用于成形cigs/cis太阳能电池的混浊氧化锌膜的制作方法

文档序号:3413920阅读:149来源:国知局
专利名称:用于成形cigs/cis太阳能电池的混浊氧化锌膜的制作方法
技术领域
本发明总体上涉及光伏材料和制造这样的材料的方法。本发明提供了一种基于包含铜铟二硫化物物种(铜铟二硫物质,copper indium disulfide species)的吸收材料 (absorber material)用于形成具有混浊(模糊,hazy)透明导电氧化物(TCO)层的薄膜光伏电池的方法和结构。
背景技术
在制造CIS和/或CIGS型薄膜的工艺中,存在各种制造难题,例如,保持衬底(基板,substrate)材料的结构完整性、确保薄膜材料的均勻性和粒度。虽然过去的常规技术已经解决了这些问题中的一部分,但它们经常在不同情形下是不充分的。因此,期望具有用于制造薄膜光伏装置(光伏器件,photovoltaic device)的改进系统和方法。

发明内容
本发明提供了一种用于形成薄膜光伏电池的方法和结构,尤其是在成形太阳能电池上方形成混浊的氧化锌薄膜。该方法包括提供一定长度的管状玻璃衬底(长管状玻璃衬底,a length of tubular glass substrate),该管状玻璃衬底具有内径、外径、被吸收层覆盖的圆周外表面区域((cumferencial outer surface region)以及经过该长度覆盖(上覆,overlying)该吸收层的窗口缓冲层(window buffer layer)。该管状玻璃衬底具有在内径内并且经过该管状玻璃衬底的长度插入的基本上共心(co-centered)的圆柱形加热棒。将该管状玻璃衬底保持在0.1托至约0.02托范围的真空环境中。然后,引入来源于二乙基锌物种(二乙基锌物质,diethylzinc species)和水物种(水物质,water species) 的反应物物种的混合物和载气。另外,以受控流速将乙硼烷物种引入反应物物种的混合物中。然后通过圆柱形加热棒加热气体,导致形成覆盖窗口缓冲层的氧化锌膜。优选地,该氧化锌膜具有0. 75-3 μ m的厚度、5%或更大的浊度(雾度,haziness)、以及约2. 5毫欧-厘米(mohm-cm)或更小的电阻率。在一个可替换的实施方式中,一种用于形成薄膜光伏装置的方法包括,提供包括表面区域的成形衬底构件以及在该表面区域上方形成第一电极层。在第一电极层上方形成包含铜物种、铟物种和硒化物物种的吸收材料,然后在该吸收材料上方形成包含硒化镉物种的窗口缓冲层。最后,利用包含锌物种和氧物种以及惰性载气的前体气体来形成覆盖窗口缓冲层的厚度为约0. 75至3微米的氧化锌层。在形成氧化锌层和氧化锌层的长时间退火(持续退火,extended annealing)期间,成形衬底构件的整个表面区域基本上均勻地保持在高于约130摄氏度的温度下,由此导致在氧化锌层内产生混浊的表面光学特性和约3000 埃至约5000埃的总体(平均,bulk)颗粒尺寸(晶粒大小,grain size)。本发明使得薄膜级联光伏电池(thin film tandem photovoltaic cell)能够利用常规设备制造。本发明以节省成本的方式、振动能量(冷能,trie energy),提供了与常规光伏电池相比具有改善的转化效率的薄膜光伏电池。


图1是示出了在成形的衬底上制造薄膜光伏装置的方法的工艺流程图;图2-6是示出了在成形的衬底上制造薄膜光伏装置的方法的放大剖视图;以及图6A和6B是示出了根据本发明实施方式的用于制造薄膜光伏装置的成形衬底加载构造的图示。
