液晶显示装置的制作方法

文档序号:2740792阅读:105来源:国知局
专利名称:液晶显示装置的制作方法
本申请是申请日为2004年4月23日的、申请号为“200410035145.1”的、发明名称为“液晶显示装置”的发明专利申请的分案申请。
发明领域 本发明涉及用于透射反射两用型的液晶显示装置的液晶显示板。

背景技术
近年来,液晶显示装置充分发挥其厚度薄且低功耗的特长,广泛地用于文字处理器、个人计算机等0A设备或电子笔记本等便携信息设备中,或用作摄录一体型VTR的监示器等。
液晶显示器分为透射型与反射型两大类。即,液晶显示装置由于不是像CRT(布劳恩管)或EL(电致发光)等那样的主动发光型的显示装置,故在透射型中用配置于液晶板背后的照明装置(所谓背光源)的光进行显示,另一方面,反射型中用环境光进行显示。
具体来说两者的优缺点是,在透射型中,优点是由于用背光源,故受到周围亮度的影响小,能进行亮度高的对比度显示,缺点是仅背光源部分的功耗就大(约全部功耗的50%以上)。而且,还存在缺点是,在非常明亮的使用环境下(例如晴天室外),观看性下降,或为了维持观看性而提高背光源的亮度,则进一步增大功耗。另一方面,在反射型中,优点是不需要背光源,因而耗电极少,但缺点是,显示亮度或对比度受到周围亮度等使用环境的影响大。特别在暗的使用环境中,缺点是观看性非常差。
因此,作为排除两者缺点同时兼有两者优点的液晶显示装置,则提出具有以透射型及反射型两种模式进行显示的功能的透射反射两用型液晶显示装置。
这种透射反射两用型液晶显示装置如图12的剖面示意图所示,各像素具有将从图上方入射的环境光进行反射的反射用像素电极部101与使从图下方入射的背光进行透射的透射用像素电极部102,能够同时使用两种显示模式,或根据使用环境(周围的亮度)进行透射模式与反射模式显示的切换。因此,透射反射两用型液晶显示装置兼有反射型液晶显示装置所具有的低功耗优点及透射型液晶显示装置所具有的受环境亮度的影响小且能进行高亮度、高对比度的显示的优点,而且也能抑制在非常明亮的使用环境中观看性降低那种透射型液晶显示装置的缺点。
此外,上述的透射反射两用型液晶显示装置中,关于对向电极基板103与像素电极基板104之间的液晶层105的层厚,必须使反射区域R的层厚Rd比透射区域T的层厚Td来得小(例如约为1/2(Rd≈Td×1/2)),因此在以往,如美国登录专利6195140号(日本特愿平11-101992号)、美国登录专利6295109号、美国公开专利2003-0117551号、美国申请专利10/260248号的各公报等分别所述的那样,通过在像素电极基板104的反射区域R部分设置凸部106,在该凸部106上配置反射用像素电极部101,这样使反射区域R的液晶层105的层厚Rd减小一凸部106的板厚方向尺寸部分。


发明内容
可是,在上述透射反射两用型液晶显示装置中所用的液晶显示板中,对像素电极基板104施加摩擦处理时,在凸部106的周围(特别在透射区域T的凸部106的摩擦方向下游侧(图12的右侧)部分),凸部106产生相对于摩擦的背面部分,即产生未进行充分摩擦处理、对液晶分子105a的取向限制力变弱的摩擦不足部分S。
于是,与该摩擦不足部分相对应的液晶层105的区域,便成为观看的取向不良区,因此,以往一直存在使显示品位降低(特别在透射显示模式时)的难点。此外,这个问题在凸部106不配置于像素电极基板104而配置于对向电极基板时,也照样产生。
对于这种情况,也可考虑另外形成遮光部,用该遮光部对上述的取向不良区进行遮光。
但是当形成这种遮光部时,制造工序便增加,因而担心导致相应增大制造成本。
本发明正是鉴于上述各点而作,其主要目的在于,在各像素具有反射区域与透射区域、并在像素电极基板和对向电极基板中至少一方具备使反射区域中的液晶层的层厚小于透射区域中的液晶层的层厚用的凸部的透射反射型液晶显示装置中,使其能不增加制造工序、而可抑制因凸部周围的摩擦不足部分所产生的取向不良区引起的显示品位的下降。
