多孔薄膜及其制备方法

文档序号:10498929阅读:954来源:国知局
多孔薄膜及其制备方法
【专利摘要】本发明公开了一种孔隙率较高、制备时成型性好、制备工艺简单实用的多孔薄膜以及该多孔薄膜的制备方法。该多孔薄膜是由固溶体合金、面心立方结构的金属单质或体心立方结构的金属单质为基体相的金属多孔材料所构成的薄片,其厚度为5?3000μm,平均孔径为0.05?100μm,孔隙度为40?85%,其制备方法包括以下步骤:1)获取支撑体,所述支撑体为泡沫金属;2)配制浆料,所述浆料中含有生成所述多孔薄膜的原料粉;3)将所述浆料负载在支撑体上,制成膜坯;4)对所述膜坯进行轧制;5)将轧制后的膜坯进行烧结,烧结冷却即得到多孔薄膜。
【专利说明】
多孔薄膜及其制备方法
技术领域
[0001]本发明涉及多孔薄膜以及多孔薄膜的制备方法。
【背景技术】
[0002]管型或板型的过滤元件由于受其形状、构造以及附带而来的对过滤装置及系统的相应要求的影响,使用范围受限。由于烧结无机多孔材料过滤元件在化学侵蚀的抵抗性、材料不可逆污染抵抗性等方面上相比目前的过滤元件(例如有机过滤膜)具有更强的优势,因此,开发出在多个领域中能够相应替代原有过滤元件的新型烧结无机多孔材料过滤元件尤其是烧结金属多孔材料过滤元件很有意义。本申请的
【申请人】先后提交了申请号为2014106089803、名称为“柔性多孔金属箔及其制备方法”,申请号为2015101531163、名称为“柔性多孔金属箔及柔性多孔金属箔的制备方法”以及申请号为201510153106X、名称为“多孔金属箔的制备方法”等多项专利申请,为开发具有烧结无机多孔材料优良特性的无支撑多孔薄膜(“无支撑”的含义是指多孔薄膜本身具有自支撑性,不必附着在支撑骨架上就可使用)提供了解决途径。
[0003]然而,
【申请人】在实践中发现:无论采取目前的何种工艺来制备上述的无支撑多孔薄膜,多孔薄膜的孔隙率与材料的可成型性以及成型后多孔薄膜的强度往往相互矛盾。为了追求更好的过滤性能要求提高多孔薄膜的孔隙率,但提高多孔薄膜的孔隙率相应的就会降低多孔薄膜的可成型性(主要体现在制备过程中材料开裂和变形等情况,产品不良率提升)以及多孔薄膜产品的强度。因此,
【申请人】提交了申请号为201510274798.3、名称为“一种多孔薄膜及多孔薄膜的制备方法”等多项申请,公开了一种以304不锈钢筛网或Cu网为支撑膜,通过负载浆料、烧结等工艺来制备多孔薄膜的方法。虽然采用上述方法制备得到的多孔薄膜的可成型性好,但是由于多孔薄膜的孔隙率在很大程度上依赖于304不锈钢筛网或Cu网的孔隙率,因此制备得到的多孔薄膜的孔隙率通常在40%以下,难以满足特殊场合对多孔薄膜孔隙率的高要求。

【发明内容】

[0004]针对上述情况,本发明所要解决的技术问题是提供一种孔隙率较高、制备时成型性好、制备工艺简单实用的多孔薄膜以及该多孔薄膜的制备方法。
[0005]本发明提供的多孔薄膜的厚度为5-3000μπι,平均孔径为0.05-100μπι,其制备方法包括以下步骤:I)获取支撑体,所述支撑体为泡沫金属;2)配制浆料,所述浆料中含有生成所述多孔薄膜的原料粉;3)将所述浆料负载在支撑体上,制成膜坯;4)对所述膜坯进行乳制,以提高膜坯内原料粉的堆积密度;5)对乳制后的膜坯进行烧结,烧结冷却即制得孔隙率为40-85%的多孔薄膜。
[0006]所述泡沫金属为泡沫镍、泡沫镍合金、泡沫招、泡沫招合金、泡沫铜、泡沫铜合金中的任意一种。所述泡沫金属具有三维立体连通的网络孔隙,具有超高的孔隙率和比表面积,常作为锂离子电池、锂硫电池、超级电容器等电极的集流体。本发明的发明人想到,将泡沫金属作为多孔薄膜的支撑体,可以在保证可成型性的前提下,显著提升所得多孔薄膜材料的孔隙率。所述泡沫金属的平均孔径为0.01-2mm。若网孔在此数值范围基础上进一步增大,负载浆料时容易导致浆料覆盖不完整、烧结后多孔薄膜上存在沙眼等缺陷;若网孔在此数值范围基础上进一步减小,就会因浆料的负载量较少而对多孔薄膜造成一些不利影响。所述泡沫金属的平均孔径优选为0.05-lmm。
