输出最少量功率以产生足以使病原体失活的整体辐射的单发射器照明设备的制作方法

文档序号:14131283阅读:275来源:国知局

本公开内容大体上涉及照明设备,更特别地涉及一种输出最少量功率以使病原体失活的单发射器照明设备。



背景技术:

病原体诸如病毒、细菌和真菌是影响人类、动物和植物的许多疾病或感染——包括一些非常危险且可能致命的疾病和感染——的原因。环境诸如健康护理环境(如医院)和餐馆是特别容易传播或扩散这种病原体的。实际上,由例如健康护理环境中通过人与人之间的接触和皮肤蜕落传播的病原体——诸如耐甲氧西林金黄色葡萄球菌(mrsa)、艰难梭菌(c.difficile)——造成的健康护理相关感染(hai)在健康护理行业是越来越危险的问题。据疾病控制与预防中心所说,hai每年仅在美国的急性护理医院就造成至少170万例疾病和99,000例死亡。病原体还可能使食物产品(如水果、蔬菜)变质,并导致在要求无污染环境的各种工业工艺例如化学加工、酿造和蒸馏、食物包装和其他工艺中货物和原材料的损失。

已投入大量资源来防止和控制这些环境中的病原体,但目前为止,这些资源尚未产生期望的结果。已证明一些现有的控制病原体的方法如涉及卫生的那些方法需要大量劳动力、难以监测,而且最重要的是,收效甚微(如,仅暂时有效,仅使一些病原体失活)。其他已知的控制病原体的方法如涉及紫外光、臭氧和化学熏蒸的那些方法虽然有成效,但对人类是有毒的。因此,要求去污染的环境必须密闭而且在工艺期间无法使用。



技术实现要素:

本公开内容的一方面提供一种被配置成使环境中的危险病原体(如mrsa细菌)失活的照明设备。该照明设备包括被配置成提供光的至少一个照明元件。光的至少第一分量包括具有400nm至420nm之间的波长的光,并且光的至少第二分量包括具有大于420nm的波长的光。光的第一分量具有.05mw/cm2的最低整体辐照度,该最低整体辐照度是从环境中距照明设备的任意最外发光表面上的任意点1.5m处的任意无遮蔽点测得的。

本公开内容的另一方面提供一种被配置成使环境中的危险病原体(如mrsa细菌)失活的照明设备。该照明设备包括至少一个发光元件以及至少一个光转换元件,该至少一个发光元件被配置成发出具有400nm至420nm之间的波长的光。该至少一个发光元件发出的光的至少第一分量在没有变化的情况下行进通过该至少一个光转换元件,并且该至少一个发光元件发出的光的至少第二分量被转换为具有大于420nm的波长的光。光的第一分量具有.05mw/cm2的最低整体辐照度,该最低整体辐照度是从环境中距照明设备的任意最外发光表面上的任意点1.5m处的任意无遮蔽点测得的。

本公开内容的另一方面提供一种使环境中的危险病原体(如mrsa细菌)失活的方法。该方法包括从安装在环境中的照明设备的至少一个照明元件中提供光。光的至少第一分量具有400nm至420nm之间的波长,并且具有.05mw/cm2的最低整体辐照度,该最低整体辐照度是从环境中距照明设备的任意最外发光表面上的任意点1.5m处的任意无遮蔽点测得的,光的至少第二分量具有大于420nm的波长。

附图说明

附图与下面的详细描述均并入本说明书中并形成本说明书的一部分,并且用于进一步说明包括要求保护的实施方案的理念的实施方案,以及解释那些实施方案的各种原理和优点,在附图中,贯穿各个视图,相同的附图标记指相同或在功能上相似的元件。

图1是根据本公开内容的教导构造的并用于容易传播病原体的环境的照明系统的示意图。

图2是图1的环境的一部分的示意图,包括根据本公开内容的教导构造的照明设备,该照明设备被配置成使环境的该部分中的病原体失活。

图3a示出了cie1976色品图。

图3b是图3a的图的特写的部分视图,示出了一系列白色可见光的曲线,该白色可见光可以由图2的照明设备输出,使得照明设备可以提供视觉上有吸引力的不令人反感的白光。

图4a是图2的照明设备的一个示例性变型的平面图。

图4b是图4a的照明设备的后视立体图。

图4c是图4a和图4b的照明设备的底视图,示出了被配置成使病原体失活的第一多个发光元件。

图4d是图4c的照明设备的一部分的局部近视图。

图5a是安装在环境的接收结构中的图4a至图4d的照明设备的立体图。

图5b是图5a的截面图。

图6a是图2的照明设备的另一示例性变型的底视图,示出了被配置成使病原体失活的第二多个发光元件。

图6b是图6a的照明设备的一部分的局部近视图。

图7示出了图2的照明设备的另一示例性变型;

图8示出了图2的照明设备的另一示例性变型;

图9a是图2的照明设备的另一示例性变型的立体图;

图9b是图9a的照明设备的截面图;

图9c是图9a的照明设备的另一截面图,示出了被配置成发出使病原体失活的光的第一多个发光元件,以及被配置成发出光的第二多个发光元件,该第二多个发光元件发出的光与第一多个发光元件发出的光混合,以产生视觉上有吸引力的可见光;

图9d是图9a的照明设备的各个电力部件的框图;

图9e示出了当环境被占用时可以由图9a的照明设备输出的视觉上有吸引力的白色可见光;

图9f示出了当环境未被占用时可以由图9a的照明设备输出的消毒光;

图10a是图2的照明设备的另一示例性变型的立体图;

图10b与图10a类似,但照明设备的透镜被移除,以示出多个照明元件;

图10c是图10b的顶视图;

图10d是图10b和图10c的多个照明元件中的一个的近视图;

图11a示出了根据本公开内容的教导构造的照明设备的辐射功率分布的一个实施例;

图11b示出了根据本公开内容的教导构造的照明设备的光分布随着与水平线呈竖向的角度变化的一个实施例的图;

图11c示出了根据本公开内容的教导构造的照明设备的光分布随着与水平线呈竖向的角度变化的另一实施例的图;

图11d示出了根据本公开内容的教导构造的照明设备的光分布随着与水平线呈竖向的角度变化的另一实施例的图;

图11e示出了根据本公开内容的教导构造的照明设备的光分布随着与水平线呈竖向的角度变化的另一实施例的图;

图11f描绘了用于图11b的光分布图的光通量的图表;

图11g描绘了用于图11c的光分布图的光通量的图表;

图11h描绘了用于图11d的光分布图的光通量的图表;

图11i描绘了用于图11e的光分布图的光通量的图表;

图12是在一段时间内提供足够剂量的光以使整个立体空间中的危险病原体失活的示例性方法的流程图;以及

图13是根据本公开内容的教导构造的控制设备的示例性变型的示意图。

具体实施方式

图1描绘了可以在环境54中实施或包括在该环境中的照明系统50,该环境诸如例如为医院、医生办公室、检查室、实验室、疗养院、健身俱乐部、零售店(如杂货店)、餐馆或其他空间或建筑,或他们中的部分,在这些环境中,期望即提供照度又减少且理想地消除上述病原体的存在和扩散。

图1所示的照明系统50一般包括多个照明设备58、多个桥接设备62、服务器66和一个或多个客户端设备70,该一个或多个客户端设备被构配置经由一个或多个网络74连接至服务器66。当然,如果需要,照明系统50可以包括更多或更少的部件和/或不同的部件。例如,照明系统50不一定非要包括桥接设备62和/或客户端设备70。

每个照明设备58均安装在环境54中或该环境处,并包括一个或多个发光部件,诸如发光二极管(led)、荧光灯、白炽灯、激光二极管或等离子灯,当通电时,该一个或多个发光部件(i)照亮环境54中相应照明设备58附近或周围的区域,并(ii)放出足够剂量的可见光以使被照亮区域中的病原体失活,如下文将描述的。在一个变型中,照明设备58可以一致地构造。在另一变型中,照明设备58可以在类型、形状和/或大小方面进行变化。例如,照明系统50可以采用本文描述的不同照明设备的各种组合。

桥接设备62——至少在本实施例中——位于环境54处,并(如,经由有线和/或无线连接)通信地连接至照明设备58中的一个或多个。在图1所示的照明系统50中,利用了四个桥接设备62,其中每个桥接设备62均连接至三个不同的照明设备58。在其他实施例中,更多或更少的桥接设备62可以连接至更多或更少的照明设备58。

