一端相连接。第2一次绕组51B的端子53B,还与第2晶体管Q2的一端相连接。各个第1晶体管Q1与第2晶体管Q2的另一端均接地。这里,第1晶体管Q1与第2晶体管Q2,优选为MOSFET。此外,还可以是IGBT或双极性晶体管。
相位修正电路6,具有振荡器Os、延迟电路7、比较器8A、两个触发器8B与8C、以及基准电压源Vr。
振荡器Os与第1触发器8B以及延迟电路7相连接,将原脉冲信号P0发送给它们。
第1触发器8B根据原脉冲信号P0,生成第1脉冲信号P1。第1脉冲信号P1被发送给第1高频振荡电路4A,直接传递给第1晶体管Q1的控制端子,并通过变换器In传递给第2晶体管Q2的控制端子。
延迟电路7根据第1脉冲信号P1,生成延迟脉冲信号Pd。延迟电路7例如是所谓的RC滤波器,具有电阻器Rd与电容器Cd的串联连接。该串联连接的电阻器Rd侧的端子被与振荡器Os相连接,电容器Cd侧的端子接地。延迟脉冲信号Pd,表示电阻器Rd与电容器Cd的接点J的电位变化。
比较器8A的输入端子的一方,被与电阻器Rd和电容器Cd的接点J相连接,另一方与基准电压源Vr的正极相连接。基准电压源Vr的负极接地。比较器8A的输出端子与第2触发器8C相连接。比较器8A将延迟脉冲信号Pd的电平与基准电压源Vr的电压相比较,通过输出Pe的电平来表示该比较结果。
第2触发器8C根据比较器8A的输出Pe,生成第2脉冲信号P2。第2脉冲信号P2,被发送给第2高频振荡电路4B,并被直接传递给第1晶体管Q1的控制端子,并通过变换器In传递给第2晶体管Q2的控制端子。
图4为表示原脉冲信号P0、第1脉冲信号P1、延迟脉冲信号Pd、比较器8A的输出Pe、以及第2脉冲信号P2的波形图。
原脉冲信号P0是矩形脉冲信号,具有一定的频率(例如90[kHz])、一定的脉冲宽度、以及一定的脉冲高度。
第1触发器8B,使第1脉冲信号P1的上升沿与下降沿与原脉冲信号P0的上升沿同步。通过这样,第1脉冲信号P1,生成为与原脉冲信号P0相同的矩形脉冲信号。特别是,第1脉冲信号P1的频率为原脉冲信号P0的频率的1/2倍(例如45[kHz]),第1脉冲信号P1的占空比(duty)为50%。
延迟脉冲信号Pd与原脉冲信号P0同相位。但是,延迟脉冲信号Pd的上升/下降时间比原脉冲信号P0的上升/下降时间长。
延迟脉冲信号Pd的电平低于基准电压Vr时,比较器8A的输出Pe保持一定的低电平。另外,在延迟脉冲信号Pd的电平高于基准电压Vr时,比较器8A的输出Pe保持一定的高电平。
第2触发器8C,使第2脉冲信号P2的上升沿与下降沿与比较器8A的输出Pe的上升沿同步。通过这样,第2脉冲信号P2生成为与第1脉冲信号P1相同的矩形脉冲信号。也即,第2脉冲信号P2的频率,与第1脉冲信号P1的频率相等(例如45[kHz])。再有,第2脉冲信号P2的占空比为50%。但是,第2脉冲信号P2的上升沿比第1脉冲信号P1的上升沿慢一定的延迟时间Td。该延迟时间Td,通过延迟电路7的时间常数(电阻器Rd的电阻值R与电容器Cd的电容C之积)、延迟脉冲信号Pd的脉冲高度Vp、以及基准电压Vr,通过下式来给出Td=-RC×In(1-Vr/Vp)。
直流电源DC将输出电压Vi保持为一定值(例如16[V])。
第1高频振荡电路4A中,第1脉冲信号P1被以本来的极性加载给第1晶体管Q1的控制端子,并通过变换器In将其极性反转后加载给第2晶体管Q2的控制端子。
第2高频振荡电路4B中,第2脉冲信号P2被以本来的极性加载给第1晶体管Q1的控制端子,并通过变换器In将其极性反转后加载给第2晶体管Q2的控制端子。
此时,各个高频振荡电路4A与4B中,两个晶体管Q1、Q2以振荡器Os的频率的1/2倍(例如45[kHz])交替导通截止。另外,两个晶体管Q1、Q2的导通占空比均等于50%。通过这样,各个升压变压器5A与5B中,对两个一次绕组51A与51B交替加载输入电压Vi。每当加载该电压时,电感器Lr与共振电容器Cr发生共振,各个升压变压器5A与5B的二次电压VA与VB的极性,被以振荡器Os的频率的1/2倍进行反转。
这样,第1模块1将直流电源DC的输出电压Vi变换成高频(例如45[kHz])的交流电压VA与VB。以下将该频率称作冷阴极管20的驱动频率。
本发明的实施方式1的冷阴极管点亮装置中,与以往的装置中的前提相反,如下将各个上述升压变压器5A与5B的漏磁通抑制得较小。通过这样,第1模块1作为输出阻抗较低的电源对、也即一对低阻抗电源发挥功能。
图5为示意表示本发明的实施方式1的冷阴极管点亮装置所采用的升压变压器5之构成的分解结构图。图6为沿着图5中所示的直线VI-VI得到的升压变压器5的剖面图(图5中所示的箭头表示视线方向)。
升压变压器5,具有一次绕组51(将上述两个一次绕组51A与51B合并起来而成)、二次绕组52、两个E型铁心54与55、线轴56、以及绝缘带57。线轴56例如由合成树脂制成,为中空圆筒状。在其中空部56A中,从两方的开口部插入E型铁心54与55各自的中央凸起54A与55A。线轴56的外周面上,在轴向上等间隔设置有多个隔断57。首先,在这些隔断57之间缠绕二次绕组52。接下来,在二次绕组52的外侧缠绕绝缘带58。最后在绝缘带58的外侧缠绕一次绕组51。这里,二次绕组52也可以缠绕在一次绕组51的外侧、或内侧及外侧双方。通过像这样将一次绕组51与二次绕组52重叠缠绕起来,漏磁通显著降低。因此,升压变压器5的输出阻抗较低。该输出阻抗,特别是被设定得比并联连接的多个冷阴极管20(参照图3)全体的合成阻抗低。
该升压变压器5中,二次绕组52如上所述,通过分割缠绕方式进行缠绕。此外也可以通过蜂窝式缠绕来进行缠绕。通过这样,在防止绕组间的放电的同时,将线间电容抑制得较小。因此,能够将二次绕组52的自共振频率设定得足够高。
第2模块2对每个冷阴极管20逐一连接,分别具有镇流电感器LB与过流保护电容器CP的串联连接、以及匹配电容器CM。
升压变压器5A与5B的二次绕组52A与52B的一端,彼此极性颠倒并接地。第1升压变压器5A的二次绕组52A的另一端与镇流电感器LB和过流保护电容器CP的串联连接的一端相连接。该串联连接的另一端与匹配电容器CM的一端以及冷阴极管20的一端电极相连接。匹配电容器CM的另一端接地。冷阴极管20的另一端电极通过连接端子3,与第2升压变压器5B的二次绕组52B的另一端相连接。
镇流电感器LB例如是绕组线圈。其电感例如是450[mH]。镇流电感器LB的绕组,优选与升压变压器5的二次绕组52同样,通过分割缠绕(或蜂窝式缠绕)进行缠绕(参照图5、6)。通过这样,由于线间电容较小,因此自共振频率足够高。该自共振频率,优选充分高于冷阴极管20的驱动频率。
