脱氧铸造、铝铸造和铸造设备的制作方法

文档序号:3251289阅读:144来源:国知局
专利名称:脱氧铸造、铝铸造和铸造设备的制作方法
背景技术
本发明涉及脱氧铸造、铝铸造和一种铸造设备。
已知有许多种铸造方法,如重力铸造、低压铸造、压铸、挤压铸造、触变铸造。在任何一种铸造方法中,都要将熔融金属浇注到铸造模型的型腔中,固化该金属成预定形状。可根据熔融金属的材料和需铸造的产品选择铸造方法。
许多种类的产品都是铸造产品。在铸造形状复杂或性能高的产品情况下,必须确保型腔中填满熔融金属,不会形成铸造缺陷,达到规定的强度,防止变形,并具有良好的外形。
铝和铝合金广泛用作熔融金属材料。在铝铸造时,铝易形成氧化膜。由于在熔融铝的表面形成了氧化膜,熔融金属的表面张力变得更大,因此降低熔融金属的流动性和焊接性质,有时还会产生铸造缺点。为解决这些缺点,已经研究了许多方面的改进,如润滑剂、浇注方式、浇注速度、浇注压力。
例如,在重力铸造和低压铸造中,通过涂布绝热脱模剂,调整浇口排列等,可以减慢熔融金属的温度下降,从而抑制因熔融金属表面形成氧化膜而导致的熔融金属流动不良、皱缩、冷隔等毛病。在压铸中,通过调整浇注速度,浇注压力、浇口排列等,可以高压在短时间内填入熔融金属。在挤压铸造中,可在其重力铸造阶段大大提高震颤压,使氧化膜以破碎和熔化。
然而,常规的铸造方法存在一些缺点,目前尚没有很完善的方法。尤其是,熔融金属接触铸造模型型腔内表面时形成的氧化膜,会在产品表面形成裂纹和冷隔现象,氧化膜使熔融金属不能充分填入模型。在飞机和机动车的铸件情况,其表面应力和破损部分会严重影响安全性等,因此需采用荧光探伤的方式检验每个铸造产品。所以,产品的制造成本必定很高。而且,不能保证产品的质量和可靠性。
不仅在铝的铸造,而且在其它材料的铸造中也会出现氧化膜问题。
发明概述本发明目的旨在解决熔融金属表面产生的氧化膜所引起的问题。
本发明的一个目的是提供一种脱氧铸造的方法,这种方法可以防止在熔融金属表面形成氧化膜,改善其对铸造模型型腔内表面的润湿性,能以高的铸造效率铸造出高质量产品。
本发明第二个目的是提供实施上述方法的脱氧铸造设备。
本发明的脱氧铸造方法包括下列步骤令一种金属气体与一种活性气体起反应形成的脱氧化合物与熔融金属反应;使熔融金属表面上的氧化膜脱氧。
根据熔融金属选择用于金属气体的金属。例如,由镁气体与氮气反应形成的氮化镁(Mg3N2)可以用作有效的脱氧化合物,该化合物可使熔融金属表面形成的氧化膜脱氧。镁在室温至高温范围稳定,并容易升华。所以,镁适合用于这种方法。氮化镁化合物的高脱氧性能,能使熔融金属表面的氧化膜有效脱氧。
本发明的脱氧铸造涉及这种方法,即能使熔融金属表面上形成的氧化膜脱氧,生成纯的熔融金属。所以,在用易形成氧化膜的熔融金属进行铸造的情况下,本发明方法能够使氧化膜有效脱氧,并以纯熔融金属良好地进行铸造。
通过使熔融金属表面上的氧化膜脱氧,熔融金属的表面张力下降,流动性提高,其对铸造模型型腔内表面的润湿性也提高。由于是纯熔融金属接触型腔的内表面,它能在铸造模型中容易流动,即提高了熔融金属的流动性能,可以确保熔融金属填入型腔,直到其细小的空间。
在有一种常规铸造方法中,是使用润滑剂或绝热脱模剂来保持铸造模型在高温,从而保持熔融金属的流动性。本发明方法中,熔融金属的流动性更高,不需要润滑剂或绝热脱模剂。因此,铸造模型的制造和调整更方便,铸造效率更高。
常规铸造方法中,对铸造模型加热至高温,用以保持熔融金属的流动性。将熔融金属浇注到加热的铸造模型中。通过冷却该模型来使熔融金属固化。而本发明方法中,熔融金属的流动性很高,因此不必加热铸造模型。所以,熔融金属可以在短时间内固化,可以快速固化获得产品,产品的韧性高,可防止产品的变形如缩斑(sink mark)和伸长,因此产品质量高。铸造模型可以在室温下使用。
常规的重力铸造中,在铸造模型中形成一补缩冒口,熔融金属借助其本身重量从补缩冒口引入型腔。本发明中,熔融金属在铸造模型中的流动性很高,因此可减少补缩冒口的容积。常规模型中,补缩冒口的容积占模型容积的50-60%。本发明方法中,由于熔融金属的流动性较高,补缩冒口的容积可减小到只占铸造模型容积的10-20%。所以,能有效地使用熔融金属,并使铸造模型容易制造。通过减小补缩冒口容积,可加速熔融金属的固化,缩短铸造周期,提高铸造效率。而且,本发明中,产品容易和铸造模型分离,因此能迅速取出产品,提高铸造效率。