为达到上述目的,本发明中,提供了一种液晶显示装置,具备具有与像素对应设置的透射用像素电极部和反射用像素电极部的像素电极基板、具有对向电极部并与所述像素电极基板对向配置的对向电极基板、以及配置于所述像素电极基板与所述对向电极基板之间的液晶层,所述像素具有与所述透射用像素电极部对应的透射区域、及与所述反射用像素电极部对应的反射区域,所述像素电极基板及所述对向电极基板中的至少一个电极基板具有凸部,设置的凸部使得所述反射区域的液晶层的层厚小于所述透射区域的液晶层层厚,对具有所述凸部的电极基板的液晶层一侧的表面进行规定方向的摩擦处理,具备对由于所述凸部附近的摩擦不足部分而引起的所述液晶层所形成的取向不良区进行遮光的遮光部,所述遮光部设置在凸部附近的透射区域的平坦部分上,所述遮光部在已有要素形成时,用与该已有要素相同材料形成,所述遮光部这样设置,使其对与所述摩擦方向的所述凸部的下游侧附近部分相对应的取向不良区进行遮光,所述遮光部进一步这样设置,使其对与所述摩擦方向的所述凸部的上游侧附近部分相对应的取向不良区进行遮光,在摩擦方向下游侧的所述遮光部在摩擦方向上的尺寸大于在摩擦方向上游侧的所述遮光部在摩擦方向上的尺寸。
又,遮光部既可以在1种已有要素形成时用与其相同材料形成,也可以在多种已有要素各自形成时用与它们相同材料分别形成。
又,遮光部既可以将已有要素延伸设置、而与已有要素一体形成,也可以与已有要素分别形成,还可以将这两种情况混合使用。



图1为图2的I-I线剖面图。
图2为表示本发明实施形态1的液晶显示装置的液晶显示板中的TFT基板的主要部分构成平面示意图。
图3A~图3N为分阶段地表示TFT基板中的一直到形成保护层的各工序的剖面示意图。
图4为表示本发明实施形态2的液晶显示装置的液晶显示板中的TFT基板的主要部分构成的与图2相当的示意图。
图5为表示本发明实施形态3的液晶显示装置的液晶显示板中的主要部分构成的与图1相当的示意图。
图6为表示本发明实施形态4的液晶显示装置的液晶显示板中的TFT基板的主要部分构成的与图2相当的示意图。
图7表示实施形态4的变形例的与图2相当的示意图。
图8为表示本发明实施形态5的液晶显示装置的液晶显示板中的TFT基板的主要部分构成的与图2相当的示意图。
图9表示实施形态5的变形例的与图2相当的图。
图10为模式地表示本发明实施形态6的液晶显示装置的液晶显示板中的TFT基板的主要部分构成的与图2相当的示意图。
图11为计算Cs电极部在扫描布线方向和信号布线方向的各延伸量用的说明图。
图12为表示以往的液晶显示装置的液晶显示板的主要部分构成的与图1相当的示意图。

具体实施例方式 以下根据

本发明的实施形态。
(实施形态1) 图1及图2为表示本发明实施形态1的透射反射两用型液晶显示装置的液晶显示板中的主要部分构成的示意图,该液晶显示装置是同时使用透射显示模式与反射显示模式进行显示的装置。图1表示图2的I-I线剖面图,图2为表示从对向电极基板侧看到的像素电极基板的平面不意图。
本液晶显示装置的液晶显示板具备作为像素电极基板的TFT基板20与作为对向电极基板的滤色片基板10(以下称作CF基板),所述像素电极基板的每个像素具有反射用像素电极部21和透射用像素电极部22(图2中均省略图示),所述对向电极基板具有对向电极部11,且这样配置该对向电极部11,使其与TFT基板20中的各像素的反射用像素电极部21和透射用像素电极部22相对。TFT基板20中,各反射用像素电极部21被配置于像素的大致中间部位,而各透射用像素电极部22被配置于各像素的周边部,使包围对应的反射用像素电极部21,另一方面,设置CF基板10的对向电极部11,使其跨过多个像素。在这两基板20、10间配置液晶层40。该液晶显示板是ECB(电控双折射性)模式,它是利用电场使液晶层40的液晶分子40a的排列改变,并利用这时液晶层40的双折射性,来控制入射光的通过或遮断。在TFT基板20一侧(图1的下侧)配置着背光源,这在图中省略。