镇流电感器LB,还优选具有可饱和电抗器。通过这样,由于在冷阴极管20中的放电突然中断,且该冷阴极管20的两端电压急剧上升时,镇流电感器LB的电感饱和,因此可抑制进一步的电压上升。这样,能够保护冷阴极管20以及冷阴极管点亮装置不被过压损坏。
过流保护电容器CP,在镇流电感器LB短路时作为缓冲器工作,保护冷阴极管20不受过流影响。过流保护电容器CP的电容,例如设为150[pF]左右。这里,在产生过流的可能性较小时,也可以不设置过流保护电容器CP。
镇流电感器LB与过流保护电容器CB的串联连接的阻抗,充分高于第1模块1的输出阻抗。因此,本发明的实施方式1的冷阴极管点亮装置中,在镇流电感器LB与过流保护电容器CB的串联连接的阻抗与冷阴极管20的阻抗匹配时,效率较高。再有,在该阻抗匹配在各个冷阴极管20中分别实现时,多个冷阴极管20间点亮时的管电流保持一致。也即,能够由公共的电源(第1模块1)将多个冷阴极管20一致点亮。
但是,冷阴极管20的周边存在各种各样的寄生电容(未图示)。该寄生电容例如包括冷阴极管20与外壳10之间的寄生电容SC(参照图2),以及连接第1模块1、第2模块2、第3模块3、冷阴极管20、及接地导体的布线的寄生电容。因此,冷阴极管20的周边的寄生电容,因冷阴极管20而异。所以,冷阴极管20的阻抗,也因冷阴极管20而异。
因此,对每个第2模块2,将匹配电容器CM的电容例如设为20[pF]左右。特别是第2模块2之间的匹配电容器CM的电容之差,将多个冷阴极管20间的寄生电容之差抵消。例如由于布线越长,其寄生电容一般就越大,因此匹配电容器CM连接的冷阴极管20距离升压变压器5越远,其电容就设定得越小。通过这样,在多个冷阴极管20之间,匹配电容器CM与周边的寄生电容的合成阻抗实质上相一致。
在该一致之下,进一步调节匹配电容器CM、镇流电感器LB、以及过流保护电容器CP各自的阻抗。通过这样,在各个冷阴极管20中,匹配电容器CM与周边的寄生电容的合成阻抗,与镇流电感器LB与过流保护电容器CP的串联连接的阻抗相匹配。更为优选的是,该合成阻抗与各个冷阴极管20的点亮时的阻抗(例如200[kω])相匹配。
这样,在各个冷阴极管20中分别实现上述阻抗匹配。其结果是,多个冷阴极管20之间点亮时的管电流保持一致。因此,多个冷阴极管20以一致的亮度点亮。并且其效率较高。
上述例子中,匹配电容器CM的阻抗分别被设为将多个冷阴极管20之间的寄生电容的差抵消。此外,还可以代替匹配电容器CM的阻抗,或与其一起,将各个镇流电感器LB的阻抗,分别设为将多个冷阴极管20间的寄生电容的差抵消。
通过上述阻抗匹配,在冷阴极管20的点亮时,多个冷阴极管20之间管电流的有效值被保持为实质上一致。这一点可以如下理解。
图7为表示升压变压器5A及5B的二次侧等价电路的示意图。
升压变压器5A与5B,由于漏磁通均较少,因此可以看作输出阻抗较低的交流电压源。再有,在多个冷阴极管20之间,镇流电感器LB的电感L、以及匹配电容器CM与周边的寄生电容的合成电容C是共同的。因此,管电流的有效值实质上并不依赖于冷阴极管20的阻抗,这一点可对任一个冷阴极管20来理解。
这里,由于过流保护电容器CP的电容充分大于匹配电容器CM的电容以及冷阴极管20的周边的寄生电容,因此可在以下的说明中忽略。
设管电流为I,二次电压VA与VB的共同频率、也即冷阴极管20的驱动频率为ω。此时,与第2模块2相连接的冷阴极管20的电极21(以下称作第1电极)的电位V1通过下式(1)来表示V1=(VA-jωLI)/(1-ω2LC)(1)根据式(1),第1升压变压器51A的二次电压VA与管电流I之比满足下式(2)VA/I=(1-ω2LC)V1/I+jωL(2)另外,冷阴极管20的另一个电极22(以下称作第2电极)的电位V2,等于第2升压变压器5B的二次电压VB。
冷阴极管20的两端电压VF=V1-V2,与冷阴极管20的阻抗R和管电流I之积相等V1-V2=RI第1升压变压器51A的二次电压VA被如后所述设定,通过这样冷阴极管20两端的电极电位V1与V2以相同的振幅、且相反的相位进行变化V1=-V2。此时,V1/I与R/2相等。因此,式(2)重写为下式(3)VA/I=(1-ω2LC)R/2+jωL(3)镇流电感器LB与上述合成电容C之间如上所述,阻抗匹配ωL≈1/ωC。此时,由于式(3)的右边第一项被实质上抵消,因此第1升压变压器51A的二次电压VA与管电流I之比,实质上通过下式(4)来表示。
VA/I≈jωL (4)也即,管电流I实质上,只由多个冷阴极管20间共同的参数、即第1升压变压器5A的二次电压VA、镇流电感器LB的电感L、以及冷阴极管20的驱动频率ω决定。特别是,管电流I实质上并不依赖于冷阴极管20的阻抗R。
这样,点亮时的管电流I在多个冷阴极管20之间保持一致。因此多个冷阴极管20被以一致的亮度点亮。
这里,从在多个冷阴极管20间将亮度保持一致这一本发明的观点出发,如上所述,镇流电感器LB的阻抗应当与匹配电容器CM和周边寄生电容的合成阻抗严格匹配。也即,冷阴极管20的驱动频率ω,应当与镇流电感器LB和上述合成电容之间的共振频率ωc严格一致ω≈ωc=1/(LC)1/2。
但是,冷阴极管20的驱动频率ω与上述共振频率ωc的过于严格的一致实际上,从与本发明的观点不同的观点出发,有时也并不优选。例如,管电流的振幅被过分增大,且稳定性降低。其结果是,冷阴极管20的闪烁过多。
为了避免这样的状况,优选将冷阴极管20的驱动频率ω,设定得比上述共振频率ωc稍小。这里,在充分保持多个冷阴极管20之间的亮度的一致性的范围内,调节驱动频率ω与共振频率ωc之差。通过这样,在多个冷阴极管20之间,稳定保持实质上相同的管电流。
冷阴极管20的熄灭时,镇流电感器LB起到以下作用。
图8为表示冷阴极管20的电压-电流特性的曲线图。纵轴表示冷阴极管20的两端电压(的有效值)VF,横轴表示管电流(的有效值)I。冷阴极管20因负电阻特性,管电流I越大,两端电压VF就越低。
冷阴极管20熄灭时,管电流I是微小的值I0。在该状态下,加载来自各个升压变压器5A与5B的二次电压VA与VB。此时,由于冷阴极管20的两端的电极21、22之间实质上断开,因此镇流电感器LB主要与匹配电容器CM共振。通过这样,冷阴极管20的两端电压VF增大到放电开始电压V0(例如2000[V]~2500[V])以上(参照图8中所示的点X0)。从而,冷阴极管20中,两端电极21、22间开始放电,管电流I增大。与此相伴,冷阴极管20的两端电压VF从放电开始电压V0起下降(参照图8中所示的箭头),稳定地保持在冷阴极管20的灯电压VL(例如1500[V])(参照图8中所示的点X1)。此时,管电流I稳定地保持一定值IL(例如4[mA])。
各个冷阴极管20中,管壁与外部之间流通漏电流。为了提高冷阴极管20的长度方向上的亮度一致性,优选漏电流相对冷阴极管20的中央部对称分布。