服务器66可以是任何类型的服务器,诸如例如应用服务器、数据库服务器、文件服务器、网络服务器或其他服务器。服务器66可以包括一个或多个计算机和/或可以是较大服务器网络的一部分。服务器66(如,经由有线和/或无线连接)通信地连接至桥接设备62。服务器66可以对于照明设备58和客户端设备70远程地定位(如在“云”中),并且可以包括被配置成促进客户端设备70、桥接设备62和照明设备58之间的各种通信和命令的一个或多个处理器、控制器模块(如中央控制器76)等。这样,服务器66可以生成命令或指令并将该命令或指令发送给照明设备58,以实施与照明设备58的运行对应的各组照明设置。每组照明设置可以包括各种参数或设置,包括例如光谱特性、运行模式(如检查模式、消毒模式、混合模式、夜间模式、日间模式等)、调暗水平、输出瓦特数、强度、时限(timeouts)和/或诸如此类的,其中每组照明设置还可以包括计划表或表格,该计划表或表格规定了基于一天的时间、一天或一周、自然光水平、占用情况和/或其他参数应使用什么设置。服务器66还可以经由桥接设备62从照明设备58接收和监测数据,诸如运行状态、光发出数据(如,发出什么光、何时发出的光)、硬件信息、占用情况的数据、日光水平、温度、耗电量和剂量数据。在一些情况下,该数据可以被记录并用于形成或生成报告,如指示照明设备58中的一个或多个发出的光的特性的报告。这些报告可以例如用于证明环境54在各种时间段时或各种时间段期间放出了足够剂量的光以使被照亮区域中的病原体失活。

网络74可以是任何类型的有线网络、无线网络或无线和有线网络,诸如例如广域网(wan)、局域网(lan)、个域网(pan)或其他网络。网络74可以经由任何标准或技术(如gsm、cdma、tdma、wcdma、lte、edge、ofdm、gprs、ev-do、uwb、包括以太网的ieee802、wimax、wifi、和其他)促进任何类型的数据通信。

客户端设备70可以是任何类型的电子设备,诸如智能电话、台式计算机、膝上型计算机、平板电脑、平板手机、智能手表、智能眼镜、可穿戴电子产品、呼叫器、个人数字助理或任何其他电子设备,包括被配置用于无线射频(rf)通信的计算设备。客户端设备70可以支持图形用户界面(gui),其中,客户端设备70的用户可以使用gui来选择各种操作,改变设置,查看运行状态和报告,进行更新,形成电子邮件/文本警告通知和/或执行其他功能。客户端设备70可以经由网络74、服务器66和桥接设备62向照明设备58传输任何更新的照明设置进行实施和/或存储在该照明设备上。客户端设备70可以经由网关接入点促进数据通信,该网关接入点可以连接至桥接设备62。在一种实施方式中,网关接入点可以是包括集成在密封壳体中的网关、工业以太网交换机和蜂巢式路由器的蜂巢式接入点。此外,网关接入点可以使用具有自我签署证书的https进行担保以访问网络服务,并可以在各种网站、一个或多个桥接设备62和照明设备58之间推送/提取数据。

图2示出了包括照明设备58中的一个的健康护理环境100,该照明设备采用根据本公开内容构造的照明设备104的形式。可以例如是或包括检查室、手术室、卫生间、走廊、候诊室、衣橱或其他存储区域、洁净室或他们中的部分的健康护理环境100通常容易扩散危险病原体,如上所述。

已有实验研究表明,当以足够高的功率水平(如3,000mw以上)放出特定配置剂量的窄谱可见光(如波长在400nm至420nm之间的光)时,该窄谱可见光可以有效地使危险病原体失活(或被消灭)。然而,这些剂量容易对其被放出的环境造成扰乱影响或令人反感的美观影响。例如,当在健康护理环境100中进行外科手术时,这些剂量可能提供不期望的光输出。因此,已经证明难以以不令人反感的方式将这些剂量结合到可以同时使病原体失活并照亮环境(如健康护理环境100)的照明设备中。相反,通常仅在环境未被占用时才放出窄谱可见光剂量,因此严重地限制了这种照明设备的失活潜力。

本文描述的照明设备104被配置成以足够高的功率水平放出剂量足以有效地使健康护理环境100(或其他环境)中的危险病原体失活的窄谱可见光,并且同时以安全且不令人反感的方式提供足以照亮环境100(或其他环境)的可见光。

更具体地,照明设备104向环境100提供或放出(如输出、发出)至少3,000mw(或3w)的消毒光,该消毒光具有约380nm至约420nm范围内的波长,且更特别地在400nm至420nm之间的波长,将会理解,具有在该范围内的波长但以低于3,000mw的功率水平放出的光剂量通常在使危险病原体失活方面是无效的。照明设备104可以例如提供或放出3,000mw、4,000mw(或4w)、5,000mw(或5w)、6,000mw(或6w)、7,000mw(或7w)、10,500mw(或10.5w)或在3,000mw以上的一些其他水平的消毒光。照明设备104还提供或放出使得在使用照明设备104进行失活时环境100内的任何暴露表面均具有或达到期望的最低功率密度的消毒光水平,从而确保环境100充分地消毒。该期望的最低功率密度为由测量单位为cm2的每单位面积的任何暴露表面接收的测量单位为mw的最低功率。当随时间(使用照明设备104进行失活的时间段)进行测量或确定时,在适用的可见光带宽内的该最低功率密度可以称为如本文所称的最低整体辐照度,测量单位mw/cm2。照明设备104提供的消毒光的最低整体辐照度——在该实施例中,该最低整体辐照度是从环境100中距照明设备104的任意最外发光表面102上的任意点1.5m处的任何暴露表面或无遮蔽点处测得的,但在其他实施例中该最低整体辐照度可以从环境100中的距任意最外发光表面102的不同距离处、最低点处、任意无遮蔽点处或一些其他点处测得——通常等于至少.01mw/cm2。最低整体辐照度可以例如等于0.02mw/cm2、0.05mw/cm2、0.1mw/cm2、0.15mw/cm2、0.20mw/cm2、0.25mw/cm2、0.30mw/cm2或大于.01mw/cm2的一些其他值。

同时,照明设备104提供环境100中或周围的人(如患者、人员)感知为白光的可见光输出,该可见光输出具有经研究表明对于人类而言美学上令人满意的或至少不会令人反感的性质,并且具有包括窄谱可见消毒光的分量。虽然白光的确切性质可能根据指定应用进行变化,但这些性质通常包括下述中的一种或多种:(1)期望的显色指数,如大于70、大于80或大于90的显色指数;(2)期望的色温,如在约1500开氏度至7000开氏度之间的色温,更特别地,在约1800开氏度至5000开氏度之间的色温、在约2100开氏度至6000开氏度之间的色温、在约2700开氏度至5000开氏度之间的色温或者在这些范围内或部分在这些范围外或全部在这些范围外的一些其他温度或温度范围;或(3)期望的色品。

可以相对于任何数量的不同色品图来描述色品,诸如例如1931cie色品图、1960cie色品图或图3a中所示的1976cie色品图。因此,照明设备104输出的美学上令人满意的白光可以描述为具有与这些色品图相关或基于这些色品图的性质。如例如图3b中所示,照明设备104输出的白光在1976cie色品图(图3a)上可以具有u’、v’坐标,该u’、v’坐标位于与由ansic78.377-2015颜色标准限定的普朗克轨迹105相关的任何数量的不同曲线上。ansic78.377-2015颜色标准大致描述了形成令人满意的或视觉上有吸引力的白光的颜色混合的范围。该范围通常由普朗克轨迹105——也称为黑体曲线——限定,存在测量单位为duv的在普朗克轨迹105上方或下方的一些偏差。取决于指定应用,白光输出的u’、v’坐标可能位于其上的不同曲线以不同的duv值偏离普朗克轨迹106。白光可以例如位于在普朗克轨迹105上方.035duv的曲线106a上、位于在普朗克轨迹105下方.035duv(-.035duv)的曲线106b上、位于在普朗克轨迹105下方.02duv(-.02duv)的曲线107上、位于在普朗克轨迹上方.02duv的曲线上,或位于在普朗克轨迹105上方.035duv至下方.035duv之间的一些其他曲线上。

照明设备104在一些情况下是完全封闭的,这通过例如防止病原体藏匿在照明设备104的内部部件上面或其中来促进清洁,以其他方式则难以以特定配置的窄谱可见光达到这种效果。换言之,在这些情况下,照明设备104的内部表面都没有暴露于包围照明设备104的环境100,使得危险病原体无法驻留在窄谱可见光无法到达的表面上。

