一种晶体硅太阳能电池氮化硅减反射膜及其制备方法

文档序号:3322198阅读:225来源:国知局
一种晶体硅太阳能电池氮化硅减反射膜及其制备方法
【专利摘要】本发明公开了一种利用N2、NH3、SiH4三种气体在高频电击下镀晶体硅太阳能电池多层交错变化的氮化硅减反射膜,属于晶体硅太阳能电池领域。本发明包括沉积在硅片上的多层折射率和膜厚交替变化的氮化硅减反射膜。折射率依次为先小后大,但单数膜层相互比较N值是依次减小,双数膜层相比较N值也是依次减小。膜厚度依次是先厚再薄(单数膜层厚,双数膜层薄),工艺膜厚结果数值与折射率值相比成反比例,也就是单膜数相比较和双层膜数相比较膜厚会越来越厚。根据多层减反射膜物理特性,本交替型减反射膜的相消干涉的具有更好的透射率,增加光的吸收,进而在P/N结处产生较多的光生电子,提高光电转换效率。
【专利说明】
一种晶体硅太阳能电池氮化硅减反射膜及其制备方法

【技术领域】
[0001]本发明涉及一种晶体太阳能电池多层交错渐变形氮化硅减反射膜,有良好的表面钝化效果及增透效果,可以提高太阳能电池的光电载流子数量最终提高及转换效率。属于晶体硅太阳能电池领域。

【背景技术】
[0002]传统太阳能电池的生产工艺包括:制绒、扩散、刻蚀、去PSG、镀减反射膜、丝网印刷、烧结。其中镀减反射膜是减少太阳光反射和晶片表面钝化提高少子寿命的重要环节。目前主流的太阳能电池镀膜工艺为单层镀膜或者双层膜,也有部分镀多层膜的技术方法,如专利201210401694.0工艺特殊气体较多其工艺过程较复杂制造成本较高并不能大规模实现商业化生产,且膜层设计达不到最优化的减反射效率,最终的光电转换效率达不到最大的提闻。


