阵列基板、液晶显示面板及液晶显示器的制作方法

文档序号:16243670发布日期:2018-12-11 23:21阅读:109来源:国知局
阵列基板、液晶显示面板及液晶显示器的制作方法

本发明属于显示技术领域,特别涉及一种阵列基板、液晶显示面板及液晶显示器。

背景技术

液晶显示器(liquidcrystaldisplay,lcd)是一种常用的电子设备,由于其具有功耗低、体积小、重量轻等特性,因此广泛受到用户青睐。目前的液晶显示装置主要是以薄膜晶体管(thinfilmtransistor,tft)液晶显示器(tft-lcd)为主。

现有的液晶显示器主要包括液晶显示面板及背光模组。其中,液晶显示面板主要由一薄膜晶体管基板(thinfilmtransistorsubstrate,tft基板)、一彩色滤光基板(colorfiltersubstrate,cf基板),以及夹设于两基板之间的一液晶层。在对盒组装(cell)制程中,会在两基板的四周涂布框胶并于框胶内注入液晶层,将框胶进行固化后得到一液晶显示面板结构。

薄膜晶体管基板(tft基板),也即阵列基板100’通常由显示区10’及显示区10’外围的非显示区11’构成。显示区10’内设有多条扫描线113’和多条数据线114’,数据线114’和扫描线113’的交叉设置限定多个像素区域,用于向数据线114’提供数据信号和向扫描线113’提供扫描信号的时序控制器(tcon)110’设置在非显示区11’,并通过若干个覆晶薄膜111’(chiponfilm,cof)将数据信号和扫描信号传输至显示区10’,如图1所示。woa(wireonarray)走线112’用于两cof111’之间传递信号。为了减小woa走线112’的阻值,以防止在两个cof之间产生扫描电压的降低,一般采用双层金属互叠设计布线,并且双层金属边切齐。如图3中所示,woa走线112’设于衬底12’上,由第一金属层1120’和第二金属层1122’构成,第一金属层1120’和第二金属层1122’之间为绝缘层1121’,第二金属层1122’上还覆盖有钝化层(passivationlayer,pv)1123’,双层金属层的互叠区边缘高度差大,致使沉积于第二金属层1122’上的钝化层1123’在该处成膜偏薄。并且,为了能够从阵列基板100’一侧对框胶进行uv光照射使液晶显示面板四周的框胶固化,woa走线112’与框胶重叠的部分要有一定的透光率,因此,woa走线112’设置为镂空的形式,形成多个孔115’,如图2所示,钝化层1123’在孔115’与孔115’之间多次被抬升和降低,钝化层1123’成膜偏薄的区域增多,整体成膜质量降低,很容易因为环境变化而使水汽攻入第二金属层1122’,水汽进入阵列基板100’内部产生气泡,使woa走线112’进而阵列基板100’受到严重腐蚀,影响面板显示品质。

基于以上所述,有必要提供一种能够防止水汽侵入woa走线处的金属层的阵列基板结构。



技术实现要素:

本发明的目的在于提供一种阵列基板,旨在解决现有技术中woa走线容易受水汽侵入而被腐蚀的技术问题。

本发明是这样实现的,一种阵列基板,包括衬底基层,所述衬底基层上设有显示区和非显示区,所述非显示区包括多条设于所述衬底基层上的覆晶薄膜连接走线;

所述覆晶薄膜连接走线包括设于所述衬底基层上的第一金属层、设于所述第一金属层上的绝缘层、设于所述绝缘层上的第二金属层,以及设于所述第二金属层上的钝化层;

所述钝化层的表面具有疏水层。

所述钝化层的厚度为200-230纳米。

所述钝化层的厚度为400-460纳米。

所述钝化层的材料为氧化硅或氮化硅中的至少一种。

所述钝化层包括设于所述第二金属层上的第一子钝化层以及设于所述第一子钝化层上的第二子钝化层,所述疏水层设于所述第二子钝化层的表面。

所述第一子钝化层的厚度为200-230纳米,所述第二子钝化层的厚度为200-230纳米。

所述第一子钝化层的材料为氧化硅或氮化硅中的至少一种,所述第二子钝化层的材料为有机光阻材料。

所述覆晶薄膜连接走线的宽度为20-30微米,所述覆晶薄膜连接走线上设有多个供紫外光照射通过的通孔。

本发明的另一目的在于提供一种液晶显示面板,包括上述所说的阵列基板以及与所述阵列基板相对设置的彩膜基板,所述阵列基板和彩膜基板之间设有位于所述非显示区且对应所述覆晶薄膜连接走线的框胶。