TFT基板20具有由玻璃等的电气绝缘性透明材料构成的透明基板23,在该透明基板23上,互相交叉矩阵状配置为了将信号供给各像素的反射用像素电极部21和透射用像素电极部22的多条信号布线24与多条扫描布线25。在这些多条信号布线24与多条扫描布线25的各交点附近,设置TFT26(薄膜晶体管)。各TFT21有源极26a、漏极26b及栅极26c,在源极26a和漏极26b与栅极26c之间配置栅绝缘膜26d。另外,源极26a及栅极26c分别与信号布线24及扫描布线25电气连接。又,漏极26b延长设置至像素的大致中央部,与源极26a一起由保护层27所覆盖。
在信号布线24、扫描布线25及TFT26之上层叠绝缘层28,反射用像素电极部21和透射用像素电极部22配置于该绝缘层28上。在反射用像素电极部21的大致中间部位的板厚度方向上,在对应的绝缘层28的部位,形成在层厚方向贯通该绝缘层28的接触孔28a,反射用像素电极部21经由该接触孔28a,与TFT26的漏极26b电气连接。又,在绝缘层28的透明基板23一侧,配置电容电极布线29,使其与扫描布线25平行延伸。该电容电极布线29在板厚度方向上与反射用像素电极部21相对,形成信号存储用辅助电容电极部29a(以下称作Cs电极部)。又,在辅助电容电极线29和Cs电极部29a上,延伸设置TFT26的栅极绝缘膜26d。
反射用像素电极部21由例如铝(Al)等将光反射的金属反射膜构成。另一方面,透射用像素电极部22由例如ITO(铟锡氧化物)等透光的透明导电膜构成,且在该反射用像素电极部21侧的端面中,与该反射用像素电极部21的端面电气连接。在该反射用像素电极部21和透射用像素电极部22上,设置在规定方向上进行摩擦处理的取向膜30,这样,使TFT基板20的界面附近的液晶层40的液晶分子40a,相对于该TFT基板20平行地且在上述规定方向上取向。又,本实施形态中,端面相互间以对接的状态连接反射用像素电极部21的金属反射膜与透射用像素电极部22的透明导电膜,但也可以使金属反射膜的端部与透明导电膜的端部重叠连接。此外,也可将透射用像素电极部22的透明导电膜延伸设置于反射用像素电极部21一侧,再将金属反射膜配置于该透明导电膜的延伸部分上,来构成反射用像素电极部21。
另一方面,CF基板10也具有由玻璃等的电气绝缘性透明材料构成的透明基板12。在该透明基板12的液晶层40一侧,对每个像素设置滤色片层13。这时,在板厚方向与反射用像素电极部21的大致中间部位对应的滤色片层13的部位上,设置在层厚方向上贯通该滤色片层13的开口部13a,对向电极部11设于该滤色片层13上。该对向电极部11也与透射用像素电极部22的情况相同,由ITO等的透明导电膜构成。此外,在对向电极部11上,设置沿图1和图2中分别用箭头所示的规定方向(图1的向右方向和图2的向上方向)进行摩擦处理的取向膜14,这样便使处于CF基板10的界面附近的液晶层40的液晶分子40a相对该CF基板10平行且沿上述规定的方向(摩擦方向)取向。
各像素中,将与上述的反射用像素电极部21对应的区域作为反射区域R,该反射区域R在反射显示模式时,利用反射用像素电极部21,使从CF基板10一侧(图1的上侧)入射到本液晶显示板内的光产生反射,并从CF基板10一侧出射。另一方面,将与上述透射用像素电极部22对应的区域作为透射区域T,该透射区域T在透射显示模式时使从本液晶显示板的TFT基板20一侧(图1下侧)入射到该板内的背光源的光产生透射,并从CF基板10一侧出射。
本实施形态在上述的CF基板10上,配置每个像素所设的多间隙用的多个凸部15,使反射区域R中的液晶层40的层厚Rd比透射区域T中的液晶层40的层厚Td来得小(Rd<Td)。又,图2的双点划线近似表示凸部15的顶面轮廓。