具体实施例方式本发明提供了一种用于形成薄膜光伏电池的方法和结构,尤其是一种在成形太阳能电池上方的混浊氧化锌薄膜。图1是示出了根据本发明一个实施方式在管状玻璃衬底上形成光伏电池的方法的简化工艺流程图。如图所示,该方法起始于开始步骤(步骤102)。 提供这样的成形玻璃衬底,该成形玻璃衬底具有通过长度、内径和外径表征的圆柱形管形状。圆周表面区域由长度和外径限定。在一个具体实施方式
中,管状玻璃衬底是钠钙玻璃 (soda lime glass),然而,也可以使用包括熔融硅石和石英的其他透明材料。其他成形衬底包括圆柱形棒、球、半圆柱形瓦、以及非平面或甚至弯曲的箔。在管状玻璃衬底的圆周表面区域上方形成第一电极层(步骤106)。在一个具体实施方式
中,第一电极层是钼材料/合金。取决于应用,也可以使用其他电极材料,如透明导电氧化物材料或金属。该方法进一步包括在第一电极层上方形成吸收层(步骤108)以及在吸收层上方形成窗口缓冲层(步骤110)。在一个具体实施方式
中,吸收层是铜铟镓二硒化物CIGS材料或铜铟二硒化物CIS材料,而窗口缓冲层是硫化镉或氧化锌。将管状玻璃衬底,包括在其圆周表面区域上形成的吸收层和窗口缓冲层,加载到室(反应室,chamber)中(步骤112),优选地具有插入在管状玻璃衬底的内径内并延伸穿过其长度的基本上共轴的圆柱形加热棒。该圆柱形加热棒可以是固体电阻加热器以从内向外将辐射/传导热提供给管状玻璃衬底。在另一个实施方式中,圆柱形加热棒可以是其内具有流动热流体的中空内部和可以与管状玻璃衬底的内表面形成紧密接触以从内向外均勻提供热能的可膨胀表面的纺锤体(锭子,spindle)。将管状玻璃衬底引入到通过将室抽吸到低于0. 1托的压力的真空环境(步骤 114)。然后,在受控流速和监控室的压力下,将来源于含锌物种和水物种的反应物物种的混合物和载气引入到室中(步骤116)。可以通过二乙基锌气体、或通过其他类型的含锌化学材料来提供含锌物种。在一个具体实施方式
中,该方法利用所选流速将乙硼烷物种引入到反应物物种的混合物中。乙硼烷物种充当用于获得膜的期望电性能的掺杂剂。取决于室的构造和管状衬底的加载机制,反应物物种的气态混合物和掺杂剂物种基本上均勻地分布在整个管状玻璃衬底的圆周外表面区域中。在另一个实施方式中,管状玻璃衬底可以以这样的方式加载,即,使其可以旋转从而允许整个圆周表面区域均勻地暴露于分布的反应物物种和掺杂剂物种的气态混合物。在一个具体实施方式
中,该方法包括将热能从圆柱形加热棒向外传递到管状玻璃衬底的工艺(步骤118)以均勻地保持预定的温度。该工艺可以在将包括锌物种、水物种、 乙硼烷物种的反应物物种的混合物,连同载气一起引入到室中之前、期间、以及之后开始。 在一个实施方式中,将表面区域保持在大约为约130摄氏度至约190摄氏度范围的温度。 在另一个实施方式中,将衬底保持在高于约200摄氏度的温度下。加热棒可以利用可调节 DC电流通过电阻加热方法进行加热。在一个实施方式中,加热棒具有其分别通过密封帽 (覆盖管状玻璃衬底的末端)的两个电引线。在另一个实施方式中,加热棒还可以是携带热流体并具有可膨胀表面的纺锤体。一旦插入到管状玻璃衬底的内腔中,该纺锤体的可膨胀表面可以与管状玻璃衬底的内表面形成实体紧密接触以提供有效的热传递。这些工艺还适用于以基本上相同的方式将多个管状玻璃衬底一起进行加载。取决于应用,可以将管状玻璃衬底加热至期望的温度,用于在覆盖圆周外表面区域的暴露窗口缓冲层上引发化学反应,其中反应物物种和掺杂剂物种的气态混合物均勻地分布在整个圆周外表面区域上。在一个具体实施方式