[0007]所述浆料是由原料粉和粘结剂在分散剂中分散形成的粘稠状浆料。分散剂可以采用水或有机溶剂,有机溶剂可以选用甲醇、乙醇、正丙醇、异丙醇、丙酮、甲苯、甲乙酮等表面张力小且挥发快、易干燥的有机溶剂;当使用有机溶剂作为分散剂时,粘结剂可以使用PVB、PVA、PVC、PA、PMA、聚乙烯醇、聚乙二醇(低分子蜡类)、石蜡、脂肪酸类、脂肪族酰胺类和酯类等。当分散剂采用安全无毒的水时,粘结剂采用CMC、SBR,MC、HPMC等水溶性粘结剂。原料粉与分散剂之间的比例可根据原料粉的具体成分以保证烘干后膜坯的表面质量为原则来确定。一般而言,若原料粉的含量过高,则烘干后膜坯的表面质量不好,容易出现龟裂等现象;若原料粉的含量过低,则会增加后续负载的次数,延长多孔薄膜的制备周期。粘结剂与分散剂之间的比例可根据原料粉的具体成分以保证烘干后膜坯的表面质量和膜坯强度为原则来确定。一般而言,若粘结剂含量过高,则浆料流动性差,烘干后容易有缩孔等缺陷;若粘结剂含量过低,原料粉的粉末颗粒间不能有效粘接,膜坯的成型性差、强度低。
[0008]烧结时,多孔薄膜的生成可以分为两种方式,一种是原料粉相对于支撑体表现为惰性,相互之间不发生反应,原料粉自身反应生成多孔薄膜;另外一种是原料粉与支撑体反应生成多孔薄膜。所述多孔薄膜由固溶体合金、面心立方结构的金属单质或体心立方结构的金属单质为基体相的金属多孔材料所构成。所述固溶体为Ag-Au固溶体、T1-Zr固溶体、Mg-Cd固溶体、Fe-Cr固溶体、N1-Cu固溶体、Cu-Al固溶体、Cu-Zn固溶体、Fe-C-Cr固溶体中的任意一种;所述面心立方结构的金属单质为A1、N1、Cu或Pb;所述体心立方结构的金属单质为Cr、W、V或Mo。
[0009]所述将浆料负载在支撑体上的方法为喷涂法和/或浸渍法。当采用喷涂法时,可以分别从支撑体的两侧喷涂,以保证浆料分布均匀。为了使支撑体的表面负载均匀的浆料,一种优选的方式是两种负载方法相结合或与其他负载方法相结合。
[0010]在负载浆料之前,可以对泡沫金属进行预乳制,以提升浆料的附着强度,并减少浆料的使用量,其中,乳制的压力为20-200Τ(1Τ等于133.322Pa)。优选地,所述支撑体由至少两张泡沫金属叠加乳制而成。
[0011]支撑体的厚度在很大程度上决定了最终多孔薄膜的厚度,根据不同的场合,选择不同厚度的支撑体。一种多孔薄膜厚度较薄(5-200μπι),其在工业上可用于纺织和制革工业中的余热回收、药剂回收、污染控制,食品加工工业中的净化、浓缩、消毒、副产品回收,医药及保健行业中的人造气管、控制释放、血液过滤、水净化,汽车工业中的滤清器;在民用上可作为口罩的粉尘过滤材料以及带静电除尘功能的窗帘材料;另外一种多孔薄膜厚度较厚(200-3000μπι),故强度更高,一个典型的应用例子是制作成过滤用的滤袋,从而替换目前布袋除尘器中的过滤元件“布袋”。当需要制作较厚的多孔薄膜时,可以将至少两层泡沫金属材料叠加乳制为一体,然后再负载浆料。
[0012]采用乳制机、模压机、等静压机等对负载浆料后的支撑体进行乳制,可以提升支撑体内原料粉的堆积密度,使最终多孔薄膜的平均孔径更小且分布更均匀。优选地,乳制压力的大小为50-400T。通过调节乳制压力的大小,可以控制最终多孔薄膜的平均孔径大小。