如本文将描述的,照明设备104包括被配置成根据需要发出光的一个或多个发光元件,如发光二极管(led)。照明设备104可选地包括一个或多个反射器、一个或多个透镜、一个或多个漫射器和/或一个或多个其他部件。在一些实施例中,如当在照明设备中采用led时,照明设备104可以包括用于使led的结温度维持在led的最大运行温度以下的装置。用于维持结温度的装置可以例如包括将热扩散至与led耦合的印刷电路板的一个或多个散热器、恒流驱动器拓扑结构、经由ntc热敏电阻向(向led供电的)一个或多个驱动器反馈的热反馈系统,或在感测到温升时降低led驱动电流的其他装置。照明设备104还可以包括占用情况传感器108、日光传感器112、一个或多个通信模块116以及一个或多个控制部件120,如本地控制器。照明设备104可以可选地包括一个或多个附加传感器,如两个占用情况传感器108、测量由设备104输出的光的传感器等。

在这种变型中,占用情况传感器108是红外(ir)运动传感器,该占用情况传感器检测在照明设备104的预定范围内或距照明设备预定距离(如50英尺)的运动,以便识别(或帮助识别)环境100是被占用还是闲置的(即,未被占用),以及环境是已被占用一段时间还是已闲置一段时间(如,预定时间段,诸如15分钟、30分钟等)。占用情况传感器108可以对环境100进行持续监测,以确定环境100是否被占用。在其他变型中,占用情况传感器108可以是利用不同的占用情况检测科技或技术以识别(或帮助识别)环境100是被占用还是未被占用以及环境是已被占用一段时间还是未被占用一段时间的不同类型的传感器,如超声传感器、微波传感器、co2传感器、热成像传感器。在一些变型中,可以采用使用不同检测科技或技术检测占用情况的多个占用情况传感器108,以提供更稳妥的检测。例如,照明设备104可以包括利用不同科技或技术检测占用情况的一个红外运动传感器和一个co2传感器。同时,日光传感器112被配置成检测在照明设备104的预定范围内或距照明设备预定距离(如50英尺)的自然光,以便识别是白天还是黑夜(并因此识别环境100是被占用还是未被占用)。

响应于占用情况传感器108获得的占用情况数据和/或日光传感器112获得的自然光数据,可以通过本地控制器120(或其他控制部件)控制照明设备104,以发出各种特性的可见光或具有各种特性的可见光。可以例如响应于指示环境100为闲置的(即,未被占用)的数据来控制照明设备104,以便输出仅由特定配置的窄谱可见光构成的可见光。在一些情况下,仅在照明设备104确定环境100已闲置了预定时间段(如30分钟)后才输出窄谱可见光,从而提供确保环境100确实闲置的失效保护。照明设备104可以经由通信模块116通信地连接至远程定位的服务器66(以及远程定位的客户端设备70)并受其控制,和/或通信地连接至其他照明设备58。这样,照明设备104可以向服务器66和/或其他照明设备58传输数据,诸如运行状态(如运行模式)、光发射数据、硬件信息、占用情况数据、日光水平、输出瓦特数、温度、耗电量,并且可以从服务器66、其他照明设备58和/或客户端设备70接收运行指令(如打开、关闭、提供不同光谱特性的光、在运行模式之间切换)和/或其他数据(如来自或关于其他照明设备58的运行数据)。

将会理解,响应于代替占用情况传感器108和/或日光传感器112获得的数据的其他设置、参数或数据,或除了所获得的数据以外的其他设置、参数或数据,可以(如由照明设备104的用户)手动地控制和/或自动地控制照明设备104。响应于运行模式、调暗水平、计划表或表格,或本地控制器120(或其他控制部件)接收的其他参数或设置,可以通过本地控制器120(或其他控制部件)部分地或完全地控制照明设备104。

在一些变型中,诸如图2所示的一个变型,照明设备104可以包括监测并记录照明设备104放出的剂量的量和频率的剂量或失活反馈系统124。虽然使用照明设备104中的其他部件(如适合的处理器和存储器)可以实施剂量反馈系统124或者经由服务器66可以实施该剂量反馈系统,但是在本变型中本地控制器120实施剂量反馈系统124。在任何情况下,剂量反馈系统124均通过监测并记录一段时间内照明设备104的各种参数或设置以及与照明设备相关联的参数或设置来达到前述目标。更具体地,剂量反馈系统124监测并记录照明设备104发出的光(或其分量)的光谱特性、输出瓦特数、波长和/或强度,照明设备104提供的消毒窄谱可见光的最低整体辐照度,占用情况传感器108获得的占用情况数据,照明设备104在各种运行模式(如检查模式)下花费的时间量,调暗水平等。例如,剂量反馈系统124监测并记录照明设备104何时发出包括消毒窄谱可见光(即,具有400nm至420nm之间的波长的光)或仅由消毒窄谱可见光构成的可见光,以及在这些时间内所放出的消毒窄谱可见光的水平和密度(且更特别地,最低整体辐照度)。基于照明设备104的参数或设置,剂量反馈系统124(和/或照明设备104的操作员)可以确定照明设备104放出的失活剂量的数量和频率。可替代地或另外地,剂量反馈系统124可以(经由通信模块116)将记录的数据提供给服务器66,该服务器又可以确定照明设备104放出的失活剂量的数量和频率。在一些情况下,剂量反馈系统124和/或服务器66可以生成定期的报告,该报告包括所获得的数据和/或关于失活剂量的确定信息。当剂量反馈系统124生成这些报告时,可以经由通信模块116将这些报告传输至服务器66或任何其他部件。在任何情况下,剂量反馈系统124均允许实施照明设备104的医院或其他环境100定量地确定(并验证)在不同时间段或在某些时间点(如在特定操作期间)放出了足够水平的失活剂量。这在例如患者声称她/他在医院或其他环境100时得了hai而控告医院或其他环境100的情况下是非常有利的。

如图4a至图4c中所示,照明设备104可以采用灯泡或灯具200的形式。灯具200包括封闭壳体204、耦合至(如安装或安放在)壳体204的一部分上的发光元件212的阵列208、耦合至壳体204(如与其一体形成)的基部216、耦合至(如设置或布置在)壳体204的一部分上的占用情况传感器220。占用情况传感器220最佳地定位成检测环境100内的灯200的预定范围内或距灯预定距离(如50英尺)内的运动。灯具200可以响应于占用情况传感器220获得的检测数据发出光,如下文更详细论述的。

如上所述,壳体204是封闭的,从而防止水分进入灯具200和/或污染灯具200的内部部件。更具体地,壳体204的内部表面都没有暴露于环境100,使得危险病原体无法驻留在照明设备200发出的光无法到达的表面上。图4a至图4c中所示的壳体204由铝或不锈钢制成或制造,并具有第一端224、第二端228、在第二端228处形成的向外延伸的环形凸缘230,以及在第一端和第二端224、228之间延伸的外圆周壁232。外圆周壁232具有基本上锥形形状,其中,圆周壁232的直径沿从第一端224至第二端228的方向增加,使得壁232在第二端228处的直径比在第一端224处的直径大。

壳体204还包括圆形支撑表面236和围绕支撑表面236的内圆周壁240。支撑表面236——至少在图4b中面朝下——被布置成接收发光元件212的阵列208的一部分或全部。内圆周壁240与外圆周壁232类似,具有基本上锥形的形状。内圆周壁240在径向上与外圆周壁232间隔开且在该外圆周壁内,并且在壳体204的凸缘230与支撑表面236之间延伸。

壳体204还包括支撑元件,在该变型中,支撑元件采用沿灯200的中心轴线248设置的圆柱244的形式。圆柱244从支撑表面236向外延伸(在图4b中看时为向下),并且截止于端部250,该端部定位在第二端228轴向向内的地方(即,轴向地位于第一端与第二端224、228之间)。在第二端228附近,且在凸缘230、内圆周壁240与圆柱244之间形成或限定有腔体252。

发光元件212的阵列208通常布置在封闭壳体204上或封闭壳体内。在该变型中,发光元件212的阵列208布置在封闭壳体204暴露于环境100的外部分上。更具体地,发光元件212布置在腔体252中、在支撑表面236上并且围绕柱244,如图4b和图4c中所示。可以以任何已知的方式(如,使用紧固件、粘合剂等)固定发光元件212。取决于指定应用,如取决于健康护理环境100,可以利用任何数量的发光元件212。例如,对于较大的环境100和/或对于特别容易有高的危险病原体水平的环境100,可以使用较多的发光元件212。