中,引起薄膜形成工艺的化学反应是一种基于金属-有机化学气相沉积 (MOCVD)技术的工艺。而且,本文中优选的方法包括用于在窗口层(window layer)上方(在管状玻璃衬底的外表面区域上)形成氧化锌膜的工艺(步骤120)。步骤120包括用于形成氧化锌膜的 MOCVD沉积工艺、以及在沉积之后的热处理工艺。在一个具体实施方式
中,在其最终形式中氧化锌膜具有0. 75-3 μ m的厚度、5%或更大的浊度、以及约2. 5毫欧-厘米或更小的电阻率。氧化锌膜是覆盖窗口缓冲层的透明导电氧化物材料。该方法实施其他步骤(步骤122) 以完成光伏电池。该方法结束于结束步骤(步骤124)。以上步骤的顺序提供了一种根据本发明一个实施方式的形成光伏装置的方法,并且包括氧化锌膜的部分透明导电层。氧化锌膜优选具有约5%或更大的光学浊度。“混浊” 是通过氧化锌膜的表面微观形态和总体颗粒结构由入射光的散射而引起的表面的宏观外观。“浊度”可以认为是对于膜本身对其敏感的光的波长,透射光的散射分量与通过部分透明的导电氧化物层透射的光的总量的比率。入射光的散射分量至少部分地仅被改变方向但仍然透射到膜中(未被反射)。穿过膜的光的总透射率可以大于约99%。氧化锌膜进一步通过其约2. 5毫欧-厘米或更小的电阻率和较少用于制造光伏装置进行表征。当然,取决于实施方式,可以增加、删除、或以不同顺序实施这些步骤而没有背离本文中权利要求的范围。图2-6是示出了根据本发明实施方式的在成形衬底上形成薄膜光伏装置的方法的简化图。如图2所示,提供了包括表面区域204的成形衬底构件202。该图示出了衬底构件的放大件使得实际形状不可见,相反其由小的平板表示。成形衬底构件可以是诸如钠钙玻璃、石英、熔融硅石、或太阳能玻璃的玻璃材料。 成形衬底构件优选为通过该截面图中的内径和外径以及长度(未示出)表征的管状形状。 当然,取决于期望的应用,可以使用其他形状。成形衬底构件可以包括沉积在表面区域上的阻挡层(隔离层,barrier layer)(未明确地示出)。阻挡层可以防止来自钠钙玻璃的钠离子扩散到形成在其上的光伏薄膜中。阻挡层可以是利用物理气相沉积技术例如溅射工艺, 或包括等离子体增强工艺的化学气相沉积工艺等沉积的介电材料如氧化硅。还可以使用其他阻挡材料。取决于实施方式,适合的阻挡材料包括氧化铝、氮化钛、氮化硅、氧化钽、氧化,告。如图3所示,所述方法包括形成覆盖成形衬底构件的表面区域的第一电极层302, 该成形衬底构件可以具有在其上形成的阻挡层。可以利用透明导电氧化物(TCO)如氧化铟锡(通常称为ΙΤ0)、氟掺杂的氧化锡等来提供第一电极层。在某些实施方式中,通过金属如钼或合金来提供第一电极层。可以利用沉积技术如溅射、电镀、物理气相沉积(包括蒸发、 升华)、化学气相沉积(包括等离子体增强工艺),接着图样化(图案化,patterning)工艺来沉积钼。对于CIG或CIGS基薄膜光伏电池来说,钼相对于其他材料提供了优势。尤其是, 钼具有低的接触电阻以及在后续加工步骤期间的膜稳定性。在一个实施方式中,通过沉积覆盖成形衬底构件的第一钼层来形成钼(层)。第一钼层具有第一厚度和拉伸应力特性。具有压缩应力特性和第二厚度的第二钼层形成在第一钼层上方。然后,如所示,可以进一步对两个钼材料层进行图样化。钼材料的沉积和图样化的进一步的细节可以参见共同转让的于2008年9月30日提交的临时美国专利申请号 61/101,646和非临时美国专利申请号12/567, 698以及2008年9月30日提交的美国临时申请号61/101,650,将其结合于此以供参考。