本发明的又一目的在于提供一种液晶显示器,包括上述所说的液晶显示面板以及设于所述阵列基板一侧的背光模组。

本发明的阵列基板、液晶显示面板及液晶显示器相对于现有技术的有益效果在于,非显示区的覆晶薄膜连接走线包括设于所述衬底基层上的第一金属层、设于第一金属层上的绝缘层、设于所述绝缘层上的第二金属层,以及设于所述第二金属层上的钝化层,所述钝化层的表面为疏水层,疏水层能够有效阻止水汽侵入钝化层下方的第二金属层,进而防止了非显示区的覆晶薄膜连接走线被腐蚀以及防止水汽进一步侵入显示区,保证了阵列基板的显示区的显示效果,进而保证了液晶显示面板和液晶显示器的显示品质,提高使用寿命。

附图说明

图1是范例性的阵列基板的结构图;

图2是图1中的虚线框内的覆晶薄膜连接走线的结构的放大图;

图3是图2中的覆晶薄膜连接走线沿a-a线的剖面图;

图4是本发明第一实施例提供的阵列基板的俯视结构示意图;

图5是图4的阵列基板沿b-b线的剖面结构示意图;

图6是本发明第二实施例提供的阵列基板的剖面结构示意图;

图7是本发明第三实施例提供的阵列基板的剖面结构示意图;

图8是本发明第四实施例提供的液晶显示面板的结构示意图。

图中标记的含义为:

阵列基板100’,显示区10’,非显示区11’,时序控制器110’,覆晶薄膜111’,woa走线112’,扫描线113’,数据线114’,孔115’,衬底12’,第一金属层1120’,绝缘层1121’,第二金属层1122’,钝化层1123’;

阵列基板100,显示区1,非显示区2,时序控制器21,覆晶薄膜22,覆晶薄膜连接走线23,扫描线11,数据线12,衬底基层10,第一金属层231,绝缘层232,第二金属层233,钝化层234,疏水层2340,第一子钝化层2341,第二子钝化层2342;

液晶显示面板60,彩膜基板200,液晶层300,框胶400。

具体实施方式

为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。

需说明的是,当部件被称为“固定于”或“设置于”另一个部件,它可以直接或者间接在该另一个部件上。当一个部件被称为是“连接于”另一个部件,它可以是直接或者间接连接至该另一个部件上。术语“上”、“下”、“左”、“右”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本专利的限制。术语“第一”、“第二”仅用于便于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明技术特征的数量。“多个”的含义是两个或两个以上,除非另有明确具体的限定。

为了说明本发明所述的技术方案,以下结合具体附图及实施例进行详细说明。

请参阅图4和图5,本发明提供一种阵列基板100,包括衬底基层10,衬底基层10上包括显示区1和设于显示区1外围的非显示区2,显示区1内设有多条数据线12和多条扫描线11,多条数据线12沿列方向延伸并沿行方向间隔排列,多条扫描线11沿行方向延伸并沿列方向间隔排列,多条扫描线11和多条数据线12交叉限定出多个像素区域。非显示区2内包括用于向数据线12提供数据信号和向扫描线11提供扫描信号的时序控制器21,时序控制器21与扫描线11和数据线12之间通过多个覆晶薄膜22(cof)传递信号。非显示区2内设有至少一条覆晶薄膜连接走线23,多个覆晶薄膜22之间通过覆晶薄膜连接走线23连接。

如图5至图7所示,覆晶薄膜连接走线23包括设于衬底基层10上的第一金属层231、设于第一金属层231上的绝缘层232、设于绝缘层232上的第二金属层233,以及设于第二金属层233上的钝化层234,钝化层234的表面具有疏水层2340。

本发明提供的阵列基板100,其非显示区2的覆晶薄膜连接走线23包括由绝缘层232间隔开的第一金属层231和第二金属层233,以及设于第二金属层233上的钝化层234,通过在钝化层234的表面上设置疏水层2340,能够阻断水汽的入侵路线,即使在第一金属层231和第二金属层233的边缘对齐处因高度差而造成钝化层234的成膜厚度偏薄,也能够有效防止水汽经由该段差处的钝化层234侵入第二金属层233,防止该覆晶薄膜连接走线23和阵列基板100的显示区1内受到水汽腐蚀,保证了阵列基板100的密封效果和显示区1内的显示品质。

如图4所示,覆晶薄膜连接走线23的宽度为20-30微米。非显示区2还用于与阵列基板100与彩膜基板200之间通过框胶400粘接以形成液晶显示面板60(下文会具体描述),框胶400设置于覆晶薄膜连接走线23上方,与覆晶薄膜连接走线23有至少一部分重合,为能够从阵列基板100一侧对非显示区2的框胶400进行照射固化,覆晶薄膜连接走线23上设有多个通孔(未图示),供紫外线照射通过。