有两种使熔融金属与脱氧化合物在铸造模型型腔中反应的方法。一种方法包括下列步骤在铸造模型外面形成脱氧化合物;将脱氧化合物引入型腔;将熔融金属浇注到型腔中。另一种方法包括下列步骤在铸造模型型腔内形成脱氧化合物;在型腔中浇注熔融金属。
脱氧化合物沉积在型腔内表面上,使其与熔融金属反应。为了将脱氧化合物有效地沉积在型腔内表面上,将制备脱氧化合物用的金属进行蒸发获得金属气体,令其与活性气体如氮气进行反应。
脱氧化合物可以自外引入型腔,也可以在型腔内形成,在该型腔内先要是无氧气氛,以免脱氧化合物的脱氧功能降低。产生无氧气氛的办法是先对型腔抽气,然后通入惰性气体,从中将空气吹扫掉等办法。
本发明的方法可恰当用于铝或铝合金作为熔融金属的铸造。在铝铸造中,使镁气体和氮气反应产生的氮化镁与熔融铝反应,就能容易地使熔融铝表面形成的氧化膜脱氧。在铝铸造的情况下,在熔融金属表面易于形成氧化膜。通过氮化镁使氧化膜脱氧,可制造高质量的产品。
在铝铸造中,也有两种使熔融金属和脱氧化合物在铸造模型型腔内反应的方法。一种方法包括下列步骤首先使镁气体和氮气反应形成氮化镁;将氮化镁化合物引入型腔;在该型腔内浇注熔融金属。另一种方法包括下列步骤将镁气体和氮气分别引入铸造模型型腔,形成氮化镁化合物;在该型腔内浇注熔融铝。氮化镁化合物是一种脱氧化合物,它先沉积在包含一个型芯的型腔内表面上,然后在其中浇注熔融铝。当熔融铝接触型腔内表面时,通过脱氧化合物的脱氧功能,从熔融铝表面的氧化膜除去氧,使熔融铝表面为纯的铝。
当熔融铝接触型腔内表面时,就通过脱氧作用除去熔融铝表面上形成的氧化膜,因此可以防止在产品表面形成的皱缩和表面缺陷。尤其在铸造产品形状复杂时,过去是不能消除表面缺陷的。然而,用本发明方法,由于纯熔融铝的高润湿性和毛细管现象,可以铸造出没有表面缺陷的优良产品。
在型腔中制备氮化镁的情况下,首先将镁气体引入型腔,然后在其中引入氮气。镁是在惰性气体如氩气或一种脱氧气体如氢中加热,直到镁升华,制得镁气体的。将镁气体引入型腔。镁气体是和一种非氧化载气一起引入的。适当调节载气的压力和流量。载气宜为惰性气体如氩。镁在700-850℃升华后,依靠载气能方便地将镁气体引入型腔。
在型腔中引入镁气体时,型腔应处于无氧气氛中。为产生无氧气氛,型腔可预先抽空或用氮气吹扫等办法。除去型腔中的氧后,将镁气体均匀引入型腔。
镁气体引入型腔后,在该型腔中再引入氮气,形成氮化镁化合物。氮化镁化合物主要以粉末形式沉积在型腔内表面上。
在型腔中通入氮气时,适当调节氮气的压力和流量。为了促进氮气与镁气体反应,可以预热氮气来加热铸造模型。反应时间可为5-90秒。如果反应时间太长,铸造模型的温度下降,因此合适的反应时间为15-60秒。
在型腔中通入氮气制备氮化镁时,重要的是要防止氮化镁与铸造模型反应。因为熔融金属将直接接触型腔内表面,熔融金属的表面状况对产品表面状况的影响很大。所以,氮化镁化合物的脱氧作用必须作用于型腔内表面。
型腔内表面不可和氮化镁化合物反应。如果在型腔内表面上存在容易和氮化镁化合物反应的氧自由基等,在将熔融金属浇注到型腔之前,脱氧功能就丧失了。所以,在型腔内表面上涂布氧化材料如润滑剂、脱模剂是不合适的。型腔内表面上可以涂布非氧化性材料如石墨。还可以将金属表面暴露于型腔内表面而不涂布润滑剂等。露出的金属表面可经加热或氮化处理。氮化镁化合物存在于型腔内表面上时,在该型腔中浇注熔融金属,在型腔内表面上的氮化镁化合物就与熔融金属反应,除去氧化膜的氧,即使氧化膜脱氧。通过该反应,使熔融铝的润湿性加大,在型腔内表面上的流动性更高,使毛细管现象有效。由于熔融金属表面已成为纯的铝,产品具有优良的外形,没有皱缩和表面缺陷。
附图简述通过举例方式并参考附图描述本发明。


图1是本发明第一个实施方案的脱氧铸造设备的示意图。