具体地说,在滤色片层13中的各反射区域R的部分与对向电极部11的部分之间,配置透明层16,所设置的透明层16使该对向电极部11的部分向着在板厚度方向上对应的反射用像素电极部21的一侧(图1的下侧)隆起,上述的各凸部15由该透明层16所形成。这时,凸部15顶面的平面形状及其大小与反射用像素电极部21的平面形状及其大小大致相同。
如上所述,由于凸部15由透明层16形成,因此能够避免通过加厚滤色片层13的层厚来形成凸部时所产生的反射区域R中的光透射率降低的情况。而且,在滤色片层13的开口部13a中,充填了透明层16的一部分,这样,与滤色片层13上没有这种开口部13a的情况相比,对滤色片层13的功能没有大的影响,而可提高反射区域R中的光透射率。此外,作为形成这种透明层16的方法,举例说,可在透明基板12上形成由负片型透明丙烯酸树脂系感光材料构成的膜,利用活性光将其曝光成规定形状的图形,然后用丙烯酸基显影液进行显影,并水洗,除去未曝光部分,然后进行热处理。此外也可通过刻蚀产生图形或印刷、转印等来设置。
然后,本实施形态中,如图1和图2所示,各Cs电极部29a相对于凸部15向摩擦方向下游侧延伸设置,使其对CF基板10上的凸部15在摩擦方向下游侧(图1的右侧及图2的上侧)附近的摩擦不足部分S发生的取向不良区D进行遮光,利用该延伸设置部分构成本发生的遮光部50。又,对于凸部15的摩擦方向上游侧(图1的左侧和图2的下侧)附近部分,由于比较,不容易发生摩擦处理不足,因此Cs电极部29a的摩擦方向上游侧端部相对于凸部15顶面的摩擦方向上游侧端部,配置于摩擦方向的大致相同位置上。
这里,根据图3A~图3N,说明上述构成的液晶显示板的TFT基板20中的一直到形成保护层27的制造工序。
[工序1] 洗净透明基板23(参看图3A)。
[工序2] 如图3B所示,为了在透明基板23上,除了形成扫描布线25、栅极26c,电容电极布线29、Cs电极部29a之外,还形成由该Cs电极部29a的延伸部分构成的遮光部50,利用溅射法形成TaN/Ta/TaN膜。
[工序3] 如图3C所示,在上述TaN/Ta/TaN膜上形成光刻胶膜。
[工序4] 隔着光掩膜,对上述光刻胶膜照射UV光(参看图3D)。这时,光掩膜的遮光部分按扫描布线25、栅级26c、电容电极布线29、Cs电极部29a的形状形成图形,与各Cs电极部29a相当的遮光部分完成向摩擦方向下游侧仅延伸规定的摩擦方向尺寸的形状,形成2个遮光部50、50。
[工序5] 如图3E所示,通过用CF4与O2的混合气体进行的干法刻蚀,除去上述TaN/Ta/TaN膜的不要部分。这样,形成了扫描布线25、栅极26c、电容电极布线29、Cs电极部29a以及遮光部50。也就是说,本例中,在扫描布线25、Cs电极部29a的形成时,用与扫描布线25和Cs电极部29a同样的材料同时形成各遮光部50。
[工序6] 如图3F所示,剥离残留的光刻胶膜。
[工序7] 利用阳极氧化法将栅极26c的表面进行氧化,生成Ta2O5(参看图3G)。
[工序8] 利用等离子体CVD,大致在整个表面形成栅绝缘膜26d(例如SiNx膜)(参看图3H)。
[工序9] 在与栅极26c对应的栅极绝缘膜26d的部位上,利用等离子体CVD法,形成非晶硅-i层(参看图3I)。
[工序10] 利用等离子体CVD法,在上述非晶硅-i层上形成非晶硅n+层。
[工序11] 利用干法刻蚀,将上述的n+层及n-层同时形成图形。
[工序12] 如图3J所示,利用溅射法依次在上述非晶硅n+层上形成ITO膜,再在该ITO膜上形成Ta/TaN膜。
[工序13] 如图3K所示,利用干法刻蚀将上述Ta/TaN膜形成图形,形成信号布线24。
[工序14] 如图3L所示,利用湿法刻蚀,将工序12形成的ITO膜形成图形。