因此,升压变压器5A与5B的二次电压VA与VB被如下进行设定。通过这样,各个冷阴极管20中,两端的电极电位的中间点被保持得与接地电位高精度相等。也即,两端的电极电位V1与V2被相对接地电位保持为反对称V1=-V2。此时,漏电流的分布相对冷阴极管20的中央部对称。
升压变压器5A与5B中,二次绕组52A与52B的极性相反。另外,第1脉冲信号P1与第2脉冲信号P2之间,设定延迟时间Td所对应的一定的相位差δ(参照图4)。因此,第2升压变压器5B的二次电压VB的相位,比第1升压变压器5A的二次电压VA的相位慢π+δ[rad]=180+δ[deg]。因此,升压变压器5A与5B各自的二次电压VA与VB,以及第2电极22的电位V2,分别通过下式(5)、(6)、(7)来表示。
VA=VAe×exp(jωt) (5)VB=VBe×exp(j(ωt-(π+δ)))(6)V2=VB=VBe×exp(j(ωt-(π+δ)))(7)这里,设二次电压VA与VB各自的有效值为VAe与VBe,时间变量为t。
用来将第1电极21的电位V1与第2电极22的电位V2保持为相对接地电位反对称的条件(V1=-V2),分为以下两个条件第一,两电位V1与V2的振幅(因此,为有效值)相等(参照下式(8))。这里,两电位V1与V2的有效值,例如被设为冷阴极管20的灯电压(有效值)VL的一半VL/2。第二,两电位V1与V2的相位差被保持为π[rad]=180°(参照下式(9))
|V1|=|V2|=VL/2(8)arg(V1)-arg(V2)=π(9)从式(7)与(8)可以得知,第2升压变压器5B的二次电压VB的有效值VBe,被设为冷阴极管20的灯电压VL的一半VL/2。例如,在将冷阴极管20的灯电压VL设为1500[V]时,第2升压变压器5B的二次电压VB的有效值VBe被设为750[V]。
另外,根据式(7),由于第2电极22的电位V2的相位arg(V2)是-(π+δ)[rad],因此根据式(9),第1电极21的电位V1的相位arg(V1)等于-δ[rad]。
因此,在满足条件(8)与(9)时,第1电极21的电位V1与第2电极22的电位V2,分别通过下式(10)与(11)来表示V1=(VL/2)×exp(j(ωt-δ))(10)V2=-(VL/2)×exp(j(ωt-δ)) (11)根据式(10)与(11),冷阴极管20的两端电压VF=V1-V2的相位,等于-δ[rad]。
另外,冷阴极管20的两端电压VF=V1-V2,与冷阴极管20的阻抗R和管电流I之积相等VF=RI。忽略冷阴极管20的阻抗R的电抗时,冷阴极管20的两端电压VF与管电流I同相位。因此,管电流I的相位等于-δ[rad]。这样,在设管电流I的有效值为Ie时,通过下式(12)来表示I=Ie×exp(j(ωt-δ))(12)将式(5)、(10)、以及(12)带入式(1)时,升压变压器5A与5B的二次电压VA与VB,以及它们之间的相位差的从反相位π[rad]=180°起的错位δ[rad],分别按照下式(13)、(14)以及(15)设定。
VAe={(1-ω2LC)2(VL/2)2+(ωLIe)2}1/2(13)VBe=VL/2 (14)δ=tan-1{2ωLIe/(1-ω2LC)VL}(15)图9为表示升压变压器5A与5B各自的二次电压VA与VB、冷阴极管20的第1电极21的电位V1、以及冷阴极管20的两端电压VF=V1-V2=V1-VB、各自的变化的波形图。图9中,纵轴表示相对接地电位的电位,横轴表示时间。另外,粗实线表示第1升压变压器5A的二次电压VA,粗虚线表示第2升压变压器5B的二次电压VB(=第2电极22的电位V2),细实线表示第1电极21的电位V1,细虚线表示冷阴极管20的两端电压VF=V1-VB。
根据上述式(13),第1升压变压器5A的二次电压VA的有效值,设定得比第2升压变压器5B的二次电压VB的有效值(=灯电压的一半VL/2)低。另外,根据上述式(15),第2升压变压器5B的二次电压VB的相位,比第1升压变压器5A的二次电压VA的相位慢π+δ[rad]=180+δ[deg]。
例如,在将镇流电感器LB的电感L设为450[mH],将匹配电容器CM与周边的寄生电容的合成电容C设为23[pF],将冷阴极管20的灯电压VL设为1500[V],并将管电流I的有效值Ie设为5[mA]时,将第1升压晶体管5A的二次电压VA的有效值VAe设为650[V],并将第2升压晶体管5B的二次电压VB的有效值VBe设为750[V]。并且将二次电压VA与VB之间的相位差的从反相位π[rad]=180°起的错位δ设为1.47[rad]=84°。也即,基于延迟电路7的上述延迟时间Td(参照图4),被设为5.2[μsec]。
通过这些设定,第1电极21的电位V1与第2电极22的电位V2(=第2升压变压器5B的二次电压VB)如图9所示,相对接地电位(=0)保持反对称,均等地进行变动。另外,冷阴极管20的两端电压VF=V1-V2,与第2升压变压器5B的二次电压VB反相位地变化,其有效值与冷阴极管20的灯电压VL实质上保持相等。
这样,各个冷阴极管20中,两端的电极电位V1与V2相对接地电位被保持为反对称,且均等地进行变动。因此各个冷阴极管20中,管壁各部与外部之间所流通的漏电流的分布,相对冷阴极管20的中央部对称。所以降低了各个冷阴极管20的长度方向上的亮度偏差,也即提高了其一致性。
本发明的实施方式1的冷阴极管点亮装置中,如上所述,与以往的装置中的前提相反,抑制升压变压器5A与5B的漏磁通。另外,在各个冷阴极管20中,镇流电感器LB与匹配电容器CM被逐一连接。特别是它们的电感,分别被设为将多个冷阴极管20间的周边的寄生电容之差抵消。因此,由于多个冷阴极管20之间,管电流I不会产生偏差,从而将亮度保持得一致且稳定。这样,本发明的实施方式1的冷阴极管点亮装置,通过共同的低阻抗电源(第1模块)1,将多个冷阴极管20一致且稳定地点亮。另外,第1模块1与第2模块2之间的布线可以较长,且可以对每个冷阴极管20大为不同,因此布线的布局灵活性较高。从而能够容易地实现装置全体的小型化。
本发明的实施方式1的冷阴极管点亮装置中,相位修正电路6还将冷阴极管20两端的电极电位V1与V2之间的相位差,保持为与π[rad]=180°高精度相等。通过这样,各个冷阴极管20中,两端的电极电位V1与V2被相对接地电位保持反对称。因此各个冷阴极管20全体,以一致的亮度发光。
此外,通过将升压变压器分为上述两个5A与5B来使用,各自所连接的电路元件的耐压,与使用1个升压变压器时相比能够减半。特别是升压变压器自身的耐压减半。从而,由于能够显著实现升压变压器的小型化,因此本发明的实施方式1的冷阴极管点亮装置,很容易实现其小型化。