[0013]多孔薄膜的第一种制备方法包括以下步骤:I)采用泡沫镍为支撑体,其厚度为0.08-3mm,平均孔径为0.01-2mm; 2)将平均粒径为-325目的Ni粉与平均粒径为-400目的Cu粉按照Cu的重量百分比为20-40 %配制成原料粉,然后以水为分散剂、CMC和SBR为粘结剂,按照每10mL水中含有50-100g原料粉、0.1-1801(:和0.5-58381?的配比配制成浆料;3)将浆料负载到支撑体上并烘干制成膜坯;4)在50-400T的压力下对膜坯进行乳制;5)对乳制后的膜坯进行分段式烧结,第一阶段由室温升温至100-300°C并保温120-180°C,该阶段的主要作用是去除坯体中残余的分散剂和杂质,保证膜在后期烧结过程中无其他不良因素引起开裂的现象,第二阶段升温至600-800°C并保温60-240min,该阶段的主要作用是脱除材料中的CMC和SBR,使后续反应充分,保证强度性能的均匀一致,第三阶段升温至900-1090 °C,该阶段的主要作用是使N1-Cu合金相均匀化;6)烧结冷却即制得多孔薄膜。
[0014]多孔薄膜的第二种制备方法包括以下步骤:I)采用泡沫铜为支撑体,其厚度为
0.08-3mm,平均孔径为0.01-2mm;2)将平均粒径为-325目的Ni粉以乙醇为分散剂、PVB为粘结剂,按照每10mL乙醇中含有50-100g原料粉、0.5-5gPVB的配比配制成浆料;3)将浆料负载到支撑上并烘干制成膜坯;4)在50-400T的压力下对膜坯进行乳制;5)对乳制后的膜坯进行分段式烧结,第一阶段由室温升温至100-300°C并保温120-180°C,该阶段的主要作用是去除坯体中残余的分散剂和杂质,保证膜在后期烧结过程中无其他不良因素引起开裂的现象,第二阶段升温至600-800°C并保温60-240min,该阶段的主要作用是脱除材料中的PVB,使后续反应充分,保证强度性能的均匀一致,第三阶段升温至900-1090°C,该阶段的主要作用是使N1-Cu合金相均匀化;6)烧结冷却即制得多孔薄膜。
【具体实施方式】
[0015]实施例1
[0016]多孔薄膜的制备方法包括以下步骤:(I)采用一层泡沫铜为支撑体,其厚度为0.4mm,网孔大小为I.6mm,孔隙率为60 %,然后在10T的压力下乳制2miη;(2)以平均粒径为-325目的Ni粉为原料粉、以乙醇为分散剂、PVB为粘结剂,按每10mL乙醇中加入4gPVB、80g原料粉的比例配制浆料;(3)将浆料喷涂在支撑体上(浆料的负载量为每m2支撑体负载600g浆料)并在60°C下烘干4h后制成膜坯;4)在300T的压力下乳制膜坯,乳制时间为2min;
(5)对乳制后的膜坯进行分段式烧结,第一阶段从室温升至220°C并保温150min,升温速率为l-3°C/min,第二阶段升温至550°C并保温200min,升温速率为l-3°C/min,第三阶段升温至1000°C并保温220min,升温速率为5-7°C/min;(6)烧结后冷却制得多孔薄膜。所得多孔薄膜的厚度为0.1mm,平均孔径为15μπι,孔隙率为48%,透气度为1500m3/m2.h.kpa(表示在每kpa过滤压下每h每m2的过滤面积下空气的渗透量(按m3表示))。
[0017]实施例2
[0018]多孔薄膜的制备方法包括以下步骤:(I)采用一层泡沫镍为支撑体,其厚度为1_,网孔大小为2mm,孔隙率为70%,然后在100T的压力下乳制2min; (2)将平均粒径为-325目的Ni粉和平均粒径为-400目的Cu粉按Cu粉的重量百分比为30%配制成原料粉,然后以乙醇为分散剂、PVB为粘结剂,按照每10mL乙醇中含有80g原料粉、4gPVB的配比配制成浆料;(3)将浆料喷涂在支撑体上(浆料的负载量为每m2支撑体负载600g浆料)并在60°C下烘干4h后制成膜坯;4)在300T的压力下乳制膜坯,乳制时间为2min; (5)对乳制后的膜坯进行分段式烧结,第一阶段从室温升至220°C并保温150min,升温速率为l-3°C/min,第二阶段升温至5500C并保温200min,升温速率为1_3 °C /min,第三阶段升温至1000 °C并保温220min,升温速率为5-7°C/min;(6)烧结后冷却制得多孔薄膜。所得多孔薄膜的厚度为0.6mm,平均孔径为16μm,孔隙率为65%,透气度为1690m3/m2.h.kpa。