[工序15] 利用干法刻蚀,将上述的n+层分离成源极26a侧与漏极26b侧。这时,也对上述-i层的一部分进行刻蚀。在该工序中如图3M所示,完成TFT26的源极26a和漏极26b。
[工序16] 利用等离子体CVD法,如图3N所示,形成为得到保护层27的SiNx膜。
[工序17] 利用湿法刻蚀将上述SiNx膜形成图形,形成保护层27。
通过上述工序1~工序17,在透明基板23上完成TFT26、信号布线24、扫描布线25、电容电极布线29、Cs电极部29a以及遮光部50。即是说,本实施形态只在工序4中改变光掩膜,便完成遮光部50。此后,依次形成绝缘层28、反射用像素电极部21、透射用像素电极部22以及取向膜30,就得到TFT基板20。
以下,对上述构成的液晶显示装置的液晶显示板,就为了研究透明层16的层厚Wd(凸部15的高度)与由于凸部15的摩擦方向下游侧附近的摩擦不足部分S所产生的取向不良区D的摩擦方向尺寸的关系而进行的实验加以说明。
作为实验的方法,是根据反射区域R和透射区域T中的各液晶层40的层厚Rd、Td,做成透明层16的层厚Wd互不相同的实验例1~实验例3的3个液晶显示板模型,对各实验例测量上述取向不良区D的摩擦方向尺寸。
实验例1,分别取反射区域R和透射区域T中的各液晶层40的层厚Rd、Td为Rd=2.5μm和Td=5μm。即透明层16的层厚Wd为Wd=2.5μm(=5.0-2.5)。
实验例2,分别取反射区域R和透射区域T中的各液晶层40的层厚Rd、Td为Rd=3.0μm和Td=4.0μm。即透明层16的层厚Wd为Wd=1.0μm(=4.0-3.0)。
实验例3,分别取反射区域R和透射区域T中的各液晶层40的层厚Rd、Td为Rd=2.0mm和Td=5.5mm。即透明层16的层厚Wd为Wd=3.5mm(=5.5-2.0)。
以上结果一并示于下表(单位μm) 表1 如上表所示,实验例1、实验例2以及实验例3中的取向不良区D的各摩擦方向尺寸M分别为2.0μm、1.0μm以及3.0μm。由此可判定,作为Cs电极部29a的向摩擦方向下游侧的延伸量、即遮光部50的摩擦方向尺寸M必须大于1mm(M≥1mm)。
因此,根据本实施形态,透射反射两用型液晶显示装置的各像素具有反射区域R及透射区域T,并在CF基板10一侧与各反射区域R对应设置多个凸部15,使反射区域R中的液晶层40的层厚Rd小于透射区域T中的液晶层40的层厚厚Td,在这种透射反射两用型的液晶显示装置中,由于在形成TFT基板20的Cs电极部29a时,通过将各Cs电极部29a延伸至摩擦方向下游侧,能够与Cs电极部29a同时且用相同材料形成遮光部50,对因CF基板10上的各凸部15在摩擦方向下游附近的摩擦不足部分S而发生的取向不良区D进行遮光,因此能不增加液晶显示板的制造工序,而能抑制由这种取向不良区D引起的透射显示模式时的显示品位的下降。
又,上述实施形态中,是对互相电气连接反射用像素电极部21与透射用像素电极部22、并同时使用透射显示模式和反射显出模式的两种模式进行显示的情况作了说明,但也可以是反射用像素电极部21与透射用像素电极部22互不相连,而为了能切换透射显示模式与反射显示模式进行显示,对反射用像素电极部21与透射用像素电极部22选择一个供给来自信号布线24的信号。
此外,上述实施形态中是对彩色显示用液晶显示装置的情况作了说明,但本发明也可适用于黑白显示用的液晶显示装置。
(实施形态2) 图4为表示出本发明实施形态2的液晶显示装置的液晶显示板中的主要部分平面图。另外,与实施形态1的情况的相同部分标以相同的符号。
本实施形态中,除了与实施形态1那样,各Cs电极部29a延伸到摩擦方向下游侧(图4的上侧)外,各Cs电极部29a还延伸到摩擦方向上游侧(图4的下侧),利用该延伸部分形成遮光部50,对因CF基板10侧的各凸部在摩擦方向上游侧附近的摩擦不足部分S引起的取向不良区D进行遮光。此外,其余构成与实施形态1的情况相同,故说明从略。