发光元件212包括以许多不同形式布置的一个或多个第一发光元件256以及一个或多个第二发光元件260。图4c和图4d中所示的发光元件212包括多个群262,每个群均具有被三个第二发光元件260包围的一个第一发光元件256。然而,在其他实施例中,发光元件212可以以不同方式布置,例如,群262中的一个或多个具有不同布置的发光元件256与第二发光元件260。在该变型中,发光元件256采用发光二极管(led)的形式,并被配置成一起(即,联合)发出至少3,000mw的特定配置的可见光,即具有约380nm至约420nm之间的范围内的波长的光,且更特别地,具有400nm至420nm之间的波长的光。在一些情况下,发光元件256可以被配置成一起发出至少5,000mw的特定配置的可见光,而在其他情况下,发光元件可以被配置成一起发出至少10,500mw的特定配置的可见光。发光元件260还采用led的形式,至少在该变型中,但该发光元件被配置成发出对发光元件256发出的可见光进行补充的可见光。一般来说,发光元件260发出的光具有比发光元件256发出的光的波长更长的波长。在许多情况下,发光元件260中的一些——如果不是全部——发出的光可以具有大于500nm的波长。例如,发光元件260可以发出红色光、绿色光和蓝色光,这些光组合以产生或形成白色可见光。在许多情况下,发光元件256发出的总光具有比发光元件260发出的总光高的光通量,但情况不一定都是这样。

在任何情况下,发光元件256和260被配置成使得阵列208发出的总光或组合光在健康护理环境100中是在美学上不令人反感的白色、偏白色或不同的颜色。一般来说,总光或组合光具有70以上的显色指数,且更优选地80以上或90以上的显色指数,并且将具有1500开氏度至7000开氏度之间的范围内的色温,优选地在2100开氏度至6000开氏度之间的范围内的色温,且更优选地在2700开氏度至5000开氏度之间的范围内的色温。

基部216靠近壳体204的第一端224耦合,并从该第一端向外凸出。在该变型中,基部216为螺纹基部,其与壳体204一体形成并且适于旋入在健康护理环境100中的接收结构中设置的配套插座(未示出)。取决于健康护理环境100,配套插座可以设置在墙壁、天花板、地板、壳体或一些其他结构中。在任何情况下,如本领域已知的,螺纹基部216可以包括一个或多个电触头,该一个或多个电触头适于在基部216耦合至插座时电连接至插座的对应电触头,从而为灯具200供电。

通常期望的是将基部216旋入配套插座中,使得至少壳体204的一部分嵌入独立结构中,从而将壳体204的该部分与外部环境阻隔开。图5a和图5b示出了这种实施例,其中,灯具200密封地设置在接收结构270中,该接收结构设置(如形成)于环境100中的天花板、房屋或其他结构中。接收结构270具有基本上圆柱形的基部272和在基部272的端部276处形成的向外延伸的凸缘274。在接收结构270的向外延伸的凸缘274上设置有密封件(如,垫圈)278。当将灯具200的基部216旋入设置在接收结构270中的配套插座(未示出)中时,灯具200的壳体204基本上完全设置在或嵌入接收结构270的基部272中,并且灯具200的凸缘230密封地接合设置在接收结构270的凸缘274上的密封件278。这样,壳体204基本上与外部环境100阻隔开。

再参照图4a和图4b,占用情况传感器220——其可以采用被动红外运动传感器、微波运动传感器、超声运动传感器或另一类型的占用情况传感器——布置或设置在壳体204面朝下的部分上。在该变型中,占用情况传感器220设置在圆柱244的端部250上,这允许占用情况传感器220检测环境100内在照明设备200的预定范围内或距照明设备预定距离(如50英尺)内的运动。在一些情况下,占用情况传感器220可以检测环境100内的任何运动(如当环境100仅包括一个灯具200时)。如上简要论述的,灯200可以响应于占用情况传感器220获得的检测数据来发出光。更具体地,灯具200可以响应于占用情况传感器220获得的检测数据来调整输出的光。当例如占用情况传感器220未检测到预定范围或距离内的任何运动时,发光设备200可以关闭或者从第二发光元件260中发出较少的光,因为健康护理环境100未被占用(因此,发出的光的颜色不重要)。换言之,灯200可以仅从第一发光元件256发出光,从而在使用较小功率的情况下使危险病原体失活。相反,当占用情况传感器220在预定范围或距离内检测到运动时,灯具200可以从第一发光元件和第二发光元件256、260二者中都发出光,从而确保向被占用的健康护理环境100提供美学上不令人反感的光(如白光),并且同时,灯具200继续使危险病原体失活,即使是环境100被占用的时候。

仍然参照图4a和图4b,灯具或灯泡200还包括环形折射器280。在该变型中,折射器280是安装至壳体204的内圆周壁240的纳米重复折射膜。折射器280可以经由任何已知的方式固定(如,使用多个紧固件,使用粘合剂等)于此。这样设置,折射器280包围或围绕第一发光元件和第二发光元件256、260,使得折射器280帮助聚焦并且向环境100均匀地分布从灯200发出的光。如果需要,可以以不同方式布置折射器280或代替使用其他类型的折射器,以便产生不同的受控光分布。

虽然本文未描述,但是将会理解,可以在封闭壳体204内或附近布置或设置一个或多个驱动器(如led驱动器)、一个或多个其他传感器(如日光传感器)、一个或多个透镜、一个或多个反射器、一个或多个板(如印刷电路板、用户接口板)、电线、各种控制部件(如通信地连接至服务器66的本地控制器)、一个或多个通信模块(如一个或多个天线、一个或多个接收器、一个或多个发射器)和/或其他电力部件。通信模块可以包括一个或多个无线通信模块和/或一个或多个有线通信模块。一个或多个通信模块由此可以使用任何已知的通信协议来促进灯泡或灯具200的部件与本地控制器、服务器66和/或其他控制系统部件之间的无线和/或有线通信。更具体地,该一个或多个通信模块可以促进灯泡或灯具200的部件与本地控制器、服务器66、其他照明设备58和/或其他控制系统部件之间的各种数据的传送,诸如占用情况或运动数据、运行指令(如打开、关闭、调光等)等。例如,经由这种通信模块可以监测指示了光何时从发光元件256、260中发出的数据并将该数据传输至服务器66。再如,经由这种通信模块可以监测指示在预定时间段内(如特定外科手术期间)从发光元件256、260中发出了多少光的数据并将该数据传输至服务器66。

在其他变型中,灯泡或灯具200可以以不同方式构造。具体地,壳体204可以具有不同的大小、形状和/或由不同于或除了铝或不锈钢以外的一种或多种材料制成。例如,壳体204可以具有矩形、正方形、三角形、不规则形状或其他适合的形状。在一个变型中,壳体204可以不包括柱244,和/或柱244可以采用与图4a和图4b所示的圆柱244不同的形状和/或大小。

此外,发光元件212的阵列208可以变化。在一些变型中,阵列208(或其部分)可以布置在壳体204的不同部分内或上。在一些变型中,发光元件212的阵列208可以仅包括第一发光元件256,如上所述,该第一发光元件被配置成以足够高的功率水平发出特定配置的光谱可见光。在这些变型中,发光元件256中的一个或多个可以覆盖或涂覆有磷光剂、注入有磷光剂的基质和/或一种或多种其他材料和/或介质,以便产生具有比特定配置的窄谱可见光更大的波长的光,使得阵列208发出的总光或组合光在健康护理环境100中是美学上不令人反感的白色、偏白色或不同的颜色。图6a和图6b描绘了一个这种变型,其中,发光元件212包括多个具有四个发光元件256的群284,其中三个发光元件256a、256b和256c覆盖或涂覆有磷光剂,并且其中一个发光元件256d没有被覆盖(即,没有涂覆磷光剂)。在所示变型中,三个发光元件256a、256b和256c分别覆盖或涂覆有蓝色、红色和绿色磷光剂,使得每个群284(因此为阵列208)发出的总光或组合光在健康护理环境100中是美学上不令人反感的白色、偏白色或不同的颜色。将会理解的是,在其他变型中,发光元件256中的更多个或更少个可以覆盖有磷光剂,发光元件256可以覆盖有不同颜色的磷光剂,和/或发光元件256可以相对于彼此以不同方式布置(即,群284可以变化)。在另外的变型中,阵列208可以包括被配置成仅当在环境100中没有检测到运动时打开的附加发光元件(甚至用于更大的房间剂量),如被配置成以足够高的功率水平发出特定配置的可见光的led。最后,要理解的是,代替led,第一发光元件和/或第二发光元件256、260可以采用荧光、白炽、等离子或其他发光元件的形式。