图2A是铸造模型连接部分的剖面图;图2B是连接部分的正视图;图3是本发明第二个实施方案的脱氧铸造设备的示意图;图4是本发明第三个实施方案的脱氧铸造设备的示意图;图5是另一个铸造模型例子的剖面图;图6是镁进料机构的示意图;图7是炉子另一例子的示意图;图8是炉子另一例子的示意图;图9是本发明第四个实施方案的脱氧铸造设备的示意图;图10是本发明第五个实施方案的脱氧铸造设备的示意图;图11是本发明第六个实施方案的脱氧铸造设备的示意图;图12是本发明第七个实施方案的脱氧铸造设备的示意图;图13是熔融金属和脱氧化合物反应方式的示意图;图14是储存在储器中的熔融金属反应方式的示意图;图15是本发明方法所制产品表面的显微照相图;图16是采用常规方法所制产品表面的显微照相图。
较好实施方案的详细描述下面参见附图详细描述本发明的一些较好实施方案。
首先,说明本发明的基本原理。使脱氧化合物和熔融金属反应的方法有很多。例如,可以使脱氧化合物在铸造模型的浇注口,在熔融金属通过其浇注时与熔融金属反应,或使脱氧化合物在浇包中和熔融金属反应,或使脱氧化合物在储存有熔融金属的储器中和熔融金属反应。图13中,在铸造模型200的浇注口的边缘形成进口202和204。镁气体和氮气分别引入浇注口,使这些气体与浇注到震颤口(purring mouth)的熔融金属反应。氮化镁化合物是一种脱氧化合物,在浇注口中形成,氮化镁化合物可以和熔融金属反应。用这种结构,当熔融金属浇注到铸造模型中时,在熔融金属表面形成的氧化膜可以脱氧,因此可以铸造高质量的产品。
图13中,熔融金属储存在一个浇包208中。向浇包中的熔融金属加入脱氧化合物,可使熔融金属表面的氧化膜脱氧即除去。脱氧化合物还可以加到一储器中的熔融金属中。
图14所示为脱氧化合物和熔融金属反应的另一个例子。熔融金属206盛在储器210中。脱氧化合物在一鼓泡部件212中形成,鼓泡部件的下端浸在熔融金属206中,通入熔融金属206。向鼓泡部件212通入镁气体和氮气形成脱氧化合物,该脱氧化合物通入熔融金属206中,使熔融金属206表面的氧化膜脱氧除去。由于除去了氧化膜,熔融金属的流动性较高,可以铸造高质量的产品。
图15是采用本发明方法铸造的铝产品表面的显微照相图,;图16是采用常规方法铸造的铝产品表面的显微照相图。图16中,在产品表面观察到皱缩。而图15中采用本发明方法铸造的产品,它具有非常光滑的表面,没有皱缩。
下面,参见图1-5,说明本发明的一些实施方案。这些实施方案中,镁气体和氮气分别引入型腔形成脱氧化合物,然后,将熔融金属浇注到该型腔中。
图1所示是第一实施方案的铸造设备的大概。铸造模型12连接到一储器14。通过活塞16的向上运动,从储器14流出规定量的熔融铝18。熔融金属表面暴露在型腔12a的内表面上。氮气钢瓶20通过管道22连接到铸造模型12。打开阀24将氮气通入该铸造模型。氩气钢瓶25通过管道26连接到炉子28。打开阀30将氩气通入炉子28。加热器32对炉子28进行加热。炉中温度上升到800℃或更高温度,以便使镁粉升华。
氩气钢瓶25通过管道34还连接到罐36,在该罐中储存有镁粉,管道34上有阀33。罐36通过管道38连接到管道26,管道38的末端连接到在阀30之后的管道26。在管道38上装有阀40。炉子28通过管道42和44连接到铸造模型12,管道44贯穿活塞16。管道42上装有阀45。
图2A和2B所示是与管道22连接的铸造模型12的连接部分13。
如图2A所示,连接部分13形成一锥形内孔,其内径向外逐渐增大。装在管22前端的锥形连接活塞(未示出)可拆卸地连接到连接部分13。连接部分13通过一些通风孔15连接到型腔12a。
下面说明采用铸造设备10实施的铸造方法。
首先,打开阀24,通过管道22将氮气从钢瓶20引入铸造模型12。引入了氮气,就吹扫或排出铸造模型12内的空气。在铸造模型12的上部有一些通风孔(图中未示出),从这些通风孔排出空气,使得在铸造模型12内是无氧气氛。从铸造模型12吹扫出空气后,阀24立刻关闭。在从铸造模型吹扫出空气的同时打开阀30,使氩气通入炉子28,在炉子28中也产生无氧气氛。
之后,关闭阀30,打开阀40,借助氩气压力将储存在罐36中的镁粉通入到炉子28中。此时,通过流量调节器调节氩气的流量和压力。由于使用加热器加热炉子28至800℃或更高温度,通入的镁粉就升华,产生了镁气体。
然后,关闭阀40,打开阀30和45,通过管道42和44将镁气体引入铸造模型12。此时,调节氩气的流量和压力。镁气体引入铸造模型12后,关闭阀45,打开阀24,将氮气引入铸造模型12。由于氮气引入铸造模型12,镁气体就和氮气在铸造模型12的型腔12a中反应,产生氮化镁化合物(Mg3N2)。氮化镁化合物以粉末形式沉积在型腔12a的内表面上。