本发明的实施方式1的冷阴极管点亮装置中,各个冷阴极管20的动作状态的变动,分别被镇流电感器LB吸收。因此,升压变压器5A与5B的二次电压VA与VB之间的相位差,不易受到多个冷阴极管20间的动作状态的偏差的影响。因此可将该相位差对所有的冷阴极管20实质上保持为一定量。相位修正电路6通过延迟电路7,能够容易地将上述相位差保持得与一定量180+δ[deg]相等。
相位修正电路除此之外,还可以通过CPU等逻辑电路,根据冷阴极管20等的实际动作状态,计算出升压变压器5A与5B的二次电压VA与VB、及它们的相位差180+δ[deg]。另外,还可以存储升压变压器5A与5B的二次电压VA与VB,及它们的相位差180+δ[deg]的表,并从该表中选择与实际的动作状态相适的值。
《实施方式2》本发明的实施方式2的冷阴极管点亮装置,与上述实施方式1的装置同样,安装在液晶显示器中。由于该液晶显示器的构成与上述实施方式1中的相同,因此关于该构成援用图1与图2以及上述实施方式1中的说明。
图10为表示本发明的实施方式2的冷阴极管点亮装置之构成的电路图。该冷阴极管点亮装置除了第2模块2的构成之外,具有与实施方式1的装置的构成要素(参照图3)相同的构成要素。因此,给这些相同的构成要素标注与图3中所示的符号相同的符号,其说明援用实施方式1中的说明。
本发明的实施方式2的冷阴极管点亮装置中,第2模块2包含镇流电容器CB来代替镇流电感器LB。另外,与上述实施方式1的第2模块2不同,没有匹配电容器CM(参照图3)。
镇流电容器CB的电容比较小(几[pF]左右)。因此,镇流电容器CB,优选作为第2基板50或第3基板60的层间电容形成。
还有,在使用镇流电容器CB时,过流保护电容器CP以及匹配电容器CM均可以不设置。镇流电容器CB,特别是如下所述,起到与上述实施方式1的匹配电容器CM相同的作用。
各个镇流电容器CB的电容,对每个冷阴极管20分别设定。特别是该设定中,考虑多个冷阴极管20间的设置条件(例如布线的长度/图形、管壁与外壳10之间的距离等)的不同。
例如,多个冷阴极管20中,最接近外壳10的侧面的那个中,管壁与外壳10的侧面之间的寄生电容SC(参照图2)较大。因此,与该冷阴极管20相连接的镇流电容器CB的电容被设定得较大。
这样,冷阴极管20与第2模块2的各个组合中,镇流电容器CB的电容与冷阴极管20周边的寄生电容实质上一致。也即,镇流电容器CB的阻抗与冷阴极管20的周边的寄生电容的合成阻抗相匹配。
这里,由于第1模块1的输出阻抗较低,因此容易实现上述阻抗匹配。
更为优选的是,镇流电容器CB的阻抗,被设定为与各个冷阴极管20的点亮时的阻抗相匹配。
另外,升压变压器5A与5B的二次电压VA与VB,被如下设定。通过这样,在各个冷阴极管20中,两端的电极电位的中间点被保持为与接地电位高精度相等。也即,两端的电极电位被相对接地电位保持为反对称。
由于升压变压器5A与5B的漏磁通均较少,因此看作输出阻抗较低的交流电压源。再有如上所述,多个冷阴极管20中,镇流电容器CB与周边的寄生电容之间阻抗相匹配。也即,镇流电容器CB与周边的寄生电容的电容相等。所以,可以对任意一个冷阴极管20决定适当的设定值。
设镇流电容器CB与冷阴极管20周边的寄生电容(看作与冷阴极管并联的电容)的各个电容为C,管电流为I,二次电压VA与VB的共同频率为ω。此时,冷阴极管20的第一电极21的电位V1通过下述式(16)来表示V1=(1/2)×(VA-I/jωC) (16)另外,冷阴极管20的第2电极22的电位V2,与第2升压变压器5B的二次电压VB相等。与上述实施方式1同样,第2升压变压器5B的二次电压VB的相位,比第1升压变压器5A的二次电压VA的相位慢π+δ[rad]=180+δ[deg]。因此,升压变压器5A与5B各自的二次电压VA与VB、以及第2电极22的电位V2,分别通过上式(5)、(6)、(7)来表示。
再有,用于将第1电极21的电位V1与第2电极22的电位V2相对接地电位维持为反对称的条件,与上述实施方式1中的两个条件相等(参照式(8)、(9))因此,根据式(16),与上述实施方式1的说明同样,升压变压器5A与5B的二次电压VA与VB、及它们之间的相位差的从反相位π[rad]=180°起的错位δ[rad]各自的设定值,分别通过下式(17)、(18)以及(19)来表示。
VAe={VL2+(Ie/ωC)2}1/2(17)VBe=VL/2(18)δ=-tan-1{Ie/(ωC×VL)}(19)这里,设升压变压器5A与5B各自的二次电压VA与VB的有效值为VAe与VBe,设管电流I的有效值为Ie,设冷阴极管20的灯电压(有效值)为VL。
通过该设定,各个冷阴极管20中,两端的电极电位V1与V2被相对接地电位保持为反对称,并均等地进行变动。因此对于各个冷阴极管20,管壁各部与外部之间所流通的漏电流的分布,相对冷阴极管20的中央部对称。所以,降低了各个冷阴极管20的长度方向上的亮度偏差,也即提高了其一致性。
本发明的实施方式2的冷阴极管点亮装置中,与上述实施方式1的装置同样,与以往的装置中的前提相反,抑制升压变压器5A与5B的漏磁通。另外,对各个冷阴极管20,镇流电容器CB被逐一连接。特别是,它们的阻抗,分别被设定为将多个冷阴极管20间的周边寄生电容之差抵消。因此,由于多个冷阴极管20之间,管电流I不会产生偏差,从而亮度被保持一致。这样,本发明的实施方式2的冷阴极管点亮装置,通过共同的低阻抗电源(第1模块)1将多个冷阴极管20一致点亮。另外,第1模块1与第2模块2之间的布线可以较长,且可以对各个冷阴极管20大为不同,因此布线的布局灵活性较高。从而能够容易地实现装置全体的小型化。
本发明的实施方式2的冷阴极管点亮装置中,与上述实施方式1的装置同样,将升压变压器分为上述两个5A与5B来使用,通过这样,各自所连接的电路元件的耐压,与使用1个升压变压器时相比能够减半。特别是升压变压器自身的耐压减半。因此,特别是由于能够显著实现升压变压器的小型化,因此本发明的实施方式2的冷阴极管点亮装置很容易实现其小型化。
另外,镇流电容器CB的尺寸比电感器小得多。特别是镇流电容器CB可以作为第2基板50等的层间电容来形成,因此只有基板程度的厚度。再有,在使用镇流电容器CB时,与上述实施方式1不同,可以省略过流保护电容器CB以及匹配电容器CM。
这样,本发明的实施方式2的冷阴极管点亮装置中,特别容易实现第2模块2的小型化。因此在液晶显示器的薄型化中很有利。
本发明的实施方式2的冷阴极管点亮装置中,与上述实施方式1的装置同样,相位修正电路6将冷阴极管20两端的电极电位V1与V2之间的相位差保持为与π[rad]=180°高精度相等。通过这样,各个冷阴极管20中,两端的电极电位V1与V2被相对接地电位保持为反对称。因此,各个冷阴极管20全体,以一致的亮度发光。