【发明内容】

[0003]本发明通过PECVD设备制备一种晶体硅太阳能电池五层交错连续变化的氮化硅减反射膜,所述减反射膜包括沉积在硅晶体表面五层折射率和膜不等的氮化硅薄膜,各层厚度至下(硅基层表面为最下)而上先厚再薄逐渐交错变厚,折射率至下而上先小后大逐渐交错减小。目的在于增加膜层对光的透射率,提高太阳能电池片的光生载流子,最终提高光电转换效率。
[0004]本发明提供一种晶体硅太阳能电池氮化硅减反射膜,所述减反射膜包括沉积在硅晶体表面的至少4层折射率和膜厚不等的氮化硅薄膜,各层厚度至下而上先厚再薄逐渐交替变厚,折射率至下而上先小后大逐渐交错减小。
[0005]所述的减反射膜包括沉积在硅晶体表面5层折射率和膜厚不等的氮化硅薄膜,最底层为硅片基层,折射率为2.0-, 205 ;第二层折射率为2.2-2.35 ;第三层折射率为1.9-1.95 ;第四层折射率为2.1-2.2 ;第5层折射率为1.8-1.9。
[0006]为了达到上述目的本发明是通过如下技术方法来实现的:一种采用管式PECVD制备太阳能电池的折射率和膜厚交替变化的氮化硅减反射膜。包括选取晶体硅片,对硅片进行制绒和扩散及去磷硅玻璃工序,还包括利用PECVD设备在晶硅片上镀上五层折射率高低交替和膜的厚薄交替减反射膜。具体步骤如下:
I)、本发明所述首先清洗磷扩散后硅基衬底保证表面硅片表面疏水性良好及干净无水溃。
[0007]2)、将清洗好的硅基片按常规方法插入石墨舟,放入PECVD设备石英管内,抽真空并升温至 400°C— 500°C,恒温 300S — 500S。
[0008]3)、本发明所述的钝化步骤为:当设备抽真空到10 mttor以下后,等恒温时间达到要求及往PECVD设备真空管内通入4000 SCCM至7000 SCCM的NH3,并使真空管内的压强保持在1500 mttor至2000 mttor,保持恒压I至2分钟将高频电源功率设置为4000W —7000W,开启高频电源,同时保持NH3的流量不变,时间120S至300S。该步骤目的在于起良好钝化基片表面,减少表面悬挂键。
[0009]4)、所述步骤3完毕后,断开高频电源,在真空管内通入300 SCCM - 600 SCCM的SiH4 气体和 2500 SCCM 至 5000 SCCM 的 N2 气体,并保持恒压在 1800 mttor — 2400 mttor,时间保持60S,然后高频设置为7000W至9500W并启,沉积时间为90S — 150S后断开SiH4气体和N2气体,关闭高频电源。
[0010]上述步骤所述得到太阳能电池片第一层减反射膜(附图A),其特证在于=SiH4和N2的比值控制在1:8,膜厚保持在15±2nm,折射率在2.0至2.05。
[0011]5)、所述步骤4完毕后,在真空管内通入NH3气体1800SCCM — 3000 SCCM和SiH4气体600 SCCM — 900 SCCM保持恒压在1600 mttor — 2200 mttor,时间保持60S,然后高频设置为4000W - 6000W并开启,沉积时间为40 — 60秒后断开两种特气和高频电源。
[0012]上述步骤所述得到太阳能电池片第二层减反射膜(附图B),其特证在于:SiH4和NH3的比值为1:3 — 3.5,膜厚保持在4 一 6 nm,折射率控制在2.2 — 2.35。
[0013]6)、所述步骤5完毕后,让管内充N2气体清洗及抽真空30— 60S,当石英管内小于10 mttor,在管内通入 300 SCCM — 600 SCCM 的 SiH4 气体和 3000 SCCM — 6000 SCCM 的N2气体,并保持恒压在1800 mttor 一 2400 mttor,时间保持60S,然后高频设置为7000W至9500W并启,沉积时间为150S — 200S后断开SiH4气体和N2气体,关闭高频电源。
[0014]上述步骤得到太阳能电池片第三层减反射膜(附图C),其特证在于:SiHJPN2的比值控制在1:10,膜厚保持在20±2nm,折射率在1.9至1.95。
[0015]7)、所述步骤6完毕后,在真空管内通入NH3气体3000SCCM — 5000 SCCM和SiH4气体600 SCCM — 900 SCCM保持恒压在1600 mttor — 2200 mttor,时间保持60S,然后高频设置为4000W - 6000W并开启,沉积时间为60-80秒后断开两种特气和高频电源。
[0016]上述步骤得到太阳能电池片第四层减反射膜(附图D),其特证在于:SiH4和NH3的比值为1:5 - 6,膜厚保持在8 — 10 nm,折射率控制在2.1 — 2.2.8)、所述步骤7完毕后,让管内充N2气体清洗及抽真空30— 60S,当石英管内小于10mttor,在管内通入 300 SCCM - 500 SCCM 的 SiH4 气体和 4000 SCCM - 7500 SCCM 的 N2 气体,并保持恒压在1800 mttor 一 2400 mttor,时间保持60S,然后高频设置为7000W至9500W并启,沉积时间为200S — 300S后断开SiH4气体和N2气体,关闭高频电源,抽真空并清扫管内残于气体。
[0017]上述步骤得到太阳能电池片第五层减反射膜(附图E),其特证在于:SiHJPN2的比值控制在1: 15,膜厚保持在30±2nm,折射率在1.8至1.9。
[0018]本发明具有以下优点:
I)、本发明采用常规PECVD设备沉积折射率和膜厚交替逐渐变化的五层减反射膜,制备过程对晶硅片的损伤小,且工艺过程简单,与常规其它工艺相比减少了特殊气体NH3的用量降低了生产成本,便于大规模商业化生产。
[0019]2)、本发明中的五层折射率与膜厚交替形减反射膜保证了硅片表面的钝化效率,同时中间两层的高折射率膜层具有抗PID效果,其设计膜层有很好的增透作用,增加了硅片表面的受光率,提升了太阳能电池片的光生电流,达到提升电池片效率的目的。
[0020]上述实施例阐明的内容及具体参数值应当理解为此实施例,仅用于更清楚的说明本发明,而不用于限制本发明的范围。在阅读了本发明之后,本领域技术人员对本发明的各种参数等价形式的修改均落入本申请所附权利要求所限定的范围。