在这种状态下,活塞16向上运动,令储存在储器14中的熔融金属浇注到铸造模型12中。浇注到铸造模型12的熔融铝18与沉积在型腔12a内表面上的氮化镁化合物反应。通过该反应,氮化镁化合物从熔融铝18表面上形成的氧化膜除去氧,因此使熔融铝表面脱氧,形成纯铝表面。留在铸造模型12或包含在熔融铝18中的氧,会成为氧化镁或氢氧化镁,包含在熔融铝18中。氧化镁或氢氧化镁的量很少,对铝产品不会有不良影响。
由于沉积在型腔12a内表面上的氮化镁化合物从形成在熔融铝18表面的氧化膜除去了氧,当铝固化时获得纯铝,这样就能铸造铝,而不会形成氧化膜。金属表面与型腔12a的内表面接触,使氮化镁化合物固定在型腔12a的内表面上,没有损失,所以能确保对熔融金属的脱氧。型腔12a内表面的表面状况对产品的外形有极大影响,由于能确保氮化镁化合物的形成并固定在型腔12a的内表面上,因此能铸造良好外形的产品。
氮化镁化合物能防止在熔融铝18表面形成氧化膜,使熔融金属18的表面张力较小,改善熔融金属18的润湿性、流动性、操作性能和光滑度。所以,可铸造没有皱缩的高质量铝产品。
应注意到这个实施方案中,氮气从气体钢瓶20引入型腔12a,排出在型腔12a内的空气。可以使用惰性气体如氩气代替氮气,来排出空气。排出空气,是为了防止氮化镁化合物和氧在型腔12a中反应。
为了从型腔12a排出空气,将氮气或氩气引入型腔12a。还可以通过真空泵52对型腔12a抽出空气,在型腔12a内产生无氧环境。这种情况下,打开阀19,通过管道17对型腔12a抽空,然后,关闭阀19,将镁气体引入型腔12a(见图1)。
将氮气引入型腔12a,在其中产生氮化镁化合物时,同时对型腔12a通入氩气,氩气作为镁气体的载气。但型腔12a中有一些通风孔,当浇注熔融金属18时这些通风孔将空气排出,使型腔12a内的压力在浇注熔融金属18后逐渐下降。由于压力降低,新鲜空气会侵入型腔12a。为防止空气侵入,打开阀24,在倒入熔融金属18时从气体钢瓶20向型腔12a提供氮气。氮气供应量等于排出空气量和生成氮化镁化合物消耗的氮气量的总和。根据供给型腔12a的镁气体量可知消耗的氮气量。通过在管道22上的流量计21和阀24控制氮气供应量。
上述实施方案中,本发明方法应用于重力铸造。本发明的脱氧铸造法不限于重力铸造。
现参见图3说明本发明的第二个实施方案。铸造模型12由上模部分50和压模部分51组成。即本发明方法可应用于高压铸造。与第一实施方案中说明的重力铸造的铸造模型不同,第二实施方案的铸造模型12的气密性较高。
第二实施方案中,管道53从管道22分支出来,管道22将氮气钢瓶20连接于铸造模型12,管道53连接于降压泵52。在管道22的中部装有阀54。型腔12a有一管道55连接到外面,管道55上装有阀56。
在此实施方案的铸造设备中,首先关闭阀24和56,打开阀54,然后开动降压泵52,对铸造模型12抽空,在其中产生无氧环境。同时,氩气从钢瓶25引入炉子28,阀33打开,氩气进入罐36,将镁粉从罐36送入炉子28。镁粉在炉子28中升华,产生镁气体。在关闭阀54和56的情况下,阀45打开,将镁气体和氩气一起引入铸造模型12。
之后,关闭阀56,打开阀24和54,将氮气从钢瓶20引入铸造模型12。氮气引入铸造模型12后,镁气体和氮气相互反应,氮化镁化合物粉末沉积在型腔12a的内表面上。
在此情况下,通过压模部分51向上运动,熔融铝浇注进入型腔12a中。此时,在型腔12a内表面包括上模部分50的内表面和压模部分51的内表面上,覆盖有氮化镁化合物,和第一实施方案一样,铸造时可以防止在熔融铝18表面形成氧化膜。
此实施方案中,型腔12a的内表面经热处理形成四氧化三铁。图3中,符号12b代表四氧化三铁热处理层。四氧化三铁层与型腔12a内表面上的氮化镁化合物不会发生反应。所以,可以保持氮化镁化合物的脱氧功能,使熔融铝18上的氧化膜有效脱氧。除进行了上述热处理外,型腔12a的内表面还可以有效地进行氮化处理。要浇注熔融铝18时,压模部分51加压,打开阀56,方便地浇注熔融铝18。