本发明的实施方式2的冷阴极管点亮装置中,各个冷阴极管20的动作状态的变动,分别被镇流电容器CB所吸收。因此升压变压器5A与5B的二次电压VA与VB之间的相位差,不易受到多个冷阴极管20间的动作状态的偏差的影响。因此,该相位差可被对所有的冷阴极管20实质上保持为一定量。相位修正电路6通过延迟电路7,能够容易地将上述相位差保持为与一定量180+δ[deg]相等。
相位修正电路除此之外,还可以通过CPU等逻辑电路,根据冷阴极管20等的实际的动作状态,计算出升压变压器5A与5B的二次电压VA与VB、及它们的相位差180+δ[deg]。另外,还可以存储升压变压器5A与5B的二次电压VA与VB、及它们的相位差180+δ[deg]的表,并从该表中选择与实际的动作状态相适的值。
《实施方式3》本发明的实施方式3的冷阴极管点亮装置,与上述实施方式1的装置同样,安装在液晶显示器中。由于该液晶显示器的构成与上述实施方式1中的相同,因此关于该构成援用图1与图2以及上述实施方式1中的说明。
图11为表示本发明的实施方式3的冷阴极管点亮装置之构成的电路图。该冷阴极管点亮装置,除了第1模块1的构成之外,具有与实施方式1的装置的构成要素(参照图3)相同的构成要素。因此,给这些相同的构成要素标注与图3中所示的符号相同的符号,它们的说明援用实施方式1中的说明。
第1模块1具有一对输出电路9A与9B,以及相位修正电路6。
一对输出电路9A与9B,具有彼此相似的构成,设有高压侧功率晶体管与低压侧功率晶体管的串联连接Q3A与Q4A、及Q3B与Q4B,以及变换器InA与InB。
直流电源DC的正极与高压侧功率晶体管Q3A及Q3B各自的一端相连接,负极接地。高压侧功率晶体管Q3A及Q3B各自的另一端,与低压侧功率晶体管Q4A及Q4B的各自的一端相连接,低压侧功率晶体管Q4A及Q4B各自的的另一端接地。这里,高压侧功率晶体管Q3A及Q3B、与低压侧功率晶体管Q4A及Q4B,优选为MOSFET。此外也可以是IGBT或双极性晶体管。
相位修正电路6,对第1输出电路9A,将第1脉冲信号P1直接发送给高压侧功率晶体管Q3A的控制端子,并通过变换器InA发送给低压侧功率晶体管Q4A的控制端子。
相位修正电路6,对第2输出电路9B,将第2脉冲信号P2直接发送给高压侧功率晶体管Q3B的控制端子,并通过变换器InB发送给低压侧功率晶体管Q4B的控制端子。
第1输出电路9A中,两个功率晶体管Q3A与Q4A的接点JA,分别通过第2模块2,与各个冷阴极管20的一端电极相连接。
第2输出电路9B中,两个功率晶体管Q3B与Q4B的接点JB,通过连接端子3,与各个冷阴极管20的另一端电极相连接。
直流电源DC将输出电压Vi保持为一定值,优选为冷阴极管20的灯电压的一半(例如750[V])。相位修正电路6,将一定频率(例如45[kHz])的脉冲信号P1与P2,分别发送给两个输出电路9A与9B。
第1输出电路9A中,变换器InA,使输入给低压侧功率晶体管Q4A的控制端子的第1脉冲信号P1的极性,与输入给高压侧功率晶体管Q3A的控制端子的第1脉冲信号P1的极性相反。
第2输出电路9B中,变换器InB,使输入给高压侧功率晶体管Q3B的控制端子的第2脉冲信号P2的极性,与输入给低压侧功率晶体管Q4B的控制端子的第2脉冲信号P2的极性相反。
因此,输出电路9A与9B中,高压侧功率晶体管与低压侧功率晶体管,以与脉冲信号P1及P2的频率(例如45[kHz])相同的频率交替导通截止。通过这样,各个接点JA与JB的电位VA与VB,交替取直流电源DC的输出电压Vi与接地电位(≈0)中的任意一个值。
这样,第1模块1将直流电源DC的输出电压Vi变换成高频(例如45[kHz])的交流电压。
与上述实施方式1同样,第2输出电路9B的输出电压VB的有效值,被设为等于冷阴极管20的灯电压的一半VL/2。第1输出电路9A的输出电压VA的有效值,被设为低于冷阴极管20的灯电压的一半VL/2。另外,通过脉冲信号P1与P2的相位差的设定,第2输出电路9B的输出电压VB的相位,比第1输出电路9A的输出电压VA的相位慢180+δ[deg]。通过这样,各个冷阴极管20中,两端的电极电位被相对接地电位保持为反对称,且均等地进行变动。因此各个冷阴极管20中,管壁各部与外部之间所流通的漏电流的分布,相对冷阴极管20的中央部对称。所以,降低了各个冷阴极管20的长度方向上的亮度偏差,也即提高了其一致性。
本发明的实施方式3的冷阴极管点亮装置中如上所述,由于第1模块1的输出段由功率晶体管构成,因此输出阻抗较低。也即,与上述实施方式1的装置相同,第1模块1作为一对低阻抗电源发挥功能。因此,与实施方式1中的设定同样,通过对每个冷阴极管20设定镇流电感器LB与匹配电容器CM的阻抗,来使多个冷阴极管20之间,管电流I不会产生偏差。因此,在多个冷阴极管20之间,亮度被保持得一致且稳定。这样,本发明的实施方式3的冷阴极管点亮装置,通过共同的低阻抗电源(第1模块)1,将多个冷阴极管20一致且稳定地点亮。另外,第1模块1与第2模块2之间的布线可以较长,且可以对每个冷阴极管20大为不同,因此布线的布局灵活性较高。从而能够容易地实现装置全体的小型化。
本发明的实施方式3的冷阴极管点亮装置中,匹配电容器CM的阻抗,分别被设定为与将冷阴极管20间的寄生电容之差抵消。此外,还可以代替匹配电容器CM的阻抗,或与其一起,将镇流电感器LB各自的阻抗,分别设定为将多个冷阴极管20间的寄生电容之差抵消。
本发明的实施方式3的冷阴极管点亮装置中,相位修正电路6将冷阴极管20的两端的电极电位V1与V2之间的相位差,保持为与180°高精度相等。通过这样,各个冷阴极管20中,两端的电极电位V1与V2被相对接地电位保持为反对称。因此,各个冷阴极管20全体,以一致的亮度发光。
此外,通过将输出电路分为上述两个9A与9B来使用,能够使各自所连接的电路元件的耐压与使用1个输出电路时相比减半。特别是,功率晶体管的耐压减半。因此,本发明的实施方式3的冷阴极管点亮装置容易实现其小型化。
本发明的实施方式3的冷阴极管点亮装置中,各个冷阴极管20的动作状态的变动,分别被镇流电感器LB所吸收。因此,输出电路9A与9B的输出电压VA与VB之间的相位差,不易受到多个冷阴极管20间的动作状态的偏差的影响。因此,该相位差可以被对所有的冷阴极管20实质上保持为一定量。相位修正电路6通过延迟电路7,能够将上述相位差容易地保持为与一定量180+δ[deg]相等。
相位修正电路除此之外,还可以通过CPU等逻辑电路,根据冷阴极管20等的实际动作状态,计算出输出电路9A与9B的输出电压VA与VB,及它们的相位差180+δ[deg]。另外,还可以存储输出电路9A与9B的输出电压VA与VB、及它们的相位差180+δ[deg]的表,从该表中选择与实际的动作状态相适的值。