图7示出了照明设备104的另一变型。如图7中所示,照明设备104可以采用灯泡或灯具300的形式。灯具300基本上与灯具200类似,其中使用共同的附图标记指代共同的部件。然而,与灯200不同的是,灯300包括散热器302,该散热器在灯300的外表面上形成并且被配置成消散由灯具300更特别地由发光元件212生成的热。在一些情况下,散热器302可以耦合(如安装、附接)在外圆周壁232的一部分上或周围,而在其他情况下,散热器302可以与壳体204一体形成(在这种情况下,散热器302可以取代壁232的一部分或全部)。

图8示出了照明设备104的又一变型。如图7所示,照明设备104可以采用灯泡或灯具400的形式。灯400包括与灯200、300的壳体204不同的封闭壳体404。在该变型中,封闭壳体404由玻璃或塑料制成或制造,并且成型为常规白炽灯泡的壳体。灯400还包括基部416,该基部与上述基部216类似。然而,与常规白炽灯泡不同的是,灯400还包括发光元件212,该发光元件布置在封闭壳体404内,并且如上所述的被配置成以足够高的功率水平提供足以有效使危险病原体失活的特定配置的窄谱可见光,同时提供不令人反感的质量光输出。

图9a至图9d示出了照明设备104的另一变型,其为灯具500的形式。灯具500包括壳体或底架504、耦合至(如安装或安放在)壳体504的一部分上的多个发光元件512、被配置成以有效方式漫射发光元件512发出的光的透镜514、耦合至壳体504(如与其一体形成)的一对支撑臂516以及与上述控制器120相同的本地控制器520形式的控制设备。将会理解的是,灯具500还包括占用情况传感器、日光传感器、通信模块和剂量反馈系统;然而,这些部件分别与上文描述的运动传感器108、日光传感器112、通信模块116和剂量反馈系统124相同,因此出于简洁起见,未在图9a至图9c中示出,且将不再在下文详细描述。灯具500还可以包括上述与照明设备104相关的用于维持结温度的任何装置。

在该变型中,壳体504由钢(如18号焊接冷轧钢)制成或制造,并且具有包围弯曲内部支撑表面532的基本上矩形的凸缘528,该弯曲内部支撑表面至少在图9b中面朝下。矩形凸缘528与弯曲内部支撑表面532一起限定腔体536,该腔体的大小被设置成接收透镜514,在该实施例中,透镜是kenallmanufacturing制造的frostdracrylic透镜。支撑臂516耦合至壳体504的靠近凸缘528的外部部分,其中一个支撑臂516耦合在壳体504的第一端544处或附近,而另一支撑臂516耦合在壳体504的与第一端536相对的第二端546处或附近。因此,支撑臂516被布置成促进将灯具500安装在如环境100的天花板内。

发光元件512通常布置在壳体504上或该壳体内。在该变型中,发光元件512布置在由壳体504和透镜540限定的密封或封闭的混光腔550中。发光元件512可以以任何已知的方式(如使用紧固件、粘合剂等)固定在其中。在该变型中,发光元件512包括多个第一led556形式的多个第一发光元件和多个第二led560形式的多个第二发光元件。发光元件512可以以图9c中所示的方式布置在第一led模块和第二led模块554、558上,其中第二led560一起群集成各种行和列,而第一led556布置在这些行和列之间,或者可以以不同方式进行布置。在一个实施例中,为了使第一led556与第二led560的比等于1:6,使用了九十六(96)个第一led556和五百七十六(576)个第二led560。在其他实施例中,可以采用更多或更少的第一led和第二led556、560,其中第一led556与第二led560的比不同。例如,取决于第一led和第二led556、560的功率容量,第一led556与第二led560的比可以等于1:3、1:2、1:1或一些其他比。

与发光元件256一样,第一led556被配置成提供(如发出)特定配置的可见光,即,具有约380nm至约420nm之间的范围内的波长的光,且更特别地具有400nm至420nm之间的范围内的波长的光,其中,第一led556的组合或总和被配置成提供或放出(如发出)足够高水平的特定配置的可见光,以便使灯具500周围的病原体失活。如上所述,第一led556可以一起(如当集中时)发出至少3,000mw的特定配置的可见光,如3,000mw、4,000mw、5,000mw或在3,000mw以上的一些其他水平的可见光。所有led556发出的或以其他方式提供的特定配置的可见光的最低整体辐照度——至少在该实施例中是从环境100中距照明设备504的任意最外发光表面562上的任意点1.5m处的任何暴露表面或无遮蔽点处测得的——可以等于.01mw/cm2、.02mw/cm2、.05mw/cm2、.1mw/cm2、.15mw/cm2、.20mw/cm2、.25mw/cm2、.30mw/cm2或大于.01mw/cm2的一些其他值。在其他实施例中,可以从环境100中的距任意最外发光表面562的不同距离处、最低点处、任意其他无遮蔽或暴露表面处测量特定配置的可见光的最低整体辐照度。与发光元件260一样,第二led560被配置成发出可见光,但第二led560发出的光具有的波长比该一个或多个第一led556发出的光的波长更长。第二led560发出的光通常具有大于500nm的波长,但情况不一定都是这样。

在任何情况下,第二led560发出的光补充该一个或多个第一led556发出的可见光,使得混合室550中形成的组合或混合光输出为具有上述性质的白光(如,cri在80以上、色温在2100度至6000度之间的范围内和/或1976cie色品图上的(u’,v’)坐标位于曲线上的白光,该曲线在ansic78.377-2015颜色标准限定的普朗克轨迹下方.035duv至上方.035之间)。因此,如例如图9e中所示,灯具500输出的组合或混合光对于人类而言是美学上令人满意的。

再参照图9d,照明设备504还包括第一led驱动器564和第二led驱动器568,第一led驱动器和第二led驱动器各自电连接至控制器520并且由从外部电源(未示出)接收的外部功率(如ac功率)供电。第一led驱动器564被配置成响应于从控制器520接收的指令或命令向第一led556供电,而第二led驱动器568被配置成响应于从控制器接收的指令或命令向第二led560供电。在其他实施例中,照明设备564可以包括更多或更少的led驱动器。例如,照明设备564可以包括仅一个被配置成向第一led556和第二led560供电的led驱动器,或者可以包括多个被配置成向第一led556供电的led驱动器和多个被配置成向第二led560供电的led驱动器。

另外如图9d中所示,控制器520可以接收调光设置572和/或模式控制设置576,该调光设置和/或模式控制设置是经由如服务器66从照明设备504的用户处(如经由电连接至灯具500的调暗开关的输入)和/或中央控制器处接收的。调光设置572是规定用于照明设备的期望调光或调暗水平的0-10v的控制信号,期望调光或调暗水平是第一led和第二led556、560的期望组合光输出与第一led和第二led556、560的最大组合光输出(并且对应于上述混合或组合输出)之间的比。0v的输入通常对应于100%的期望调暗水平(即,没有向第一led556或第二led560供电),5v的输入通常对应于50%的期望调暗水平,而10v的输入通常对应于0%的期望调暗水平(即,向第一led和第二led556、560充分供电),但情况不一定都是这样。模式控制设置576是规定照明设备504的期望运行模式的控制信号。模式控制设置576可以例如规定照明设备504处于第一模式(如检查模式、消毒模式、混合模式),其中向第一led和第二led556、560充分供电,或应处于第二模式(如夜间模式),其中向第二led560供电,而未向第一led556供电(或以较低水平供电)。可以利用其他模式和/或对应于不同功率设置或水平的模式。

在运行中,灯具500基于或响应于来自本地控制器520的命令或指令来提供或输出(如发出)光。更具体地,基于或响应于从本地控制器520接收的为了使第一led556和/或第二led560提供或输出(如发出)期望水平的光的命令或指令,第一led驱动器564和/或第二led驱动器568向第一led556和/或第二led560供电,使得达到这种效果。这些命令或指令可以在以下情况下生成:基于或响应于调光设置572的接收、模式控制设置576的接收、占用情况传感器获得的占用情况数据和/或日光传感器获得的日光数据,和/或基于或响应于从服务器66和/或客户端设备70接收的命令或指令。因此,灯具500,且更特别地第一led556和/或第二led560,可以响应于占用情况传感器获得的占用情况数据、日光传感器获得的日光数据和/或其他命令或指令(如时间设置、调光设置、模式控制设置)来提供(如发出)光。