如图4所示,在第一电极层的表面区域上方形成吸收层402。吸收层可以是薄膜半导体材料,例如,通过铜铟二硫化物材料、铜铟镓二硫化物材料、铜铟二硒化物材料、或铜铟镓二硒化物材料,以及这些材料的组合提供的P型半导体材料。通常,利用诸如硼或铝物种的掺杂剂来提供P型特性。可以通过包括硫化或硒化步骤的诸如溅射、电镀、蒸发的技术来沉积吸收层402。吸收材料的形成的进一步的细节可以参见共同转让的临时美国专利申请号 61/059,253 和题为"High Efficiency Photovoltaic Cell and Manufacturing Method”的非临时申请号12/475,858,将其结合于此以供参考。在吸收层的表面区域上方沉积窗口缓冲层502(参考图幻以形成光伏膜叠层 (photovoltaic film stack),用于形成光伏电池的pn结。在一个具体实施方式
中,窗口缓冲层利用硫化镉材料用于使用CIGS、CIS和有关材料作为吸收层的光伏电池。尤其可以使用诸如溅射、真空蒸发、化学浴沉积的技术来沉积窗口缓冲层。窗口缓冲层是在形成窗口层之前形成的层。在一个实施方式中,窗口层经常利用宽带隙η型半导体材料用于ρ型吸收层。在一个具体实施方式
中,窗口层具有对于光伏太阳能电池适合的光学特性和适合的电性能。例如,可以使用通过MOCVD技术沉积的透明导电氧化物如氧化锌材料。参照图6,所述方法包括提供一个或多个管状玻璃衬底602。该管状玻璃衬底包括具有上覆第一电极层的圆周外表面区域。薄膜吸收层覆盖第一电极层并且窗口缓冲层覆盖薄膜吸收层。如所示的,将一个或多个管状玻璃衬底602以以下方式(使用加载工具616) 加载到室604中,其使得管状玻璃衬底602与穿过其长度从一端延伸到另一端的插入在管状玻璃衬底602的内径内的加热棒612共心(共轴心,co-centered)。加热棒612通过直接传导或辐射,通过利用DC电流的电阻加热而将热能提供给管状玻璃衬底的圆周外表面区域提。加热棒612还可以是内部携带热流体并且具有(一旦插入到管状衬底中)形成紧密接触以提供有效的热传递的可膨胀表面的纺锤体。仅仅作为一个实例,在管状成形衬底上形成混浊氧化锌膜期间,利用共心的加热棒提供了一种简单且有效的工艺构造,用于递送对于将管状玻璃衬底保持在特定高反应温度所需要的热能。可替换地,加热棒可以用作机械纺锤体以与电动机轴耦合从而在薄膜沉积期间驱动管状衬底602的旋转。可以使用其他加热方法,如利用特别构造的微波室以对特定成形衬底构件包括圆柱形、管状、球形、或其他非平面形状提供均勻的反应温度和退火温度。室604包括内部容积606,该内部容积606可以构造成允许多个管状玻璃衬底以上述基本上相同的方式进行加载。在一个优选的实施方式中,将共心的加热棒插入到多个管状玻璃衬底602每一个中。室604还连接泵送系统608以提供合适的真空水平。如图所示,室604连接一个或多个气体管线610和各种辅助设备如气体混合器620以及喷淋头分配器622,以引入一种或多种气态前体物种,用于形成覆盖窗口层的具有一定程度的浊度的透明导电氧化物材料614。如图6所示,在一个具体实施方式