本发明的实施方式3的冷阴极管点亮装置中,与上述实施方式2的装置同样,第2模块2可以具有镇流电容器CB。
镇流电容器CB的尺寸比镇流电感器小得多。特别是,由于镇流电容器CB可以作为第2基板50等的层间电容来形成,因此只有基板程度的厚度。在使用镇流电容器CB时,还可以省略过流保护电容器CB以及匹配电容器CM。
这样,特别是本发明的实施方式3的冷阴极管点亮装置中,容易实现第2模块2的小型化。因此,特别是在液晶显示器的薄型化中很有利。
《实施方式4》本发明的实施方式4的冷阴极管点亮装置,与上述实施方式1的装置同样,安装在液晶显示器中。由于该液晶显示器的构成与上述实施方式1中的相同,因此关于该构成援用图1与图2以及上述实施方式1中的说明。
图12为表示本发明的实施方式4的冷阴极管点亮装置之构成的电路图。该冷阴极管点亮装置,除了电流检测器6A与选择器8D之外,具有与实施方式1的装置的构成要素(参照图3)相同的构成要素。因此,给这些相同的构成要素标注与图3中所示的符号相同的符号,它们的说明援用实施方式1中的说明。
电流检测器6A,例如连接在第2升压变压器5B的二次绕组52B与接地端子之间。电流检测器6A除此之外,还可以连接在第2升压变压器5B的二次绕组52B与连接端子3之间、第1升压变压器5A的二次绕组52B与接地端子之间、或第1升压变压器5A的二次绕组52A与第2模块2之间。
电流检测器6A,检测出冷阴极管20的管电流。在所检测出的管电流值小于给定阈值时,电流检测器6A给位于相位修正电路6内的选择器8D发送停止信号W。另外,在所检测出的管电流值大于给定阈值时,电流检测器6A停止对选择器8D发送停止信号W。
选择器8D插入在第2触发器8C与第2高频振荡电路4B之间,输入第1脉冲信号P1与第2脉冲信号P2。选择器8D,还依照来自电流检测器6A的停止信号W,如下对第1脉冲信号P1与第2脉冲信号P2进行选择,将所选择出的脉冲信号,发送给第2高频振荡电路4B。
选择器8D接收到停止信号W时,选择第1脉冲信号P1。通过这样,升压变压器5A与5B各自的二次电压VA与VB的相位差,被保持为实质上等于180°。
选择器8D未接收到停止信号W时,选择第2脉冲信号P2。通过这样,升压变压器5A与5B各自的二次电压VA与VB的相位差,从180°起错位δ[deg]。
冷阴极管20熄灭时,由于冷阴极管20两端的电极间开放,因此实质上没有产生第2模块2的输出的相位错位。另外,在冷阴极管20开始点亮时,在管电流较小的期间,电流检测器6A发送出停止信号W。相位修正电路6按照该停止信号W,将升压变压器5A与5B各自的二次电压VA与VB的相位差保持为实质上等于180°。通过这样,各个冷阴极管20的两端的电极电位彼此以反相位进行变化。
这样,在冷阴极管20开始点亮时,所有的冷阴极管20中,两端电压迅速且可靠地达到放电开始电压。也即,所有的冷阴极管20迅速且可靠地点亮。
伴随着冷阴极管20的点亮开始,管电流增大。此时,由于电流检测器6A将停止信号W的发送停止,因此相位修正电路6,将升压变压器5A与5B各自的二次电压VA与VB的相位差保持为等于180+δ[deg]。由于该相位差与上述实施方式1同样,将第2模块2的加载电压的相位错位抵消,因此各个冷阴极管20两端的电极电位间的相位差被保持为高精度等于180°。
通过这样,各个冷阴极管20中,两端的电极电位被相对接地电位保持为反对称,且均等地进行变动。因此各个冷阴极管20中,管壁各部与外部之间所流通的漏电流的分布,相对冷阴极管20的中央部对称。所以降低了各个冷阴极管20的长度方向上的亮度偏差。
本发明的实施方式4的冷阴极管点亮装置中,与上述实施方式1的装置同样,第1模块1作为一对低阻抗电源发挥作用。因此,与实施方式1中的设定同样,通过对每个冷阴极管20,设定镇流电感器LB与匹配电容器CM的阻抗,使多个冷阴极管20之间,管电流I不会产生偏差。因此,在多个冷阴极管20之间,亮度被保持得一致且稳定。这样,本发明的实施方式4的冷阴极管点亮装置,通过共同的低阻抗电源(第1模块)1,将多个冷阴极管20一致且稳定地点亮。另外,第1模块1与第2模块2之间的布线可以较长,且可以对每个冷阴极管20大为不同,因此布线的布局灵活性较高。从而能够容易地实现装置全体的小型化。
本发明的实施方式4的冷阴极管点亮装置中,匹配电容器CM的阻抗,分别被设定为将冷阴极管20间的寄生电容的差抵消。此外,还可以代替匹配电容器CM的阻抗、或与其一起,将镇流电感器LB各自的阻抗,分别设定为将多个冷阴极管20间的寄生电容的差抵消。
本发明的实施方式4的冷阴极管点亮装置中,相位修正电路6通过电流检测器6A检测出管电流,根据其检测值,调节升压变压器5A与5B的各自的二次电压VA与VB的相位差。也即,在管电流小于给定的阈值时,将上述相位差保持为等于180°,在管电流大于给定的阈值时将上述相位差保持为等于180+δ[deg]。通过这样,不管管电流的大小如何,各个冷阴极管20中两端的电极电位V1与V2之间的相位差均被保持为高精度等于180°。因此,可在冷阴极管20的点亮开始时,将所有的冷阴极管20迅速且可靠地点亮。另外,在冷阴极管20的点亮时,两端的电极电位V1与V2被相对接地电位保持为反对称。因此,降低了各个冷阴极管20在长度方向上的亮度偏差。
基于电流检测器6A的检测值的上述相位差的调节,在PWM调光控制中也很有效。
PWM调光控制中,冷阴极管以PWM的载频(例如200[Hz])反复亮灭。也即,冷阴极管例如在PWM的导通期间点亮,在截止期间熄灭。通过PWM的导通占空比的调节,来控制冷阴极管的亮度。
PWM的导通期间开始时,在管电流较小的期间,升压变压器5A与5B的二次电压VA与VB的相位差被保持为等于180°。通过这样,在PWM的导通期间全体,各个冷阴极管20的两端的电极电位V1与V2之间的相位差被保持为高精度等于180°。因此,在PWM的导通期间,所有的冷阴极管20被迅速且可靠地点亮。因此PWM调光控制的可靠性较高。
相位修正电路6,还可以在开始点亮冷阴极管20时,在一定时间内(例如脉冲信号P1与P2的周期的常数倍)将升压变压器5A与5B的各个二次电压VA与VB的相位差保持为等于180°,来代替基于电流检测器6A的检测值的上述相位差的调整。例如,在脉冲信号的频率为45[kHz],且上述一定时间被设为其10倍时,上述一定时间为220[μsec]。通过这样,与上述同样,能够将所有的冷阴极管20迅速可靠地点亮。
本发明的实施方式4的冷阴极管点亮装置中,除此之外,通过将升压变压器分为上述两个5A与5B来使用,各自所连接的电路元件的耐压与使用1个升压变压器时相比能够减半。特别是升压变压器自身的耐压减半。因此,由于能够显著实现升压变压器的小型化,因此本发明的实施方式4的冷阴极管点亮装置,很容易实现其小型化。