例如响应于指示环境100被占用的数据、指示环境100中不止存在预定量的自然光(即,是白天)的数据和/或各种命令和指令,灯具500可以从第一led556和第二led560发出光,从而产生如上所述的混合或组合的白色可见光输出。转而,灯具500产生有效地使环境100中的危险病原体失活的可见白光,并且同时以安全且不令人反感的方式照亮环境100(如因为环境100被占用、是白天和/或因为其他原因)。

然而,响应于指示环境100未被占用或已有预定的时间量(如30分钟、60分钟)未被占用的数据,灯具500可以减少第二led560的功率,使得大部分的输出光都来自第一led556,或者关闭第二led560(由于环境100未被占用,因此不再需要产生视觉上有吸引力的混合输出),使得仅从第一led556中发出光,如图9f所示。同时,灯具500可以增加第一led556的功率或强度,并且在一些情况下可以激活一个或多个第三led,该一个或多个第三led未示出,但与led556一样也被配置成发出足够高水平的特定配置的可见光,即,具有约380nm至约420nm之间的范围内的波长的光,且更特别地具有400nm至420nm之间的波长的光。这样,可以提高灯具500的失活效果(而不会在环境100未被占用时有损于灯具500的视觉吸引力),并且同时,(由于第一led556减少或关闭)可以降低或至少维持灯具500的能量消耗。

在一些情况下,响应于指示环境100未被占用或已有比预定的时间量(如30分钟)短的时间段内未被占用的数据,灯具500可以提供或输出上述(第一led和第二led556、560)的组合或混合光输出。这提供了失效保护模式,其确保在关闭或减少第二led560之前环境100确实是闲置的。

针对指示环境100中不止存在预定量的自然光或者环境100中比预定量的自然光低(即,夜间,使得环境100不太可能被占用)的数据,灯具500可以以类似或不同的方式做出响应,使得不需要来自第二led560的光。如果需要,灯具500可以以仅响应于指示环境100未被占用的数据或指示其是夜间的数据的这种方式来进行响应。可替代地,灯具500可以以仅响应于时间设置(如,过了6:30p.m.)和/或其他命令或指令的这种方式来进行响应。

还可以响应于设置——诸如由控制器520接收的调光设置572和模式控制设置576——来对灯具500且更特别地对第一led556和第二led560进行控制。响应于接收到调光设置572或模式控制设置576,控制器520根据所接收的设置使第一led驱动器和第二led驱动器564、568分别对(或不对)第一led和第二led556、560进行供电。更具体地,当控制器520接收到调光设置572或模式控制设置576时,根据调光设置572规定的期望调暗水平或模式控制设置576规定的期望运行模式,控制器520经由第一led控制信号580指示第一led驱动器564对(或不对)第一led556进行供电,并且经由第二led控制信号584指示第二led驱动器568对(或不对)第二led560进行供电。

图9g示出了控制器520响应于规定各种调暗水平(如,0%、25%、50%、75%、100%)的各种调光设置572可以如何控制第一led驱动器和第二led驱动器564、568。一般来说,控制器520响应于降低调暗水平来使第一led驱动器和第二led驱动器564、568增加第一led和第二led556、560输出的总光,从而提高总光输出的色温,并且响应于提高调暗水平来使第一led驱动器和第二led驱动器564、568降低第一led和第二led556、560输出的总光,从而降低总光输出的色温。但如图9g中所示,控制器520以与其(经由第二led驱动器568)控制第二led560不同的方式(经由第一led驱动器564)控制第一led556。换言之,在不同的调暗水平下,第一led556发出的光量与第二led560发出的光量之间存在非线性关系。该关系通过第一曲线588与第二曲线592并不平行这一事实进行了说明,该第一曲线表示第一led驱动器和第二led驱动器564、568随着不同调光水平分别向第一和第二led556、560供应的总电力,该第二曲线表示随相同的调光水平向第一led556供应的电力。例如,(i)当调光设置572规定0%的调光水平(即,不调暗)使得以全(100%)功率操作灯具500时,向第一led556供应总功率的约50%,(ii)当调光设置572规定50%的调光水平使得以半(50%)功率操作灯具500时,向第一led556供应总功率的不到50%,以及(iii)当调光设置572规定大于75%但小于100%的调光水平使得以低于25%的功率操作灯具500时,不向第一led556供应功率。因此,在完全关闭第二led560之前完全关闭第一led556。这样,即使在调暗灯具500时,特别是在调暗至非常高的水平(如80%、85%、90%、95%)时,灯具500输出的光仍然不令人反感而且是美学上令人满意的。

图10a至图10d示出了照明设备104的另一变型,其为灯具600的形式。灯具600与灯具500的类似之处在于,其包括壳体或底架604(具有凸缘628)和被配置成以有效方式漫射灯具发出的光的透镜614,以及部件如分别与上述控制器120、传感器108、模块116和剂量反馈系统124相同的本地控制器618、占用情况传感器、通信模块和剂量反馈系统;因此,出于简洁起见,将不再进一步详细描述这些部件。灯具600还可以包括用于维持上文描述的关于照明设备104的结温度的任何装置。然而,灯具600包括与灯具500的多个发光元件512不同的多个发光元件612。虽然与元件512一样,发光元件612被布置在由壳体604和透镜614限定的密封或封闭的混光腔中的led模块654上,如图10b和图10c中所示,但每个发光元件612均采用发光二极管(“led”)656以及光转换元件657的形式,该光转换元件与发光二极管相关联并且被配置成对led656发出的光的一部分进行转换,如图10d所示。在该变型中,每个led模块654包括七十六(76)个照明元件612,但在其他变型中,可以采用更多或更少的照明元件612(和/或可以采用附加的led656而不使用光转换元件657)。虽然在该变型中,光转换元件657——可以例如是磷光元件诸如磷光剂或注入有磷光剂的基质——覆盖或涂覆led656,但在其他变型中,光转换元件657可以相对于led656远程地定位(如远程磷光元件)。

在运行中,发光元件612的led656发出消毒光(如,具有400nm至420nm之间的波长的光),当消毒光进行组合或集中时会产生足以使病原体失活的功率水平。如上所述,led656可以组合以发出至少3,000mw的消毒光,如3,000mw、4,000mw、5000mw或在3,000mw以上的一些其他水平的可见光。每个led656发出的消毒光的至少第一部分或分量700(且在图10d中为多个分量700)在没有变化的情况下行进或穿过相应的光转换元件657,而每个led656发出的消毒光的至少第二部分或分量704(且在图10d中为多个分量704)被相应的光转换元件657转换为具有大于420nm的波长的光。在许多情况下,光的第二部分或分量704被转换为黄色光,即,具有570nm至590nm之间的波长的光。换言之,每个发光元件612被被配置成提供光,该光的由相应led656提供的至少第一分量具有400nm至420nm之间的波长,并且该光的由相应光转换元件657提供的至少第二分量具有大于420nm的波长。同样如上所述,所提供的光的第一分量将具有最低整体辐照度,至少在该实施例中,最低整体辐照度是从环境100中距照明设备504的任意最外发光表面662上的任意点1.5m处的任何暴露表面或无遮蔽点处测得的,且该最低整体辐照度等于.01mw/cm2、.02mw/cm2、.05mw/cm2、.1mw/cm2、.15mw/cm2、.20mw/cm2、.25mw/cm2、.30mw/cm2或大于.01mw/cm2的一些其他值。在其他实施例中,可以从环境100中的距任意最外发光表面662上的任意点的不同距离处、最低点处或一些其他暴露表面或点处测量最低整体辐照度。

同时,由灯具600且更特别地由每个发光元件612提供或输出的光是具有上述性质的白光,使得所提供的光对于人类而言是美学上令人满意的或至少不令人反感的。这是因为光转换元件657提供的光,即第二分量,补充了led656发出的且在没有变化的情况下穿过光转换元件657的消毒光,即第一分量。

与灯具500一样,灯具600可以基于或响应于来自本地控制器618的命令或指令提供或输出光。这些命令或指令可以在以下情况下生成:基于或响应于占用情况传感器获得的占用情况数据和/或日光传感器获得的日光数据,和/或基于或响应于从灯具600的用户处(如经由客户端设备70)和/或从服务器66处接收的命令或指令。因此,灯具600可以响应于占用情况传感器获得的占用情况数据、日光传感器获得的日光数据和/或其他命令或指令(如,时间设置)来提供光。