中,以线性方向注入一种或多种气态物种,同时旋转管状衬底以允许均勻沉积。参照图6A,示出了根据本发明一个实施方式的一种可替换的衬底/气体分配器构造的简化剖视图。如所示的,多个气体管线610与多个管状衬底602(每个通过共心棒612 保持和加热)一起相互交叉分布。每个气体管线在径向方向上分配各物种的混合物并且每个管状衬底602可以旋转以在薄膜沉积期间在衬底的圆周外表面区域周围获得期望的剂量。参照图6B,提供了一种用于气体分配的可替换的配置。如所示的,将一组管状衬底加载到至少具有位于多个气体管线610附近的一个部分的旋转台640上,该气体管线610 在基本上一个维度方向上(左边)在附近朝向一个或多个管状衬底注射气体。加载在平台 640上的每个管状衬底602可以具有以适当转速(rpm)自旋以允许其圆周表面均勻地暴露于注射气体。排气装置608可以安装在平台的中心部分附近并且基本上防止气体的一维流动到达不同于气体管线附近的几个的其余管状衬底。在另一个具体实施方式
中,气体前体物种包括含锌物种、含氧物种、掺杂剂物种、 以及至少一种载气。在一种实施中,所述室还可以耦合至连接于一个或多个加热装置612 的电源630,从而提供用于沉积包括前体和掺杂剂材料的薄膜的适当反应温度以及用于在沉积以后处理该薄膜的适当退火温度。在另一种实施中,该室通过连接至加热装置612的管道儿耦合于流动热流体源630以供应热能。再次参照图6,将该室连同管状玻璃衬底一起抽吸降压至在约0. 1托到约0. 02托范围的压力。利用气体管线将反应物或前体物种的混合物引入到室中。对于氧化锌材料, 反应物物种的混合物可以包括利用载气提供的二乙基锌材料和含氧物种。在一个具体实施方式
中,含氧物种可以为水蒸气。取决于实施方式,二乙基锌材料可以作为半导体级气体、 或催化剂级气体提供。优选地,将水与二乙基锌的比率控制为大于约1到约4。在另一个实施方式中,水与二乙基锌的比率为约1,同时载气可以为惰性气体如氮、氩、氦气等。在某一个实施方式中,来源于乙硼烷物种的含硼物种也可以作为用于形成薄膜的掺杂剂材料以所选流速连同反应物的混合物一起引入。硼掺杂在用于CIGS/CIS基光伏电池的混浊氧化锌TCO材料中提供合适的电导率。取决于应用,也可以使用其他含硼物种,如硼卤化物(例如,三氯化硼、三氟化硼、三溴化硼)、或硼氢卤化物。可以以0至约5%的乙硼烷与二乙基锌的比率提供乙硼烷物种。在一个具体实施方式
中,乙硼烷与二乙基锌的比率为约1%。
取决于实施方式,在沉积前体加掺杂剂材料期间,所述室可以处于在约0. 5托到约1托的压力下。在一个具体实施方式
中,在沉积期间,衬底保持在约130摄氏度到约190 摄氏度范围内的温度下。在一个可替换的实施方式中,衬底可以保持在约200摄氏度的温度,并且可以更高。在一个优选的实施方式中,共心加热棒612在整个圆周外表面区域上对管状成形玻璃衬底提供均勻的加热。提供的均勻衬底温度和以适当选择的流速供应的掺杂剂物种引起形成具有期望表面形态以及适当总体颗粒结构的氧化锌膜。相应地,对于氧化锌膜来说,该表面形态和总体颗粒结构都有助于合适的光透射性以及导电特性。在一个具体实施方式
中,取决于含硼物种的水平和在适当的衬底温度范围,形成的氧化锌膜可以具有在约3000埃至约5000埃范围的总体颗粒大小。基本上结晶的膜的表面形态通过在其表面区域内的多个显微三角形面或锥体来表征。显微粗糙的表面区域包括约百分之几的氧化锌膜总厚度(在0. 75至约3 μ m范围)。具有面微小结构的粗糙表面形态和适当的总体颗粒结构都有助于通过散射或扩散入射光的宏观混浊外观。沿每个光路,光散射引起增强的光子捕获和潜在增强的光电转化效率。在一个具体实施方式
中,期望的浊度为约5%或更大,而对于波长范围在约800纳米至约1200纳米范围内的入射光来说,总光透射率为80% 或更大,并且优选为90%或更大。在另一个实施方式中,入射光穿过氧化锌膜的总透射率接近99%或更大。另外,含硼物种降低所形成的氧化锌膜的电阻率特性。取决于含硼物种的掺杂水平,在一个具体实施方式