本发明的实施方式4的冷阴极管点亮装置中,各个冷阴极管20的动作状态的变动,分别被镇流电感器LB所吸收。因此,升压变压器5A与5B各自的二次电压VA与VB的相位差,不易受到多个冷阴极管20间的动作状态的偏差的影响。因此在冷阴极管20的点亮时,上述相位差可被对所有的冷阴极管20实质上保持一定量。相位修正电路6通过延迟电路7,能够容易地将上述相位差保持为与一定量相等180+δ[deg]。
相位修正电路除此之外,还可以通过CPU等逻辑电路,根据冷阴极管20等的实际动作状态,计算出输出电路9A与9B的输出电压VA与VB、及它们的相位差180+δ[deg]。另外,还可以存储升压变压器5A与5B各自的二次电压VA与VB的相位差、及它们的相位差180+δ[deg]的表,并从该表中选择与实际的动作状态相适的值。
本发明的实施方式4的冷阴极管点亮装置中,与上述实施方式2的装置同样,第2模块2中可以具有镇流电容器CB。
镇流电容器CB的尺寸比镇流电感器小得多。特别是镇流电容器CB可以作为第2基板50等的层间电容来形成,因此只有基板程度的厚度。在使用镇流电容器CB时,还可以省略过流保护电容器CB以及匹配电容器CM。
这样,本发明的实施方式4的冷阴极管点亮装置中,特别是容易实现第2模块2的小型化。因此,特别是在液晶显示器的薄型化中很有利。
《实施方式5》本发明的实施方式5的冷阴极管点亮装置,与上述实施方式1的装置同样,安装在液晶显示器中。由于该液晶显示器的构成与上述实施方式1中的相同,因此关于该构成援用图1与图2以及上述实施方式1中的说明。
图13为表示本发明的实施方式5的冷阴极管点亮装置之构成的电路图。该冷阴极管点亮装置,除了电压检测器6B与匹配电容器CM之外,具有与实施方式4的装置的构成要素(参照图12)同样的构成要素。因此给这些相同的构成要素标注与图12中所示的符号相同的符号,它们的说明援用实施方式4中的说明。
匹配电容器CM,是两个匹配电容器CM1与CM2的串联连接。
电压检测器6B对各个第2模块2,连接在两个匹配电容器CM1与CM2之间,检测出其接点的电位。在第2模块2的任意一个检测出的电位不在给定的范围内时,电压检测器6B对相位修正电路6内的选择器8D发送停止信号W。另外,在全体第2模块2检测出的电位位于给定范围内时,电压检测器6B停止对选择器8D发送停止信号W。
冷阴极管20熄灭时,由于两端的电极之间开放,因此实质上没有产生第2模块2的输出的相位错位。另外,在冷阴极管20开始点亮时,在各个电极电位的振幅大于冷阴极管20的点亮时的振幅的期间,电压检测器6B发送出停止信号W。相位修正电路6按照该停止信号W,将升压变压器5A与5B各自的二次电压VA与VB的相位差保持为实质上等于180°。通过这样,各个冷阴极管20的两端的电极电位彼此以反相位进行变化。
这样,在冷阴极管20开始点亮时,所有的冷阴极管20中,两端电压迅速且可靠地达到放电开始电压。也即,所有的冷阴极管20迅速且可靠地点亮。
伴随着冷阴极管20的点亮开始,管电流增大。此时,冷阴极管20的电极电位的振幅降低到给定的范围内。从而,由于电压检测器6B将停止信号W的发送停止,所以相位修正电路6与上述实施方式4同样,将升压变压器5A与5B各自的二次电压VA与VB的相位差保持为等于180+δ[deg]。该相位差与上述实施方式1同样,由于将第2模块2的加载电压的相位错位抵消,因此各个冷阴极管20两端的电极电位间的相位差被保持为高精度等于180°。
这样,各个冷阴极管20中,两端的电极电位被相对接地电位保持为反对称,并均等地进行变动。因此各个冷阴极管20中,管壁各部与外部之间所流通的漏电流的分布,相对冷阴极管20的中央部对称。所以,降低了各个冷阴极管20的长度方向上的亮度偏差。
本发明的实施方式5的冷阴极管点亮装置中,与上述实施方式1的装置同样,第1模块1作为一对低阻抗电源发挥功能。因此,与实施方式1中的设定同样,通过对每个冷阴极管20,设定镇流电感器LB与匹配电容器CM的阻抗,使多个冷阴极管20之间,管电流I不会产生偏差。因此,在多个冷阴极管20之间,亮度被保持得一致且稳定。这样,本发明的实施方式5的冷阴极管点亮装置,通过共同的低阻抗电源(第1模块)1,将多个冷阴极管20一致且稳定地点亮。另外,第1模块1与第2模块2之间的布线可以较长,且可以对每个冷阴极管20大为不同,因此布线的布局灵活性较高。从而,能够容易地实现装置全体的小型化。
本发明的实施方式5的冷阴极管点亮装置中,匹配电容器CM的阻抗,分别被设定为将冷阴极管20间的寄生电容的差抵消。此外,还可以代替匹配电容器CM的阻抗、或与其一起,将镇流电感器LB各自的阻抗,分别设定为将多个冷阴极管20间的寄生电容的差抵消。
本发明的实施方式5的冷阴极管点亮装置中,相位修正电路6通过电压检测器6B检测出冷阴极管20的电极电位,根据该检测值,调节升压变压器5A与5B各自的二次电压VA与VB的相位差。也即,在电极电位不处于给定范围内时,保持上述相位差等于180°,在电极电位处于给定范围内时,保持上述相位差等于180+δ[deg]。通过这样,无论管电流的大小如何,各个冷阴极管20中两端的电极电位V1与V2之间的相位差均被保持为高精度等于180°。因此,在冷阴极管20的点亮开始时,将所有的冷阴极管20迅速且可靠地点亮。另外,在冷阴极管20的点亮时,两端的电极电位V1与V2被相对接地电位保持为反对称。因此,降低了各个冷阴极管20在长度方向上的亮度偏差。
基于电压检测器6B的检测值的上述相位差的调节,在PWM调光控制中也很有效。
PWM的导通期间开始时,在冷阴极管20的电极电位大到超过给定范围的期间,升压变压器5A与5B的二次电压VA与VB的相位差被保持为等于180°。通过这样,在PWM的导通期间全体,各个冷阴极管20中两端的电极电位V1与V2之间的相位差被保持为高精度等于180°。因此,在PWM的导通期间,所有的冷阴极管20被迅速且可靠地点亮。因此,PWM调光控制的可靠性较高。
相位修正电路6,还可以在冷阴极管20的点亮开始时,在一定时间(例如脉冲信号P1与P2的周期的常数倍)内,将升压变压器5A与5B各自的二次电压VA与VB的相位差保持为等于180°,来代替基于电压检测器6B的检测值的上述相位差的调整。例如,在脉冲信号的频率为45[kHz],且上述一定时间被设为其10倍时,上述一定时间为220[μsec]。通过这样,与上述同样,能够将所有的冷阴极管20迅速可靠地点亮。
本发明的实施方式5的冷阴极管点亮装置中,除此之外,通过将升压变压器分为上述两个5A与5B来使用,各自所连接的电路元件的耐压,与使用1个升压变压器时相比能够减半。特别是升压变压器自身的耐压减半。因此,由于特别是能够显著实现升压变压器的小型化,因此本发明的实施方式5的冷阴极管点亮装置,很容易实现其小型化。