图11a示出了照明设备1100输出的辐射功率的分布的一个实施例,该照明设备采用本文所述的照明设备104、200、500、600中任何一个的形式。如图11a中所示,沿照明设备100的光分布的中心轴线1104的辐射功率为最大值,而沿与中心轴线1104呈角度θ定向的线1108的辐射功率等于最大辐射功率值的50%,只要沿中心轴线1104的辐射功率与沿线1108的辐射功率是在距与照明设备1100相等的距离处测得的。在该变型中,线1108与中心轴线1104以等于20或30度的角度θ定向,但在其他变型中可以以不同的角度θ定向。

将要理解的是,取决于指定应用,照明设备诸如本文描述的照明设备104、200、500、600、1100中的一个可以以许多不同的方式在环境100内或贯穿整个环境来分布光。照明设备可以例如利用朗伯分布1120、不对称分布1140、有切除部分的射灯式分布1160或直接-间接分布1180,分别如图11b至图11e中所示。

图11b中所示的朗伯分布图1120采用二维极图的形式,描绘了随着与水平线呈竖向角α变化的从照明设备输出的光的强度的量级m。如图11b所示,朗伯分布图1120包括沿竖向平面通过0-180度的水平角测量的第一光分布1124、沿竖向平面通过90-270度的水平角测量的第二光分布1128以及沿竖向平面通过180-0度的水平角测量的第三光分布1132。如第一光分布、第二光分布和第三光分布1124、1128和1132中的每一个所示,光强度的量级m在竖向角α等于0度(即,最低点)时处于最大值(在该实施例中为5240坎德拉),使得与最高量级的竖向角对应的主光束角等于0度。然后量级m随着竖向角α从0度移动至90度而减小。

图11c中所示的不对称分布图1140同样采用二维极图的形式,描绘了随着与水平线呈竖向角α变化的从照明设备输出的光的强度的量级m。如图11c中所示,不对称分布图1140包括沿竖向平面通过0-180度之间的水平角测量的第一光分布1144,以及沿竖向平面通过90-270度之间的水平角测量的第二光分布1148。如第一光分布和第二光分布1144、1148所示,光不对称地分布在照明设备的一侧,其中,光强度的量级m在竖向角α等于25度时处于最大值(在该实施例中为2307坎德拉),使得对应于最高量级的竖向角α的主光束角等于25度。例如可以在以手术台为特征的环境100中利用这种分布,使得将来自照明设备的光的主光束引向手术台。

图11d中所示的具有切除部分的射灯式分布图1160也采用二维极图的形式,描绘了随着与水平线呈竖向角α变化的从嵌入式照明设备中输出的光的强度的量级m。如图11d中所示,该分布图1160包括沿竖向平面通过0-180度之间的水平角测量的第一光分布1164、沿竖向平面通过90-270度之间的水平角测量的第二光分布1168以及沿通过20度的竖向角α的水平圆锥测量的第三光分布1172。如第一、第二和第三光分布1164、1168和1172所示,光强度的量级在水平角为60度且竖向角α等于20度时为最大值(在该实施例中为2586坎德拉),并且在45度以上存在非常低的光强度(即,灯被关闭)。因此,对应于最高量级的竖向角α的主光束角等于20度,使得这种分布适合于例如需要偏离中心但对称的分布的应用。这类分布通常允许相邻照明设备之间的间距较大,同时使光相对均匀地投射在地面上。

图11e所示的直接-间接分布图1180也采用二维极图的形式,描绘了随与水平线呈竖向角α变化的从照明设备输出的光的强度的量级m。如图11e中所示,分布图1180包括沿竖向平面通过90-270度之间的水平角的第一光分布1184,以及沿竖向平面通过180-0度之间的水平角测量的第二光分布1188。如第一和第二光分布1184和1168所示,光强度的量级m在水平角为90度且竖向角α等于117.5度时为最大值(在该实施例中为1398坎德拉),并且大部分(如,约80%)的光被指引向上,正如竖向角α在90度至270度之间光强度较大这一事实所表明的。因此,与最高量级的竖向角α对应的主光束角等于117.5度,使得这种分布适合于以下应用:例如照明设备从天花板悬吊下来并且利用天花板向环境提供光,天花板又向环境提供低亮度光。

图11f至图11i各自描绘了分别详述朗伯分布、不对称分布、具有切除部分的射灯式分布和直接-间接分布1120、1140、1160和1180的光通量(测量单位为流明)的图表。更具体地,每个图表详述了对于竖向角α的各个区域在相应分布1120、1140、1160和1180的立体角内发光强度的汇总(即,光通量)。

图12描绘了在一时间段(如24小时)内提供足够剂量的光以使整个立体空间(如环境100)内的危险病原体(如mrsa细菌)失活的一种方法1200的流程图。方法1200按所示的顺序实施,但也可以根据或按照许多不同的顺序实施。方法1200可以包括附加的、更少的或不同的动作。例如,在动作1205中接收的第一、第二、第三和/或第四数据可以在动作1220之前的不同时间被接收,在不同的时间接收数据构成不同的动作。再如,在执行动作1220之前可以将动作1205、1210和1215重复许多次。

方法1200在接收到与立体空间相关联的数据时开始(动作1205)。该数据可以包括:(i)与立体空间的期望照度水平相关联的第一数据,(ii)指示预定时间段内立体空间的估计占用情况的第二数据,(iii)指示立体空间的长度、宽度和/或高度的第三数据(长度、宽度和/或高度中的一个或多个可以是默认值,因此无需提供),以及(iv)指示立体空间的优选cct(相关色温)的第四数据。虽然在该变型中第一、第二、第三和第四数据被描述为同时接收,但这些数据可以在不同的时间接收。期望的照度水平将根据应用和立体空间的大小变化,但可以例如为40-60fc、100-125fc、200-300fc或一些其他的值或值的范围。预定时间段内立体空间的估计占用情况通常与每天立体空间被占用的时间量有关。像期望的照度水平一样,占用的时间量将根据应用变化,但可以为4小时、6小时、8小时、12小时或一些其他时间段。立体空间的优选cct也将根据指定应用变化,但可以例如在约1500k至7000k之间的范围内,更特别地在约1800k至5000k之间。

方法1200包括确定待安装在立体空间中的一个或多个灯具的布置结构(动作1210)。虽然在所示方法中这种确定是基于第一数据的,但可以基于第一数据、第二数据、第三数据和/或第四数据的组合来进行这种确定。一个或多个灯具的布置结构通常包括本文所述的灯具中任一种的一个或多个,如灯具200、灯具500、灯具600和/或一个或多个其他灯具(如,被配置成发出仅消毒光的一个或多个灯具)。因此,一个或多个灯具的布置结构被配置成至少部分地提供或输出(如发出)具有380nm至420nm之间的波长的、更特别地400nm至420nm之间的波长的消毒光。在一些情况下,该一个或多个灯具还可以被配置成至少部分地提供具有大于420nm的波长的光,使得灯具的组合或混合光输出比其他情况的光输出在美学上更令人满意或不令人反感。一个或多个灯具的布置结构还可以包括用于引导消毒光的装置,诸如例如定位在灯具内或外部的一个或多个反射器、一个或多个漫射器以及一个或多个透镜。一个或多个灯具的布置结构可以可选地包括用于管理该一个或多个灯具生成的热的装置,使得可以保护该一个或多个灯具中的热敏部件。用于管理热的装置可以例如采用一个或多个散热器的形式,和/或可以涉及利用切换电路,当采用了利用两个发光设备的灯具时,该切换电路防止发光设备的两个电路在使用期间同时通电。在一些情况下,可以增加热熔断体,用以防止灯具过热。

方法1200还包括确定待经由一个或多个灯具向立体空间施加的总辐射功率,以便在一时间段内在立体空间内的任意暴露表面(即,无遮蔽表面)处产生期望的功率密度(动作1215)。虽然在所示的方法中这种确定是基于第二数据和第三数据的,但可以基于第一数据、第二数据、第三数据和/或第四数据的组合来进行这种确定。如上所述,期望的功率密度可以为或包括等于.01mw/cm2、.02mw/cm2、.05mw/cm2、.1mw/cm2、.15mw/cm2、.20mw/cm2、.25mw/cm2、.30mw/cm2或大于.01mw/cm2的一些其他值的最低整体辐照度。可以从立体空间中的任意无遮蔽点处、距照明设备的任意最外发光表面1.5m的距离处、最低点或立体空间中的一些其他点或表面处测量该最低整体辐照度。这样,可以有效地使立体空间中的危险病原体失活。