【专利附图】

【附图说明】
[0021]图1为实施例1 一种晶体硅太阳能电池氮化硅减反射膜。

【具体实施方式】
[0022]实施例1
一种晶体硅太阳能电池氮化硅减反射膜的制备方法,其特征在于,包括如下步骤:
I)、清洗磷扩散后的硅基片保证表面硅片表面疏水性良好及干净无水溃。
[0023]2)、将清洗好的硅基片按常规方法插入石墨舟,放入PECVD设备石英管内,再石英管内抽真空并升温至450°C,恒温480S。
[0024]3)、当设备抽真空到10 mttor以下后,往PECVD设备抽真空后的石英管内通入5800 SCCM的NH3气体,并使石英管内的压强保持在1800 mttor,保持恒压I 一 2min,将高频电源功率设置为6000W,开启高频电源,同时保持NH3气体的流量不变,通入NH3气体时间为 200S。
[0025]4)、所述步骤3)完毕后,断开高频电源,向石英管内通入400 SCCM的SiH4气体和3000 SCCM的N2气体,并保持恒压在2000 mttor,时间保持60S,然后高频设置为8500W并启,沉积100S后,断开SiH4气体和N2气体的通入,关闭高频电源;51!14和队的比值控制在1:8,膜厚保持在15±2nm。
[0026]5)、所述步骤4)完毕后,向石英管内通入NH3气体2000 SCCM和SiH4气体700SCCM,在恒压1800 mttor下,保持60S,然后开启高频,并控制高频为5000W,沉积40 — 60秒后断开NH3、SiH4和高频电源;SiH4和NH3的比值为1:3 — 3.5,膜厚保持在4 — 6 nm。
[0027]6)、所述步骤5)完毕后,向石英管内充N2气体及抽真空,清洗50S,当石英管内压强小于10 mttor,再向石英管内通入450 SCCM的SiH4气体和5200 SCCi^AN2气体,在2200 mttor恒压下,保持60S,然后高频设置为8800W并启,沉积180S后断开SiH4气体和N2气体,并关闭高频电源^丨比和队的比值控制在1: 10,膜厚保持在20±2nm。
[0028]7)、所述步骤5)完毕后,向石英管内通入NH3气体4800 SCCM和SiH4气体720SCCM,在1800 mttor恒压下,保持60S,开起高频,并控制高频为4500W并开启,沉积80秒后断开NH3、SiH4和高频电源;SiH4和NH3的比值为I:5 — 6,膜厚保持在8 — 10 nm。
[0029]8)、所述步骤5)完毕后,向石英管内充5秒钟N2气体后再抽真空,清洗50S,当石英管内小于10 mttor,向石英管内通入500 SCCM的SiH4气体和7500 SCCi^AN2气体,在2400 mttor恒压下保持60S,然后高频设置为9500W并启,沉积300S后断开SiH4气体和N2气体,并关闭高频电源,抽真空并清扫管内残于气体。SiHjPN2的比值控制在1: 13-15,膜厚保持在30±2nm。
【权利要求】
1.一种晶体硅太阳能电池氮化硅减反射膜,其特征在于:所述减反射膜包括沉积在硅晶体表面的至少4层折射率和膜厚不等的氮化硅薄膜,各层厚度至下而上先厚再薄逐渐交替变厚,折射率至下而上先小后大逐渐交错减小。
2.根据权利要求1所述的晶体硅太阳能电池氮化硅减反射膜,其特征在于:所述的减反射膜包括沉积在硅晶体表面5层折射率和膜厚不等的氮化硅薄膜,最底层为硅片基层,折射率为2.0-, 205 ;第二层折射率为2.2-2.35 ;第三层折射率为1.9-1.95 ;第四层折射率为2.1-2.2 ;第5层折射率为1.8-1.9。