中,以上形成的氧化锌膜可以具有约2. 5毫欧-厘米或更小的电阻率,这对于CIGS/CIS基光伏电池来说是期望的电特性。而且,粗糙的表面形态和在约3000 埃至约5000埃范围的总体颗粒尺寸都提供了导致形成用于制造光伏电池的适合薄层电阻的期望结构。虽然已经利用具体的实施方式描述了本发明,但应当理解可以实现对本发明中利用的方法的各种改变、更改、和变形,而没有偏离如在所附权利要求中限定的本发明的精神和范围。例如,举例说明了管状成形衬底。本发明可以采用以规则或不规则形状、平面或非平面形状、刚性或柔性机械特性、透明或非透明(对于可见光)光学特性等的其他衬底。在一个实例中,举例说明了使用硼作为掺杂剂物种的氧化锌材料。也可以使用其他掺杂剂如氢、铝、铟、镓等。此外,虽然上文已经就CIS和/或CIGS薄膜光伏电池的具体层压结构进行了一般描述,但也可以使用其他特定CIS和/或CIGS薄膜构造,如在美国专利号4,612,411 和美国专利号4,611,091中提及的那些构造(将其结合于此以供参考),而没有偏离通过本文的权利要求描述的本发明。此外,根据本发明的实施方式可以应用于其他薄膜构造如通过金属氧化物材料、金属硫化物材料或金属硒化物材料提供的那些薄膜构造。
权利要求
1.一种用于制造成形薄膜光伏装置的方法,所述方法包括提供一定长度的管状玻璃衬底,所述管状玻璃衬底具有内径、外径、被吸收层覆盖的圆周外表面区域和覆盖所述吸收层的窗口缓冲层;使所述管状玻璃衬底处于约0. 1托至约0. 02托的真空环境中;将来源于二乙基锌物种、水物种的反应物物种的混合物和载气引入到所述真空环境中;将乙硼烷物种弓丨入到所述反应物物种的混合物中;加热管状玻璃衬底;以及形成覆盖所述窗口缓冲层的氧化锌膜,所述氧化锌膜具有0. 75-3 μ m的厚度、至少5% 的浊度和小于约2. 5毫欧-厘米的电阻率。
2.根据权利要求1所述的方法,其中,所述氧化锌膜进一步的特征在于约3000埃至约 5000埃的平均颗粒尺寸。
3.根据权利要求1所述的方法,其中,所述二乙基锌物种包括二乙基锌蒸气。
4.根据权利要求1所述的方法,其中,所述水物种包括水蒸气。
5.根据权利要求1所述的方法,其中,所述载气包括惰性气体。
6.根据权利要求1所述的方法,其中,所述反应物物种中水与二乙基锌的比率在约1到约4之间。
7.根据权利要求1所述的方法,其中,所述乙硼烷与二乙基锌的比率为约0至约5%。
8.根据权利要求1所述的方法,其中,利用所选流速引入所述乙硼烷物种包括将乙硼烷与二乙基锌的比率控制在约1%。
9.根据权利要求1所述的方法,其中,将所述管状玻璃衬底加热至在约130摄氏度至约 190摄氏度的温度范围。
10.根据权利要求1所述的方法,其中,将所述管状玻璃衬底保持在高于约200摄氏度的温度下。
11.根据权利要求1所述的方法,其中,传递一定量的热能包括加热棒的电阻加热。
12.根据权利要求1所述的方法,其中,所述加热棒包括携带流动的热流体和可膨胀表面的纺锤体,所述可膨胀表面构造成在插入以后与所述管状玻璃衬底的内表面形成紧密接触。
13.根据权利要求1所述的方法,其中,具有约5%或更大浊度的所述氧化锌膜具有 90%或更大的总光透射率。
14.根据权利要求1所述的方法,其中,具有约5%或更大浊度的所述氧化锌膜对于波长为约800纳米至约1200纳米的电磁辐射具有80%或更大的透射率。
15.根据权利要求1所述的方法,其中,引入反应物物种的混合物将所述室的压力增大至约0. 5至1托。