采取这样的构成,正是基于下述的情况,即在具有凸部15的基板(本实施形态的情况为CF基板10)进行摩擦处理时,各凸部15周围的摩擦不足部分S虽然一般易发生于各凸部15的摩擦方向下游端一侧,但在各凸部15的上游侧也有发生,因此通过采用本实施例的构成,对各凸部15周围的摩擦不足部分S引起的取向不良区D,设计上能够具有更大的裕度。
因此,根据本实施形态,与实施形态1的情况相比,虽然透射区域T相对缩小,但可以进一步抑制由于各凸部15周围的摩擦不足部分S发生的取向不良区D所引起的透射显示模式时的显示品位的下降。
此外,上述实施形态中,将各Cs电极部29a分别延伸到凸部15的摩擦方向下游侧与上游侧,但作为凸部15周围的摩擦不足部分,除了上述下游侧附近部分和上游侧附近部分,其次还可举出与摩擦方向垂直且与基板面平行的方向、即横向的各凸部15的两侧附近部分,因此,除了将各Cs电极部29a延伸至下游侧和上游侧之外,也可以将其分别延伸至上述横向的各凸部15的两侧,若如此,则可大致全部对由各凸部15周围的摩擦不足部分所引起的取向不良区进行遮光。
(实施形态3) 图5为表示本发明实施形态3的液晶显示装置的液晶显示板的剖面示意图,与实施形态1的情况相同部分标以相同符号。
本液晶显示装置的液晶显示板与实施形态1和2相同,具备每个像素具有反射用像素电极部21和透射用像素电极部22的TFT基板20、以及具有对向电极部11并将其与TFT基板20的反射用像素电极部21和透射用像素电极部22对向配置的CF基板10。
本实施形态与实施形态1和2的不同之点在于,凸部15不在CF基板10上,而形成于TFT基板20上。因此CF基板10的液晶层40一侧的表面是平坦的。
关于液晶层40的具体层厚,与此前说明的实施形态情况相同,各像素中设计凸部15的高度,使反射用像素电极部21对应的反射区域R的层厚Rd约等于透射用像素电极部22对应的透射区域T的层厚Td的一半(Rd≈Td/2)。
此外,各Cs电极部29a与实施例2的相同,分别延伸至摩擦方向下游侧(图5的右侧)与上游侧(图5的左侧),利用这2个延伸部分,在各凸部15周围中形成对摩擦方向游下侧附近的摩擦不足部分S对应的取向不良区D进行遮光的遮光部50、与对摩擦方向上游侧的摩擦不足部分S对应的取向不良区D进行遮光的遮光部50。另外,其他的构成与实施形态1和2相同,故说明从略。
因此,根据本实施形态,即使多间隙用的凸部15被设置于TFT基板20一侧,也能达到与实施形态2的情况相同的效果。
又,上述的实施形态,是将各Cs电极部29a分别延伸设置于凸部15的摩擦方向下游侧与上游侧,但也可以与实施形态1相同,只设置于下游侧,也可以如实施形态2中说明的那样,除凸部15的摩擦方向下游侧和上游侧之外,分别向横向两侧延伸设置。
(实施形态4) 图6为表示本发明实施形态4的液晶显示装置的液晶显示板中的主要部分平面示意图。与实施形态1~3中的相同部分标以相同符号。
本实施形态中,各凸部15在TFT基板20上沿扫描布线方向(图6左右方向)横跨像素的全部区域形成,各反射用像素电极部21也在对应的凸部15的顶面上沿扫描布线方向横跨像素的全部区域形成。
即,各凸部15与实施形1~3中以孤立状态的岛状配置于每个像素的情况相比,本实施形态中是以连续的条状横跨多个像素配置。与此相应,位于像素内的电容电极布线29的所有部位沿信号线方向(图6的上下方向)加宽,形成Cs电极29a。
而且,本实施形态中,各Cs电极部29a与实施形态1相同,延伸到凸部15的摩擦方向下游侧(图6的上侧),利用该延伸部分,形成对各凸部15在摩擦方向下游侧附近的摩擦不足部分对应的取向不良区D进行遮光的遮光部50。此外的构成与实施形态1相同,故说明从略。
因此,根据本实施形态也能达到与实施形态1相同的效果。
又,上述实施形态中,仅将各Cs电极部29a延伸到凸部15的摩擦方向下游侧,但也可以如图7所示的变形例,与实施形态2的情况相同,除了摩擦方向下游侧(图7的上侧)外,也可延伸到凸部15的摩擦方向上游侧(图7的下侧)形成遮光部50。