在本发明图5所示的第一实施例中,钝化层234的材料为氧化硅(siox)或氮化硅(sinx)的无机材料,钝化层234的厚度为200-230纳米。具体地,采用氟离子对钝化层234进行处理以在钝化层234的表面形成疏水层2340,具体步骤为:将cf4或者sf6与o2混合后得到的混合气体进行电离,利用电离后的混合气体对无机材料的钝化层234表面进行干蚀刻,钝化层234的表面形成疏水基团,从而得到疏水层2340。

在本发明图6所示的第二实施例中,钝化层234的材料为氧化硅(siox)或氮化硅(sinx)的无机材料,钝化层234的厚度为400-460纳米。具体地,采用氟离子对钝化层234进行处理以在该钝化层234的表面形成疏水层2340,具体步骤为:将cf4或者sf6与o2混合后得到的混合气体进行电离,利用电离后的混合气体对无机材料的钝化层234表面进行干蚀刻,钝化层234的表面形成疏水基团,从而得到疏水层2340。相较于第一实施例,钝化层234的厚度更大,能够进一步改善第一金属层231和第二金属层233重叠边缘处钝化层234的成膜质量,提高钝化层234对水汽的阻挡能力。

在本发明图7所示的第三实施例中,钝化层234包括设于第二金属层233上的第一子钝化层2341以及设于第一子钝化层2341上的第二子钝化层2342,疏水层2340形成于第二子钝化层2342的表面。具体地,第一子钝化层2341的厚度为200-230纳米,第二子钝化层2342的厚度为200-230纳米,钝化层234的厚度为400-460纳米。第一子钝化层2341的材料为氧化硅(siox)或氮化硅(sinx)的无机材料,第二子钝化层2342的材料为有机材料,如有机光阻材料。该钝化层234的第一子钝化层2341按照阵列基板100的常规制作过程进行,例如,第一子钝化层2341与显示区1内tft(薄膜晶体管,未图示)上沉积的钝化层234同层形成,第二子钝化层2342通过沉积一层有机光阻材料,经曝光、显影和蚀刻后保留于第一子钝化层2341上。

具体地,对该有机光阻材料的第二子钝化层2342进行疏水处理的方式为:将cf4或者sf6与o2混合后得到的混合气体进行电离,利用电离后的混合气体对有机光阻材料的第二子钝化层2342表面进行干蚀刻,第二子钝化层2342的表面形成疏水基团,从而得到疏水层2340。

具体地,覆晶薄膜连接走线23中的第一金属层231、绝缘层232和第二金属层233与显示区1内的扫描线11、数据线12同时形成,即第一金属层231可以与显示区1内的tft的栅极、扫描线11同层形成,绝缘层232可以与显示区1内的tft的栅极绝缘层同层形成,第二金属层233可以与数据线12、tft的源/漏极同层形成。

第一金属层231并不必须是一层金属,可以是单金属层,如铬(cr)、钼(mo)、铜(cu)、钛(ti),也可以是同一金属材料的叠层,还可以是不同金属材料的复合金属层,如钼/铝(mo/al)复合层。第一金属层231的厚度为200-800纳米,优选为200-550纳米。

第二金属层233同样并不必须是一层金属,可以是单金属层,如铬(cr)、钼(mo)、铜(cu)、钛(ti)材料的单金属层,也可以是同一金属材料的叠层,还可以是不同金属材料的复合金属层,如钼/铝(mo/al)复合层。第二金属层233的厚度为200-800纳米,优选为200-550纳米。

绝缘层232的材料为氧化硅(siox)和氮化硅(sinx)的至少一种,通过化学气相沉积法沉积于第一金属层231上。绝缘层232的厚度为100-300纳米。

如图8所示,本发明第四实施例提供一种液晶显示面板60,包括上述第一至三实施例所说的阵列基板100以及与该阵列基板100相对设置的彩膜基板200,阵列基板100的外围区设有用于与彩膜基板200粘接且位于覆晶薄膜连接走线23上方的框胶400,覆晶薄膜连接走线23的宽度为20-30微米,覆晶薄膜连接走线23上设有多个供紫外光照射通过的通孔,紫外光从阵列基板100一侧照射至框胶400,框胶400固化后得到液晶显示面板60。本发明的液晶显示面板60中,阵列基板100的非显示区2内的覆晶薄膜连接走线23的钝化层234的表面具有疏水层2340,能够防止水汽由该覆晶薄膜连接走线23的双层金属重叠的边缘区域的钝化层234侵入,具有较佳的密封效果和显示品质。

本发明还提供一种液晶显示器(未图示),包括上述第四实施例所说的液晶显示面板60以及设于阵列基板100一侧的背光模组。本发明的液晶显示器中,液晶面板的阵列基板100的非显示区2内的覆晶薄膜连接走线23的钝化层234的表面具有疏水层2340,能够防止水汽由该覆晶薄膜连接走线23的双层金属重叠的边缘区域的钝化层234侵入,具有较佳的密封效果和显示品质。

以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1