16.根据权利要求1所述的方法,其中,所述吸收层包含CIGS材料或CIG材料。
17.根据权利要求1所述的方法,其中,所述窗口缓冲层包含硫化镉材料。
18.一种用于形成薄膜光伏装置的方法,所述方法包括提供包括表面区域的成形衬底构件;形成覆盖所述表面区域的第一电极层;形成覆盖所述第一电极层的包含铜物种、铟物种和硒化物物种的吸收材料;形成覆盖所述吸收材料的包含硒化镉物种的窗口缓冲层;以及利用包括锌物种和氧物种以及惰性载气的一种或多种前体气体,形成覆盖所述窗口缓冲层的厚度为约0. 75至3微米的氧化锌层;其中,在其上的所述一种或多种前体气体的化学反应和所述氧化锌层的长时间退火期间,所述成形衬底构件基本上均勻地在整个所述表面区域保持在高于约130摄氏度的温度下,由此导致在所述氧化锌层内产生混浊的表面光学特性和约3000埃至约5000埃的总体颗粒尺寸。
19.根据权利要求18所述的方法,其中,所述混浊的表面光学特性包括透射光的散射分量与透射穿过所述氧化锌层的光的总量的比率为约5%或更大。
20.根据权利要求18所述的方法,其中,所述一种或多种前体气体的化学反应至少与以预选流速加入的包含硼物种的掺杂剂气体一起发生。
21.根据权利要求20所述的方法,其中,加入的硼物种使所述氧化锌层具有约2.5毫欧-厘米或更小的薄层电阻率。
22.根据权利要求20所述的方法,其中,所述化学反应是基于金属有机化学气相沉积技术的沉积工艺。
23.一种用于薄膜光伏装置的结构,所述结构包括包括表面区域的成形衬底构件;覆盖所述表面区域的第一电极膜;覆盖所述第一电极膜的包含铜物种、铟物种和硒化物物种的吸收材料;覆盖所述吸收材料的包含硒化镉物种的窗口缓冲层;以及覆盖所述窗口缓冲层的厚度为约0. 75至3微米的氧化锌膜,所述氧化锌膜特征在于 0. 75-3 μ m的厚度、5%或更大的浊度和约2. 5毫欧-厘米或更小的电阻率;其中,在包括锌物种、氧物种以及惰性载气的前体气体的环境中,基本上均勻地在整个所述表面区上在高于约130摄氏度的温度下经由所述成形衬底构件的长时间退火而形成所述氧化锌膜。
24.根据权利要求23所述的结构,其中,所述氧化锌膜进一步的特征在于约3000埃至约5000埃的平均颗粒尺寸。
25.根据权利要求23所述的结构,其中,所述成形衬底构件包括玻璃。
26.根据权利要求23所述的结构,其中,所述前体气体包括二乙基锌物种、水物种以及惰性气体。
27.根据权利要求23所述的结构,其中,特征在于浊度为约5%或更大的所述氧化锌膜具有至少90%的总光透射率。
全文摘要
本发明提供了一种用于制造成形薄膜光伏装置的方法,包括提供一定长度的管状玻璃衬底,该管状玻璃衬底具有内径、外径、被吸收层覆盖的圆周外表面区域以及覆盖该吸收层的窗口缓冲层。将该衬底放置在约0.1托至约0.02托的真空中,并引入来源于二乙基锌物种、水物种的反应物物种的混合物和载气,以及乙硼烷物种。对该衬底进行加热以形成具有0.75-3μm的厚度、至少5%的浊度和小于约2.5毫欧-厘米的电阻率的氧化锌膜。本发明使得薄膜级联光伏电池能够利用常规设备制造,本发明以节省成本的方式,提供了与常规光伏电池相比具有改善的转化效率的薄膜光伏电池。
文档编号C23C16/44GK102237443SQ20111009832
公开日2011年11月9日 申请日期2011年4月19日 优先权日2010年4月21日
发明者切斯特三世·A·法里斯, 罗伯特·D·维廷 申请人:思阳公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1