现参见图4说明第三个实施方案的铸造设备10。上述那些实施方案中,是在铸造模型外面制得镁气体的。而在第三个实施方案中,如图4所示,在铸造模型12底部提供加热部分32a,它包括导热部件71、用于加热导热部件71的加热器72和用于防止热量传导到铸造模型12从而保持导热部件温度在800℃或更高的隔热器73。用这种结构,镁可以在铸造模型12内升华,即在铸造模型12内产生镁气体。
本实施方案中,铸造模型12的型腔12a通过降压泵52抽空,或通过在型腔12a内通入惰性气体如氩气从型腔12a吹扫出空气。然后,对在铸造模型12的型腔12a内的镁加热使其升华,并将氮气从钢瓶20引入型腔12a,使氮化镁化合物沉积在型腔12a的内表面上。
型腔12a的内表面上预先涂布了一种非氧化性材料12c。当形成氮化镁化合物时,该非氧化性材料12c不会和氮化镁化合物反应,可以保持氮化镁的脱氧功能。当熔融铝18浇注到铸造模型12中时,在熔融铝表面形成的氧化膜被脱氧除去,因此是用纯铝进行铸造。由于是用纯铝铸造,可以铸造出没有皱缩和表面缺陷的高质量产品。
现参见图5说明铸造模型12的另一个例子,这种铸造模型有一个镁气体进口和一个氮气进口。铸造模型12中,活塞16装在浇口11a中,能够在垂直方向运动。浇口11a通过浇注通道11b连接到型腔12a。镁气进口44a连接到浇注通道1 1b的中部和管42。在管座23a和23b之间形成型腔12a,这两个管座是垂直排列的。在管座23a和23b中装有氮气进口22a和/或抽气孔17a。管座23a和23b以及型腔12a通过一些连接通道15相连。镁气进口44a、氮气进口22a和抽气孔17a中的一个用作通风孔为宜,以便当熔融金属18浇注进入型腔12a时从其排出空气。
此实施例的铸造模型12中,氮气通过氮气进口22a引入型腔12a,从该型腔12a吹扫出空气,然后,镁气体和氩气载气通过镁气进口44a一起引入型腔12a,在该型腔12a内形成氮化镁化合物。在预先对型腔12a抽空的情况下,可通过抽气孔17a进行。
如图5所示,镁气体和氮气是通过不同途径引入铸造模型12的型腔12a的,因此可防止管22和42被沉积物封闭,易于维护,提高铸造效率。
图6-8所示为其它例子,其中,金属如镁蒸发,蒸发的金属气体通入铸造模型的型腔中。
图6中,一固定量的镁粉供给到炉子28中。储存有镁粉的罐120通过管道122连接到炉子28,管道122上装阀124和126,在阀124和126之间为固定量的储存段128。固定量的储存段为圆柱形,通过调节其长度和/或内径来控制储存在其中的镁粉量。
镁粉从固定量储存段128供给炉子28。首先,关闭阀124,打开阀126,氩气从钢瓶25通入罐120,从罐120向固定量储存段128提供一固定量的镁粉。然后,关闭阀33,打开阀30和124,将镁粉引入炉子28。此时,通过流量计129观察从钢瓶25送出的氩气量和压力。采用上述结构,可确保将镁粉供给炉子28。
图7中,外壳100由隔热材料组成,其上面敞开。炉子28的炉腔101由耐热材料组成。盖102覆盖在炉腔101上,用螺钉103将其固定到法兰104上。在炉腔101和外壳100之间有加热器105,对炉腔101进行加热。
盖102上有三个开口部分106、107和108,它们连接到炉腔101。一根引入管109连接到管26,管26连接到罐36,引入管109穿过开口部分106进入炉腔101。引入管109的下端敞开,位于炉腔101底部附近。热电偶110穿过开口部分107进入炉腔101。排出管111连接到管42,该管连接到铸造模型12,排出管111穿过开口部分108。管111的上端位于炉腔101之上,对空气敞开。
用耐热材料制成的六块板112a-112f平行排列,在垂直方向上相隔预定的距离。引入管109穿过板112a-112f上钻出的通孔。引入管的下端位于炉腔101底部和最下面的板112a之间的空间中是开口的。
在最下面的板112a上钻有一个通孔114a,与引入管109隔开。板112a-112f分别有通孔114a、114b和114,这些通孔在垂直方向交错排列。
在板112b底面上装有一隔板116b。隔板116b将板112a和112b之间的空间分成两部分一部分连接通孔114a;另一部分连接通孔114b。注意,在隔板116b的底面和板112a的上表面之间有一小的间隙。所以,这两部分是通过该小间隙相互连通的。在相邻板112b-112f之间的空间中都有隔板116,在这些空间中也有小的间隙。