[0019]实施例3
[0020]多孔薄膜的制备方法包括以下步骤:(1)采用一层泡沫铝为支撑体,其厚度为1.5mm,网孔大小为1mm,孔隙率为80% ; (2)将平均粒径为-325目的Ni粉和平均粒径为-400目的Cu粉按Cu粉的重量百分比为30%配制成原料粉,然后以乙醇为分散剂、PVB为粘结剂,按照每10mL乙醇中含有80g原料粉、4gPVB的配比配制成浆料;(3)将浆料喷涂在支撑体上(浆料的负载量为每m2支撑体负载600g浆料)并在60 0C下烘干4h后制成膜坯;4)在300T的压力下乳制膜坯,乳制时间为2min; (5)对乳制后的膜坯进行分段式烧结,第一阶段从室温升至220 0C并保温150min,升温速率为1_3 °C/min,第二阶段升温至550 °C并保温200min,升温速率为l-3°C/min,第三阶段升温至1000°C并保温220min,升温速率为5-7°C/min;(6)烧结后冷却制得多孔薄膜。所得多孔薄膜的厚度为1mm,平均孔径为12μπι,孔隙率为72%,透气度为 1780m3/m2.h.kpa。
[0021 ] 实施例4
[0022]多孔薄膜的制备方法包括以下步骤:(1)采用一层泡沫铜为支撑体,其厚度为2mm,网孔大小为0.05mm,孔隙率为85%; (2)以平均粒径为-325目的Ni粉为原料粉、以水为分散剂、CMC和SBR为粘结剂,按照每10mL水中含有80g原料粉、0.4gCMC和2gSBR的配比配制成浆料;(3)将浆料浸渍在支撑体上(浆料的负载量为每m2支撑体负载600g浆料)并在60°C下烘干4h后制成膜坯;4)在300T的压力下乳制膜坯,乳制时间为2min; (5)对乳制后的膜坯进行分段式烧结,第一阶段从室温升至220°C并保温150min,升温速率为l-3°C/min,第二阶段升温至550°C并保温200min,升温速率为l-3°C/min,第三阶段升温至1000°C并保温220min,升温速率5-7°C/min; (6)烧结后冷却制得多孔薄膜。所得多孔薄膜的厚度为1.5mm,平均孔径为8μπι,孔隙率为78%,透气度为1820m3/m2.h.kpa。
[0023]实施例5
[0024]多孔薄膜的制备方法包括以下步骤:(1)采用两层泡沫铜为支撑体,每一层泡沫铜的厚度为1mm,网孔大小为0.6mm,孔隙率为90%,然后将两层泡沫镍叠加并在100T的压力下乳制2min; (2)将平均粒径为-325目的Ni粉和平均粒径-400目的Cu粉按Cu粉的重量百分比为30 %配制成原料粉,然后以水为分散剂、CMC和SBR为粘结剂,按照每I OOmL水中含有80g原料粉、0.4gCMC和3gSBR的配比配制成浆料;(3)将浆料浸渍在支撑体上(浆料的负载量为每m2支撑体负载600g浆料)并在60°C下烘干4h后制成膜坯;4)在300T的压力下乳制膜坯,乳制时间为2min; (5)对乳制后的膜坯进行分段式烧结,第一阶段从室温升至220°C并保温150min,升温速率为l-3°C/min,第二阶段升温至550°C并保温200min,升温速率为1-3°C/min,第三阶段升温至1000°C并保温220min,升温速率为5-7°C/min;(6)烧结后冷却制得多孔薄膜。所得多孔薄膜的厚度为1.6mm,平均孔径为ΙΟμπι,孔隙率为80%,透气度为1950m3/m2.h.kpa。
[0025]实施例6