(实施形态5) 图8为表示本发明实施形态5的液晶显示装置的液晶显示板中的主要部分平面示意图。与实施形态1的情况相同部分标以相同的符号。
本实施形态中,各反射用像素电极部21形成矩形框状,在TFT基板20上沿像素的周边部配置,另一方向,各透射用像素电极部22形成矩形状,配置于像素的中间部位,被反射用像素电极部21包围。
与此相应,各凸部15仿照反射用像素电极部21的平面形状,形成平面矩形框状,配置于像素的周围。即,凸部15、15…与实施形态1~实施形态3的岛状和与实施形态4的条状不同,与信号布线24和扫描布线25的情况相同,配置成矩阵状。
而且,本实施形态中,2条扫描布线25、25中,位于摩擦方向上游侧(图8的下侧)的扫描布线25延伸至摩擦方向下游侧(图8的上侧),利用该延伸部分形成遮光部50,对凸部15的4个框边部分中、由与摩擦方向交叉的方向上延伸且位于摩擦方向上游侧的框边部分在摩擦方向下游侧附近的摩擦不足部分S发生的取向不良区D进行遮光。另外,其他的构成与实施形态1的情况相同,故说明从略。
这时,各凸部15的配置是相对于扫描布线25,向与摩擦方向相反方向(图8的下方向)相对偏移进行配置,使得由扫描布线25的延伸部分构成的遮光部50存在于该凸部15的摩擦方向下游侧附近部分。
因此,根据本实施形态,也能达到与实施形态1相同的效果。
又,上述的实施形态中,是位于各像素周围的4条布线(2条信号布线24和2条扫描布线25)中,使得位于摩擦方向上游侧的扫描布线25延伸至摩擦方向下游侧,但在对凸部15的摩擦方向下游侧部分中的其摩擦方向上游侧附近的摩擦不足部分所引起的取向不良区进行遮光时,只要将位于摩擦方向下游侧的扫描布线25延伸至摩擦方向上游侧即可,再有,在与摩擦方向正交且与基板面平行的横向中的凸部15的两侧部分,对其附近因摩擦不足部分引起的取向不良区进行遮光时,只要将上述4条布线中剩下的2条信号布线24分别在上述横向延伸即可。
又,上述实施形态中,是对只将反射用像素电极部21和凸部15配置于像素的周围的情况作了说明,但如图9的变形例所示,在除像素的周围之外还存在于像素的中间部分的情况,可利用此前所述的实施形态的构成(延伸Cs电极部29a来形成遮光部50)来应对。即,在将遮光部50与已有要素一体形成时,在信号布线24、扫描布线25再加上Cs电极部29a构成的多个已有要素中,是在哪一个已有要素的形成时利用与该已有要素相同材料来形成,这可以根据取向不良区的位置等情况灵活运用。
(实施形态6) 图10为表示本发明实施形态6的液晶显示装置的液晶显示板中的主要部分平面示意图,与实施形态1~5的相同部分标以相同的符号。
本实施形态中,凸部15形成大致矩形,以岛状配置于TFT基板20上的每个像素的大致中间部位,与实施1~5的不同之点在于,TFT基板20一侧的摩擦方向不与信号布线24平行,而是对信号布线24构成某个角度θ(0°<θ<90°)。即,Cs电极部成大致矩形时,在其摩擦方向下游侧存在Cs电极部29a的4条边中的2条。
因此,本实施形态中,各Cs电极部29a在信号布线24和扫描布线25的各方向上分别延伸,形成上述2条边移向摩擦方向下游侧的状态,利用该形成平面L字形的延伸部分形成遮光部50,对凸部15的摩擦方向下游侧附近发生的摩擦不足部分S所对应的取向不良区D进行遮光。