在炉腔101内可以制备镁气体。首先,借助氩气压力通过管道226和109将镁粉从罐36供给到炉腔101中。由于镁粉很轻,镁粉和氩气一起喷射到炉腔101的下部,并在上面分散。但是,炉内空间被板112a-112f隔成交错空间,当镁粉在交错空间中上升时,镁粉就升华,形成镁气体,需要一定时间才能充分地升华全部镁粉。在炉子28中,炉腔101内的空间垂直分成多个子空间,镁粉和氩气一起进入炉腔101的最下面的子空间,因此镁粉的分散受到限制,需要一定的时间上升这些镁粉。用这种结构,镁粉能完全加热并且充分升华,不会有镁粉通过管道111进入到铸造模型12中。炉子28中的镁气体和氩气一起供给到铸造模型的型腔12a中,氩气用作载气。
图8中,镁片140供给到炉子28中,在炉内熔化并蒸发,产生的镁气体通入铸造模型12的型腔。在炉子28上部形成锁气室142,锁气室为气密的,储存着镁片140。规定量的镁片140下落进入炉子28。是打开闸板144,使镁片从锁气室142进入炉子28中的。镁片140在炉子28内熔化。规定量的镁片供给到锁气室142中后,关闭盖子146,从钢瓶25将氩气引入锁气室142。然后,锁气室中的空气从排出管148排出,在锁气室142中产生无氧气氛。炉子28中的镁气体和氩气一起供给到铸造模型12的型腔中,氩气来自钢瓶25,用作载气。
现参见图9-11,说明第四至第六个实施方案,各实施方案中,镁气体和氮气在铸造模型12的外面预先反应,产生氮化镁化合物(Mg3N2),将氮化镁化合物引入型腔中后,熔融金属浇注到型腔中。
第四个实施方案的铸造设备10示于图9。铸造模型12连接到一储器14,其中储存有熔融金属18。通过活塞16的向上运动,规定量的熔融铝18浇注进入铸造模型12。氮气钢瓶20通过管道22连接到铸造模型12。打开阀24,将氮气引入铸造模型12,吹扫铸造模型12中的空气。气体钢瓶20通过管道26连接到炉子28,打开阀30,将氮气引入炉子28。加热器32加热炉子达到800℃或更高温度,使镁粉升华。气体钢瓶20通过管道34连接到罐36,罐中储存有镁粉。罐36通过管38连接到管26上阀30的位于炉子28的那部分。管38上装有阀40。炉子28通过管道42和44连接到铸造模型12,管44穿过活塞16伸入铸造模型12中。将管22连接到铸造模型12的连接部分13的结构与图2所示第一个实施方案相同。
现说明在铸造设备10中实施的脱氧铸造法。
首先,打开阀24,将氮气从钢瓶20经管道22引入铸造模型12,直到铸造模型12中充满氮气。铸造模型12的空气被吹扫通过通风孔(未示出)排出。然后,打开阀30,将氮气引入炉子28。
之后,关闭阀24和30,并将管22的连接活塞与连接部分13分开。打开阀40,从罐36将镁粉和氮气一起通入炉子28。镁粉在炉子28中升华,镁气体和氮气反应,使得氮化镁化合物气体经管道42和44引入铸造模型12。氮化镁化合物以粉末形式沉积在铸造模型12型腔12a的内表面上。
然后,活塞16向上运动,将熔融铝18浇注进入铸造模型12。熔融铝18和氮化镁化合物在铸造模型12的型腔12a的内表面上反应,氮化镁化合物从熔融铝表面形成的氧化膜除去氧,熔融铝成为纯铝。一些留在型腔或包含在熔融铝18内的氧变成氧化镁或氢氧化镁,但仍包含在熔融铝18中。氧化镁和氢氧化镁的量很少,而且是化学稳定的化合物,因此,它们不会对铝产品有不良影响。通过通风孔(未示出)将过量气体排出到铸造模型12之外。
如上所述,氮化镁化合物从熔融铝18表面上形成的氧化膜除去氧,而留在型腔内或包含在熔融铝18中的氧变成氧化镁或氢氧化镁,并包含在熔融铝18中。所以,在熔融铝18的表面不存在氧化膜。
由于没有氧化膜,所以熔融铝的表面张力不会变大,提高了熔融铝18的流动性、操作性能和润湿性,可以铸造平滑度很高的高质量铝产品。
对铸造模型12中的氮化镁化合物的量和密度没有限制。氮化镁化合物的密度即使较低,氮气和氮化镁化合物仍能充满铸造模型12,可以极大降低铸造模型12中氧的量,防止形成氧化膜。
氮气不必预先通入铸造模型12。就是说,可将氮气和氮化镁化合物直接通入铸造模型12,从其中排出空气。
在第四个实施方案中,本发明的脱氧铸造应用于重力铸造。本发明方法不限于这一实施方案。