3.一种晶体硅太阳能电池氮化硅减反射膜的制备方法,其特征在于,包括如下步骤: 1)、清洗磷扩散后的硅基片保证表面硅片表面疏水性良好及干净无水溃; 2)、将清洗好的硅基片按常规方法插入石墨舟,放入PECVD设备石英管内,把石英管内抽真空并升温至400°C — 500°C,恒温300S — 500S ; 3)、当设备抽真空到10mttor以下后,往PECVD设备抽真空后的石英管内通入4000SCCM - 7000 SCCM的NH3气体,并使石英管内的压强保持在1500 mttor至2000 mttor,保持恒压I 一 2min,将高频电源功率设置为4000W — 7000W,开启高频电源,同时保持NH3气体的流量不变,通入NH3气体时间为120S - 300S ; 4)、所述步骤3)完毕后,断开高频电源,向石英管内通入300SCCM - 600 SCCM的SiH4气体和2500 SCCM至5000 SCCM的N2气体,并保持恒压在1800 mttor - 2400 mttor,时间保持60S,然后高频设置为7000W至9500W并启,沉积90S — 150S后,断开SiH4气体和N2气体的通入,关闭高频电源; 5)、所述步骤4)完毕后,向石英管内通入NH3气体1800SCCM— 3000 SCCM和SiH4气体600 SCCM - 900 SCCM,在恒压1600 mttor - 2200 mttor下,保持60S,然后开启高频,并控制高频为4000W — 6000W,沉积40 — 60秒后断开NH3、SiH4和高频电源; 6)、所述步骤5)完毕后,向石英管内充N2气体及抽真空,清洗30—60S,当石英管内压强小于10 mttor,向石英管内通入300 SCCM - 600 SCCM的SiH4气体和4000 SCCM - 6000SCCM的N2气体,在1800 mttor 一 2400 mttor恒压下,保持60S,然后高频设置为7000W —9500W并启,沉积150S — 200S后断开SiH4气体和N2气体,并关闭高频电源; 7)、所述步骤5)完毕后,向石英管内通入NH3气体3000SCCM— 5000 SCCM和SiH4气体600 SCCM - 900 SCCM,在1600 mttor - 2200 mttor恒压下,保持60S,开起高频,并控制高频为4000W - 6000W并开启,沉积60-80秒后断开NH3、SiH4和高频电源; 8)、所述步骤5)完毕后,向石英管内充N2气体再抽真空,清洗30—60S,当石英管内小于 10 mttor,向石英管内通入 300 SCCM - 500 SCCM 的 SiH4气体和 4000 SCCM —7500 SCCM的N2气体,在1800 mttor 一 2400 mttor恒压下保持60S,然后高频设置为7000W — 9500W并启,沉积200S - 300S后断开SiH4气体和N2气体,并关闭高频电源,抽真空并清扫管内残于气体。
4.根据权利要求3所述的晶体硅太阳能电池氮化硅减反射膜的制备方法,其特征在于,步骤4)中SiHjPN2的比值控制在1:8,膜厚保持在15±2nm。
5.根据权利要求3所述的晶体硅太阳能电池氮化硅减反射膜的制备方法,其特征在于,步骤5)中SiH4和NH3的比值为1:3 — 3.5,膜厚保持在4 — 6 nm。
6.根据权利要求3所述的晶体硅太阳能电池氮化硅减反射膜的制备方法,其特征在于,步骤6)中SiH4和N2的比值控制在1: 10,膜厚保持在20±2nm。
7.根据权利要求3所述的晶体硅太阳能电池氮化硅减反射膜的制备方法,其特征在于,步骤7)中SiH4和NH3的比值为1:5 — 6,膜厚保持在8—10 nm。
8.根据权利要求3所述的晶体硅太阳能电池氮化硅减反射膜的制备方法,其特征在于,步骤8)中SiH4和N2的比值控制在1:13-15,膜厚保持在30±2nm。
【文档编号】C23C16/503GK104332505SQ201410572091
【公开日】2015年2月4日 申请日期:2014年12月1日 优先权日:2014年12月1日
【发明者】傅强, 董道宴, 张崇超, 刘代军, 陈红玉, 匡英, 汪双 申请人:九州方园新能源股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1