本发明的实施方式5的冷阴极管点亮装置中,各个冷阴极管20的动作状态的变动,分别被镇流电感器LB所吸收。因此,升压变压器5A与5B各自的二次电压VA与VB的相位差,不易受到多个冷阴极管20间的动作状态的偏差的影响。因此在冷阴极管20的点亮时,上述相位差可被对所有的冷阴极管20实质上保持一定量。相位修正电路6通过延迟电路7,能够容易地将上述相位差保持为与一定量相等180+δ[deg]。
相位修正电路除此之外,还可以通过CPU等逻辑电路,根据冷阴极管20等的实际动作状态,计算出输出电路9A与9B的输出电压VA与VB、及它们的相位差180+δ[deg]。另外,还可以存储升压变压器5A与5B各自的二次电压VA与VB的相位差、及它们的相位差180+δ[deg]的表,并从该表中选择与实际的动作状态相适的值。
本发明的实施方式5的冷阴极管点亮装置中,与上述实施方式2的装置相同,第2模块2可以具有镇流电容器CB。
镇流电容器CB的尺寸比镇流电感器小得多。特别是镇流电容器CB可以作为第2基板50等的层间电容来形成,因此只有基板程度的厚度。在使用镇流电容器CB时,还可以省略过流保护电容器CB以及匹配电容器CM。
这样,本发明的实施方式5的冷阴极管点亮装置中,特别是容易实现第2模块2的小型化。因此,特别是在液晶显示器的薄型化中很有利。
本发明的冷阴极管点亮装置,例如安装在液晶显示器中作为背光的驱动装置,如上所述,采用低阻抗电源,并对每个冷阴极管设定镇流器,且通过相位修正电路控制电源的输出之间的相位差。这样,本发明显然能够应用于产业。
权利要求
1.一种冷阴极管点亮装置,具有多个镇流器,其在多个冷阴极管各自的一端电极上至少分别连接一个;第1低阻抗电源,其通过上述镇流器与各个上述冷阴极管的一端电极相连接,具有比上述多个冷阴极管的合成阻抗低的输出阻抗;第2低阻抗电源,其与各个上述冷阴极管的另一端电极相连接,具有比上述多个冷阴极管的合成阻抗低的输出阻抗;以及,相位修正电路,其调节上述第1低阻抗电源的输出与上述第2低阻抗电源的输出之间的相位差,并使上述冷阴极管两端的电极电位彼此以相反相位变化。
2.如权利要求1所述的冷阴极管点亮装置,其特征在于上述第1低阻抗电源、上述第2低阻抗电源、以及上述相位修正电路,被安装在第1基板上;上述镇流器,被安装在第2基板上。
3.如权利要求2所述的冷阴极管点亮装置,其特征在于上述冷阴极管的一端,被固定在上述第2基板上。
4.如权利要求1所述的冷阴极管点亮装置,其特征在于上述相位修正电路具有延迟电路,其使第1脉冲信号和第2脉冲信号的一方从另一方起延迟一定量,上述第1脉冲信号对上述第1低阻抗电源指示输出时刻,上述第2脉冲信号对上述第2低阻抗电源指示输出时刻。
5.如权利要求1所述的冷阴极管点亮装置,其特征在于上述冷阴极管点亮装置具有检测器,其检测出上述冷阴极管中所流通的电流、或上述冷阴极管的一端的电极电位,上述相位修正电路,根据由上述检测器得到的检测值,改变上述相位差。
6.如权利要求1所述的冷阴极管点亮装置,其特征在于上述第1低阻抗电源与上述第2低阻抗电源,分别具有与上述镇流器相连接、且具有比上述多个冷阴极管的合成阻抗低的输出阻抗的变压器。
7.如权利要求6所述的冷阴极管点亮装置,其特征在于上述变压器,具有铁心、缠绕在该铁心上的一次绕组、以及缠绕在该一次绕组的内侧或外侧或者内外两侧上的二次绕组。
8.如权利要求7所述的冷阴极管点亮装置,其特征在于上述二次绕组,具有分割缠绕或蜂窝式缠绕的结构。
9.如权利要求1所述的冷阴极管点亮装置,其特征在于上述第1低阻抗电源与上述第2低阻抗电源,分别具有与上述镇流器相连接的功率晶体管。
10.如权利要求1所述的冷阴极管点亮装置,其特征在于上述镇流器包含电感器。
11.如权利要求10所述的冷阴极管点亮装置,其特征在于上述电感器,具有分割缠绕或蜂窝式缠绕的线圈。
12.如权利要求11所述的冷阴极管点亮装置,其特征在于上述电感器包含可饱和电抗器。
13.如权利要求1所述的冷阴极管点亮装置,其特征在于上述镇流器包含电容器。
14.如权利要求13所述的冷阴极管点亮装置,其特征在于上述电容器是基板的层间电容。
15.如权利要求1所述的冷阴极管点亮装置,其特征在于具有匹配电容器,其在与上述镇流器相连接的各个上述冷阴极管的一端的电极与接地电位之间,至少各连接一个。
16.如权利要求15所述的冷阴极管点亮装置,其特征在于上述匹配电容器是基板的层间电容。
17.如权利要求15所述的冷阴极管点亮装置,其特征在于上述镇流器的阻抗与上述匹配电容器的阻抗相匹配。
18.如权利要求15所述的冷阴极管点亮装置,其特征在于上述镇流器的阻抗、上述匹配电容器与上述冷阴极管周边的寄生电容的合成阻抗、以及上述冷阴极管的点亮时的阻抗相匹配。
19.一种液晶显示器,其中具有多个冷阴极管;液晶面板,其设置在上述冷阴极管的前侧,并以给定的图形遮挡上述冷阴极管所发出的光;以及,冷阴极管点亮装置,上述冷阴极管点亮装置,具有多个镇流器,其在各个上述冷阴极管的一端电极上至少各连接一个;第1低阻抗电源,其通过上述镇流器与各个上述冷阴极管的一端电极相连接,具有比上述多个冷阴极管的合成阻抗低的输出阻抗;第2低阻抗电源,其与各个上述冷阴极管的另一端电极相连接,具有比上述多个冷阴极管的合成阻抗低的输出阻抗;以及,相位修正电路,其调节上述第1低阻抗电源的输出与上述第2低阻抗电源的输出之间的相位差,并使上述冷阴极管两端的电极电位彼此以相反相位变化。
全文摘要
本发明的冷阴极管点亮装置,通过公共的电源将多个冷阴极管一致点亮,在各个冷阴极管的长度方向上将亮度保持为高精度一致。第1模块(1)将直流电压(Vi)变换成一对交流电压(VA、VB)。由于升压变压器(5A、5B)的泄漏阻抗较低,因此第1模块(1)作为一对低阻抗电源发挥功能。第2模块(2)被对每个冷阴极管(20)逐一连接。镇流电感器(LB)通过与匹配电容器(CM)之间的共振,在点亮冷阴极管(20)时使管电流稳定。对每个冷阴极管(20),匹配电容器(CM)与周边的寄生电容的合成阻抗与镇流电感器(LB)的阻抗相匹配。由于延迟电路(7)将两个脉冲波(P1、P2)的相位彼此错开,因此交流电压(VA,VB)间的相位差从180°起错位。
文档编号G02F1/1335GK1898999SQ20058000132
公开日2007年1月17日 申请日期2005年4月21日 优先权日2004年5月10日
发明者小松明幸, 三宅永至, 川高谦治 申请人:松下电器产业株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1