现参见图10说明第五个实施方案。高压铸造的铸造模型12包括上模部分50和压模部分51。与图9所示的第四个实施方案不同,图10所示的铸造模型12具有较高的气密性。铸造模型12的型腔12a通过管道53连接到降压泵52,而不是与用于引入氮气的管道22(见图9)相连。管55将型腔12a连接到铸造模型12的外面。在管52和55上分别有阀54和56。
本实施方案中,打开阀54,关闭阀56,从铸造模型12抽出空气,产生无氧环境,然后在铸造模型12中沉积氮化镁化合物。这种情况下,氮化镁化合物沉积在铸造模型12中时,同样未开始脱氧,使得氮化镁化合物能有效用于熔融金属18表面形成的氧化膜的脱氧。注意到,进行高压浇铸时可以打开阀56,以便使熔融金属18容易地浇注进入铸造模型12中。
现参见图11说明第六个实施方案。储存着镁粉的罐36连接到炉子28,氮气钢瓶20和氩气钢瓶25连接到炉子28上。连接到罐36和钢瓶25的管道26以及连接到钢瓶20的管道22都延伸到靠近炉子28底部的内表面。管22和26的22a和26a在炉子28中延伸。管42将炉子28连接到铸造模型12,该管的下端在炉子28上部敞开。
在第六个实施方案中,首先打开阀24和45,通过管22和42,将氮气引入炉子28和铸造模型12中,吹扫炉子28和铸造模型12内的空气或排出空气。然后,立刻关闭阀24和45。注意,通过打开阀30并引入氩气,可吹扫炉子28和铸造模型12内的空气。
之后,关闭阀30,打开阀33、40和45,将镁粉从罐36与氩气一起供给到炉子28中。同时,打开阀24,将氮气引入炉子28。炉子28在800℃或更高温度下加热,使镁粉升华。通入该炉子28的镁粉升华产生镁气体,因此,镁气体和氮气反应形成氮化镁化合物,这种化合物是脱氧化合物的一个例子。氩气作为载气将氮化镁化合物送入铸造模型12的型腔,氮化镁化合物以粉末形式沉积在型腔内表面上。
在氮化镁化合物沉积在型腔内表面上的同时,将熔融铝浇注进入该型腔。在型腔中,熔融铝和氮化镁化合物在型腔内表面上反应,结果在铸造的同时使熔融铝表面形成的氧化膜脱氧。
现参见图12,说明第七个实施方案,该实施方案中,产生镁气体的装置与反应室如炉子28是分开的。产生镁气体装置150的主要部分151由绝热材料制成。通过加热器32a将主要部分151加热至800℃或更高温度。管道26连接到储存有镁粉的罐,氩气罐连接到主要部分151。主要部分151通过管152连接到炉子28。氮气钢瓶20通过管道22连接到炉子28。
此实施方案中,镁粉借助氩气经管道26供给到产生镁气体的装置150中。进入的镁粉加热升华,产生镁气体。镁气体经管道152通入炉子28。,管道152最好通过加热器154加热,以保持镁气体的温度。
氮气经管道22通入炉子28。打开管道152和22,这两个管道在炉子28内相对,使镁气体和氮气在炉子28内相互碰撞。通过将镁气体和氮气引入炉子28,这两种气体就反应,形成氮化镁化合物(脱氧化合物)。
用加热器33保持炉子28的高温,以便加速两种气体的相互反应,将活性脱氧化合物引入高温的铸造模型12的型腔12a中。所以,脱氧化合物能有效地用于熔融金属。较好的是,将炉子28就装在铸造模型12上,使得与型腔12a的距离很近。连接通道156将炉子28连接到铸造模型12的浇口或靠近型腔12a的某个部分。由于熔融金属与脱氧化合物反应后立即进入型腔12a,熔融金属在型腔12a中的流动性提高,因此可有效地铸造熔融金属。
上述这些实施方案中,是纯铝用作熔融金属,但是其它金属材料,如包含硅、镁、铜、镍的铝合金,都可用作铸造金属。本发明中,“铝”这个词包括铝合金。
除了铝和铝合金外,其它金属如镁、铁及它们的合金也可按照本发明方法铸造。
本发明可包括其它不偏离本发明精神或其基本特征的具体形式。因此,在此的一些实施方案只用于说明,不构成对本发明的限制,由权利要求书而不是前面的描述确定的本发明范围和在权利要求书的意义和等价范围内的所有变化都包括在权利要求书中。
权利要求
1.一种脱氧铸造方法,该方法包括下列步骤通过一种金属气体和一种活性气体反应制得的脱氧化合物与熔融金属反应;使熔融金属表面上的氧化膜脱氧。