[0026]多孔薄膜的制备方法包括以下步骤:(1)采用三层泡沫镍为支撑体,每一层泡沫镍的厚度为1mm,网孔大小为1.2mm,孔隙率为95%,然后将三层泡沫镍叠加并在100T的压力下乳制2min; (2)将平均粒径为-325目的Ni粉和平均粒径-400目的Cu粉按Cu粉的重量百分比为30 %配制成原料粉,然后以水为分散剂、CMC和SBR为粘结剂,按照每I OOmL水中含有80g原料粉、0.4gCMC和3gSBR的配比配制成浆料;(3)首先采用浸渍法在泡沫镍表面负载浆料,然后采用喷涂法分别从泡沫镍的两侧喷涂浆料,使泡沫镍表面负载的浆料分布均匀(浆料的负载量为每m2支撑体负载600g浆料),并在60°C下烘干4h后制成膜坯;4)在300T的压力下乳制膜坯,乳制时间为2min; (5)对乳制后的膜坯进行分段式烧结,第一阶段从室温升至220°C并保温150min,升温速率为l-3°C/min,第二阶段升温至550°C并保温200min,升温速率为1-3°C/min,第三阶段升温至1000°C并保温220min,升温速率为5-7°C/min;(6)烧结后冷却制得多孔薄膜。所得多孔薄膜的厚度为2.5mm,平均孔径为13μπι,孔隙率为85%,透气度为2080m3/m2.h.kpa。
【主权项】
1.多孔薄膜,其厚度为5-3000μπι,平均孔径为0.05-100μπι,其特征在于:其制备方法包括以下步骤:I)获取支撑体,所述支撑体为泡沫金属;2)配制浆料,所述浆料中含有生成所述多孔薄膜的原料粉;3)将所述浆料负载在支撑体上,制成膜坯;4)对所述膜坯进行乳制;5)将乳制后的膜坯进行烧结,烧结冷却即得到孔隙度为40-85%的多孔薄膜。2.如权利要求1所述的多孔薄膜,其特征在于:所述泡沫金属为泡沫镍、泡沫镍合金、泡沫铝、泡沫铝合金、泡沫铜、泡沫铜合金中的任意一种。3.如权利要求2所述的多孔薄膜,其特征在于:所述泡沫金属的平均孔径为0.01-2mm。4.如权利要求3所述的多孔薄膜,其特征在于:所述泡沫金属的平均孔径为0.05-lmm。5.如权利要求1所述的多孔薄膜,其特征在于:所述浆料是由原料粉和粘结剂在分散剂中分散形成的粘稠状浆料;所述分散剂为水,所述粘结剂为CMC、SBR、MC、HPMC中的至少一种;或所述分散剂为甲醇、乙醇、正丙醇、异丙醇、丙酮、甲苯中的任意一种,所述粘结剂为PE、PVB、PVA、PVC、PA、PMA、聚乙烯醇、聚乙二醇、石蜡中的至少一种。6.如权利要求1所述的多孔薄膜,其特征在于:所述多孔薄膜由固溶体合金、面心立方结构的金属单质或体心立方结构的金属单质为基体相的金属多孔材料所构成。7.如权利要求1所述的多孔薄膜,其特征在于:所述将浆料负载在支撑体上的方法为喷涂法和/或浸渍法。8.如权利要求1-7任一项所述的多孔薄膜,其特征在于:在负载浆料之前对所述支撑体进行预乳制。9.如权利要求8所述的多孔薄膜,其特征在于:所述支撑体由至少两张泡沫金属叠加乳制而成。10.多孔薄膜的制备方法,其步骤包括:1)采用泡沫镍为支撑体,其厚度为0.08-3mm,平均孔径为0.01-2mm;2)将平均粒径为-325目的Ni粉与平均粒径为-400目的Cu粉按照Cu的重量百分比为20-40 %配制成原料粉,然后以水为分散剂、CMC和SBR为粘结剂,按照每10mL水中含有50-100g原料粉、0.1-化01(:和0.5-58581?的配比配制成浆料;3)将浆料负载到支撑体上并烘干制备膜坯;4)在50-400T的压力下对膜坯进行乳制;5)对乳制后的膜坯进行分段式烧结,第一阶段由室温升温至100-300°C并保温120-180°C,第二阶段升温至600-800°C并保温60-240min,第三阶段升温至900-1090°C;6)烧结冷却即制得多孔薄膜。
【文档编号】B01D69/10GK105854629SQ201610173115
【公开日】2016年8月17日
【申请日】2016年3月23日
【发明人】高麟, 汪涛, 李波
【申请人】成都易态科技有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1