这里,根据图11说明对Cs电极部29a加上该延伸部分(遮光部50)后的面积P。设Cs电极部29a在扫描布线方向(图10的左右方向)和信号布线方向(图10的上下方向)的各长度(单位为μm)分别为j和k,首先,Cs电极部29a本身的面积P’为 P’=J×K 另一方面,关于Cs电极部29a在扫描布线方向和信号布线方向的各延伸量(单位为mm),根据表1的结果知道的取向不良区D的摩擦方向尺寸至少为1mm,因此扫描布线方向延伸量至少为 1×sinθ=sinθ 信号布线方向的延伸量至少为 1×cosθ=cosθ 由此,Cs电极部29a加上遮光部50的面积P至少为 P=(J+Sinθ)×(K+Cosθ)(式中,0°<θ<90°), 又,在反射用像素电极部21和凸部15如图4的情况那样配置成横跨像素的全部区域的条状、且电容电极布线29横跨近似全部长度实施形态被加扩宽而形成Cs电极部29a时,便只要将该Cs电极部29a向信号布线方向的摩擦方向下游侧仅延伸Cosθ即可。
因此,根据本实施形态,即使摩擦方向与信号布线方向相交叉,也可达到与实施形态1~5同样的效果。
又,上述的实施形态中,Cs电极部29a的延伸量是根据相对于信号布线方向的摩擦方向的关系来算出的,但是也可以根据相对于扫描布线方向的摩擦方向的关系来算出。
又,上述的实施形态1~实施形态6中,是对延伸Cs电极部29a、扫描布线25、信号布线24而形成遮光部50作了说明,但反之,也可以缩小凸部15,结果从凸部15露出来的Cs电极部29a,扫描布线25、信号布线24的部分作为遮光部50。
又,上述的实施形态1~实施形态6中,是将遮光部50与Cs电极部29a、扫描布线25、信号布线24等的已有要素中一体形成的,但如果在这些已存在要素的形成时用与该已有要素相同材料来形成,则也可以与该已有要素分开,分别形成。
又,上述的实施形态中,是对抑制因透射区域T的取向不良区D所引起的透射显示模式时的显示品位的下降作了说明,但在反射区域R发生取向不良区时,由于通过由黑色导电材料等光反射性低的材料形成遮光部50,可抑制该取向不良区D中的入射光的反射,因此也可抑制反射区域R的取向不良区D所引起的反射显示模式时的显示品位的下降。
权利要求
1、一种液晶显示装置,其特征在于,具备
具有与像素对应设置的透射用像素电极部和反射用像素电极部以及为了对所述透射用像素电极部和所述反射用像素电极部供给信号而形成的布线的像素电极基板、
具有对向电极部并与所述像素电极基板对向配置的对向电极基板、以及
配置于所述像素电极基板与所述对向电极基板之间的液晶层,
所述像素具有与所述透射用像素电极部对应的透射区域、及与所述反射用像素电极部对应的反射区域,
所述像素电极基板及所述对向电极基板中的至少一个电极基板具有凸部,设置的凸部使得所述反射区域的液晶层的层厚小于所述透射区域的液晶层层厚,
对具有所述凸部的电极基板的液晶层一侧的表面进行规定方向的摩擦处理,
所述凸部被设置成条状,使其与所述摩擦方向交叉且在与基板面平行的方向上连续地横跨多个像素,
具备对由于所述凸部周围的摩擦不足部分而引起的所述液晶层所形成的取向不良区进行遮光的遮光部,
所述遮光部在形成所述布线时,用与该布线相同材料形成。
2、如权利要求1所述的液晶显示装置,其特征在于,
所述遮光部这样设置,使其对与所述摩擦方向的所述凸部的下游侧附近部分相对应的取向不良区进行遮光。
3、如权利要求2所述的液晶显示装置,其特征在于,
所述遮光部进一步这样设置,使其对与所述摩擦方向的所述凸部的上游侧附近部分相对应的取向不良区进行遮光。
全文摘要
在透射反射两用型的液晶显示板中,在像素电极基板和对向电极其板中的至少一个基板上具有凸部,设置的凸部使反射区域的液晶层的层厚小于透射区域的液晶层的层厚,在辅助电容电极部、信号布线,扫描布线等已有要素形成时,用与该已有要素相同的材料形成对因凸部周围的摩擦不足部分所发生的取向不良区进行遮光的遮光部。这样,不增加制造工序就能抑制由所述取向不良区所引起的显示品位的降低。
文档编号G02F1/1368GK101281335SQ200810093008
公开日2008年10月8日 申请日期2004年4月23日 优先权日2003年4月24日
发明者田中俊行, 小西郁二, 菊池克浩 申请人:夏普株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1