2.如权利要求1所述的方法,其特征在于所述脱氧化合物是通过分别将所述金属气体和所述活性气体引入铸造模型的型腔,使这两种气体反应制得,并将熔融金属浇注到型腔中进行铸造。
3.如权利要求2所述的方法,其特征在于所述金属气体和所述活性气体经引入孔分别引入型腔12a,这些孔形成在铸造模型中并和型腔连通。
4.如权利要求2所述的方法,其特征在于所述脱氧化合物沉积在铸造模型的型腔内表面上。
5.如权利要求2所述的方法,其特征在于使用惰性气体作为载气,用于将所述金属气体引入铸造模型的型腔。
6.如权利要求2所述的方法,其特征在于所述气体是在型腔中产生无氧气氛后被引入铸造模型的型腔。
7.如权利要求6所述的方法,其特征在于通过对铸造模型型腔进行抽空来产生所述无氧气氛。
8.如权利要求6所述的方法,其特征在于通过在模型的型腔中引入惰性气体并从其中吹扫出空气产生所述无氧气氛。
9.如权利要求2所述的方法,其特征在于所述型腔用一种气体增压,该气体在该型腔内与所述脱氧化合物反应,然后将熔融金属浇注到增压的型腔中。
10.如权利要求1所述的方法,其特征在于所述金属气体和所述活性气体在铸造模型的外面反应制得脱氧化合物,再将所述的脱氧化合物引入铸造模型的型腔,然后在该型腔中浇注熔融金属。
11.如权利要求10所述的方法,其特征在于一种作为载气的惰性气体将脱氧化合物引入铸造模型型腔中。
12.如权利要求10所述的方法,其特征在于在型腔中产生无氧气氛,然后将所述脱氧化合物引入该型腔。
13.如权利要求12所述的方法,其特征在于通过对铸造模型型腔进行抽空来产生无氧气氛。
14.如权利要求12所述的方法,其特征在于通过在型腔内引入一种惰性气体并从该型腔吹扫出空气来产生无氧气氛。
15.如权利要求10所述的方法,其特征在于所述型腔用一种气体增压,该气体在该型腔内与所述脱氧化合物反应,然后将熔融金属浇注到增压的型腔。
16.如权利要求1所述的方法,其特征在于当熔融金属浇注到型腔中时,所述脱氧化合物与熔融金属反应,使熔融金属表面的氧化膜脱氧。
17.一种铸造铝的方法,该方法包括下列步骤通过镁气体和氮气反应制得的氮化镁化合物与熔融铝反应;使熔融铝表面上的氧化膜脱氧。
18.如权利要求17所述的方法,其特征在于所述氮化镁化合物是通过分别将所述镁气体和所述氮气引入铸造模型的型腔,使这两种气体反应制得,并将熔融金属浇注到型腔中进行铸造。
19.如权利要求18所述的方法,其特征在于使用氩气作为载气,用于将所述镁气体引入铸造模型的型腔。
20.如权利要求17所述的方法,其特征在于所述镁气体和所述氮气在铸造模型的外面反应制得氮化镁化合物,再将所述的氮化镁化合物引入铸造模型的型腔,然后在该型腔中浇注熔融铝。
21.如权利要求20所述的方法,其特征在于使用氩气作为载气,用于将所述镁气体引入铸造模型的型腔。
22.一种脱氧铸造的设备,在其中镁气体和氮气反应制得的氮化镁化合物与熔融铝反应,并通过氮化镁化合物使熔融铝表面的氧化膜脱氧,该设备包括有型腔的铸造模型,在其中浇注熔融铝,铸造出预定形状的铝;用于将氮气引入型腔的装置;用于通过加热和升华镁来产生镁气体的炉子;用于将镁气体从所述炉子和载气一起引入所述铸造模型型腔,以便镁气体和氮气在型腔内反应制得氮化镁化合物的装置。
23.一种脱氧铸造设备,在其中镁气体和氮气反应制得的氮化镁化合物与熔融铝反应,并通过氮化镁化合物使熔融铝表面的氧化膜脱氧,该设备包括有型腔的铸造模型,在其中浇注熔融铝,铸造出预定形状的铝;与所述铸造模型分开的反应室;用于将氮气和镁引入所述反应室的装置;用于将氮化镁化合物和载气一起引入型腔的装置,该氮化镁化合物是在所述反应室中通过加热和升华镁产生的镁气体与氮气反应制得。
全文摘要
本发明的脱氧铸造方法能够使熔融金属表面形成的氧化膜脱氧,改善与铸造模型型腔内表面的润湿性,以高的铸造效率铸造高质量的产品。本发明的脱氧铸造方法包括下列步骤通过一种金属气体和一种活性气体反应制得的脱氧化合物与熔融金属反应;使熔融金属表面的氧化膜脱氧。
文档编号B22D21/00GK1400071SQ0112505
公开日2003年3月5日 申请日期2001年7月31日 优先权日2001年7月31日
发明者伴惠介, 荻原晃一 申请人:日信工业株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1