在一个实施例中,可以根据下述公式确定待向立体空间施加的总辐射功率:总辐射功率=(最低整体辐照度(mw/cm2)*持续时间(一天的部分))/立体空间的体积(ft3),其中,持续时间表示每天立体空间被占用的时间量,并且其中,通过将立体空间的长度、高度和宽度相乘来计算立体空间的体积。

在一些情况下,如当一个或多个灯具的布置结构包括能在不同模式下运行的一个或多个灯具诸如灯具500时,可以针对每种模式计算总辐射功率,然后求和以产生待向立体空间施加的总辐射功率。

确定待向立体空间施加的总辐射功率后,可以将所确定的总辐射功率与实际已测量消毒水平的其他应用(即,其他立体空间)进行比较,以便验证所确定的用于该立体空间的总辐射功率足以使危险病原体失活。

然后方法1200包括将确定的灯具装置安装在立体空间中(动作1220),该安装可以以任何已知方式进行,使得可以经由该一个或多个灯具向立体空间施加所确定的总辐射功率。方法1200可选地包括经由该一个或多个灯具向立体空间施加所确定的总辐射功率的动作(动作1225)。通过在不使用任何光敏剂或反应剂的情况下施加所确定的总辐射功率会在该时间段内在立体空间内产生期望的功率密度。转而,在指定的时间段内,特定布置和配置的灯具使立体空间内的危险病原体失活。

在一些情况下,动作1225还可以涉及控制该一个或多个灯具,这可以经由通信地连接至灯具的一个或多个控制器(如控制器120、控制器520)进行。更具体地,可以控制或调节消毒光(即,具有400nm至420nm之间的波长的光)的波长、强度、带宽或一些其他参数。可以响应于从相对于该一个或多个灯具远程地定位的中央控制器接收的控制信号和/或响应于从灯具的用户或操作员接收的输入(如经由其中一个客户端设备70输入),如在该一个或多个控制器经由一个或多个传感器检测到消毒光的波长、强度、带宽或一些其他参数偏离时,自动地进行该控制或调节。在一个实施例中,可以响应于(如经由图像控制器)接收到的和/或检测到的新的或更改的第一、第二、第三和/或第四数据来控制该一个或多个灯具。在任何情况下,这种控制或调节有助于维持期望的功率密度,使得该一个或多个灯具继续有效地使整个立体空间内的危险病原体失活。

将会理解的是,立体空间的大小可以根据指定的应用变化。例如,立体空间可以具有高达且包括25,000ft3(707.92m3)的体积。在一些情况下,立体空间可以部分地由该一个或多个灯具的平面和该立体空间的地板平面限定或界定。例如,立体空间可以部分地由以下区域限定:在该一个或多个灯具的平面下方.5m与该立体空间的地板平面上方24英寸(60.96cm)之间延伸的区域,或者在该一个或多个灯具的平面下方1.5m与该立体空间的地板平面上方24英寸(60.96cm)之间延伸的区域。可替代地,立体空间可以由距该一个或多个灯具的平面和/或该立体空间的地板平面的不同距离的区域限定。

最后,将会理解的是,方法1200的动作1205、1210、1215、1220和1225可以由与立体空间相关联的服务器66,其中一个客户端设备70,一些其他机器或设备,人诸如用户、技师、管理员或操作员,或他们的组合实施。

图13示出了示例性控制设备1325,经由该控制设备可以实施本文论述的其中一些功能。在一些变型中,控制设备1325可以是相对于图1论述的服务器66、相对于图2论述的本地控制器120、相对于图2论述的剂量反馈系统124、相对于图9d论述的本地控制器520、本地控制器618或本文描述的任何其他控制部件(如控制器)。通常,控制设备1325是专用机器、设备、控制器等等,包括硬件和软件部件的任何组合。

控制设备1325可以包括处理器1379或其他类似类型的控制器模块或微控制器,以及存储器1395。存储器1395可以存储能够促进本文所述的功能的操作系统1397。处理器1379可以与存储器1395对接,以执行操作系统1397和一组应用1383。该组应用1383(存储器1395也可以将其存储)可以包括照明设置应用1381,该照明设置应用被配置成生成用以实施各种照明设置的命令或指令并且将这些命令/指令传输至一组照明设备。要理解的是,该组应用1383可以包括一个或多个其他应用1382。

通常,存储器1395可以包括一种或多种形式的易失和/或非易失的固定存储器和/或移动存储器,诸如只读存储器(rom),电子可编程只读存储器(eprom)、随机存取存储器(ram)、可擦电子可编程只读存储器(eeprom)和/或其他硬盘驱动器、闪存、microsd卡和其他。

控制设备1325还可以包括通信模块1393,该通信模块被配置成与一个或多个外部端口1385对接,以经由一个或多个网络1316(如,其可以采用网络74中的一个或多个的形式)传送数据。例如,通信模块1393可以利用外部端口1385建立wlan,以将控制设备1325连接至一组照明设备和/或一组桥接设备。根据一些实施方案,通信模块1393可以包括一个或多个收发器,该一个或多个收发器按照ieee标准、3gpp标准或其他标准进行运作,并被配置成经由一个或多个外部端口1385接收和传输数据。更特别地,通信模块1393可以包括被配置成将控制设备1325连接至wan、pan和/或lan的一个或多个无线或有线wan、pan和/或lan收发器。

控制设备1325还可以包括被配置成向用户呈现信息和/或接收来自用户的输入的用户接口1387。如图13所示,用户接口1387包括显示屏1391和i/o部件1389(如,电容式或电阻式触摸输入面板、键、按钮、灯、led、光标控制设备、触觉设备和其他的)。

通常,根据实施方案的计算机程序产品包括其中包含有计算机可读程序代码的计算机可用存储介质(如,标准随机存取存储器(ram)、光盘、通用串行总线(usb)盘等等),其中,计算机可读程序代码适于由处理器1379执行(如与操作系统1397协作),以促进本文描述的功能。在这一点上,程序代码可以以任何期望的语言进行实施,并且可以实施为机器代码、汇编代码、字节代码、可判读源代码等等(如,经由c、c++、java、actionscript、objective-c、javascript、css、xml和/或其他实施)。

在整个说明书中,复数实例可以实施描述为单个实例的部件、操作或结构。虽然一个或多个方法的各个操作被示出和描述为分离的操作,但各个操作中的一个或多个可以同时执行,并且不需要按照所示顺序执行操作。在示例性配置中呈现为分离的部件的结构和功能可以实施为组合结构或部件。类似地,呈现为单个部件的结构和功能可以实施为分离的部件。这些和其他的变型、修改、增加和改进都落入本文主题的范围内。

如本文所用,任何提到“一个实施方案”或“一实施方案”都指关于该实施方案描述的特定元件、特征、结构或特性包括在至少一个实施方案中。在说明书的不同地方出现的词组“在一个实施方案中”不一定全部指同一实施方案。

可能使用表达“耦合”和“连接”及其派生词描述一些实施方案。例如,可能使用术语“耦合”来描述一些实施方案,以指示两个或多个元件为直接物理接触或电接触。然而,术语“耦合”还可以指两个或多个元件彼此未直接接触,但仍然彼此协作或相互作用。实施方案不限于本上下文。

本文所用术语“包括(comprises)”、“包括(comprising)”、“包含(includes)”、“包含(including)”、“具有(has)”、“具有(having)”或其任何其他变型均意为非排他性地包括。例如,包括一系列元件的过程、方法、物体或装置不一定仅限于这些元件,而是可以包括未明确列出的其他元件或这些过程、方法、物体或装置固有的元件。此外,除非明确有相反说明,否则“或”意指包含性的而非排他性的“或”。例如,下述中任意一种均可以满足条件a或b:a为真(或存在)且b为假(或不存在),a为假(或不存在)且b为真(或存在),以及a和b均为真(或存在)。

另外,使用“一(a)”或“一(an)”是用于描述本文实施方案的元件和部件。这仅仅是为了方便并且给出描述的一般含义。本说明书以及所附的权利要求应理解为包括一个或至少一个,且单数也包括复数,除非其明显表示其他的意思。

本详细描述的说明书理解为示例,并未描述每个可能的实施方案,因为即使有可能,描述每个可能的实施方案也是不切实际的。使用当前的技术或本申请的提交日期之后开发的技术可以实施各种替代实施方案。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1