本发明涉及银被覆铜粉及其制造方法。更加具体涉及用于导电糊料等的银被覆铜粉及其制造方法。
背景技术:
通常,导电糊料被用于通过印刷法等的方法形成电子元件的电极和布线,而这些导电糊料是通过混合或者配合溶剂、树脂、分散剂等与例如银粉或者铜粉的导电金属粉末制得的。
但是,银粉增加了糊料的成本因其是贵金属,虽然其是良好的导电材料且具有非常低的体积电阻。另一方面,对于铜粉来说,虽然它是良好的导电材料且具有低体积电阻,但是因其容易被氧化,所以铜粉的保存稳定性(可靠性)弱于银粉。
为了解决这些问题,使用在铜粉的表面被覆银的银被覆铜粉作为用于导电糊料的金属粉末(参见例如专利文献1-2)。
现有文献
专利文献
专利文献1:日本专利特开2010-174311号公报(段落号0003)
专利文献2:日本专利特开2010-077495号公报(段落号0006)
技术实现要素:
发明概要
本发明解决的问题
但是,在专利文献1-2公开的银被覆铜粉中,如果铜粉的一部分表面没有被银被覆,则从这部分开始进行铜粉的氧化,以使银被覆铜粉的保存稳定性(可靠性)不够。
由此,本发明的目的是消除前述以往的问题,且提供一种保存稳定性(可靠性)优异的银被覆铜粉及其制造方法。
解决问题的手段
为了实现前述目的,本发明的发明人进行了深入研究且发现:如果将以含银层被覆表面的铜粉添加到金镀液以使金承载于以含银层被覆的铜粉表面上,就能制造具有优异的保存稳定性(可靠性)的银被覆铜粉。因此发明者们完成了本发明。
根据本发明,提供一种银被覆铜粉的制造方法,包括如下步骤:
制备以含银层被覆表面的铜粉的步骤;
将所得铜粉添加到金镀液中以使金承载于以含银层被覆的铜粉表面上的步骤。
在制造该银被覆铜粉的方法中,所述含银层较好是由银或者银化合物构成的层。相对于所述银被覆铜粉,所述含银层的量较好在5重量%以上。另外,相对于所述银被覆铜粉,所述金的量较好为0.01重量%以上。所述金镀液较好包含氰化金钾溶液,更好包含含有选自一水合柠檬酸三钾、无水柠檬酸和L-天冬氨酸的至少一种的氰化金钾溶液。所述铜粉的由激光衍射粒度分析仪测定的对应于累积分布中的累积值50%的粒径(D50直径)较好在0.1μm~15μm的范围内。
根据本发明,提供一种银被覆铜粉,它包括以含银层被覆的铜粉,以及承载在以含银层被覆的铜粉的表面上的金。在该银被覆铜粉中,所述含银层较好是由银或者银化合物构成的层。相对于所述银被覆铜粉,所述含银层的量较好在5重量%以上。另外,相对于所述银被覆铜粉,所述金的量较好为0.01重量%以上。所述铜粉的由激光衍射粒度分析仪测定的对应于累积分布中的累积值50%的粒径(D50直径)较好在0.1μm~15μm的范围内。
根据本发明,提供一种导电糊料,使用前述的银粉作为导体。或者,根据本发明,提供一种导电糊料,其包含溶剂、树脂、以及作为导电性粉末的前述银粉。
根据本发明,提供一种太阳能电池用电极的制造方法,包括如下步骤:将前述导电糊料涂布在基板上,以及固化所述导电糊料,在基板表面上形成电极。
本发明的效果
根据本发明,能提供一种具有优异的保存稳定性(可靠性)的银被覆铜粉及其制造方法。
附图说明
图1是显示实施例1-5和比较例1所得到的各个银被覆铜粉的重量增长百分比对加热温度的图;
图2是显示用了实施例9和比较例2的导电糊料所制得的太阳能电池的转化效率的变化对耐候性试验中的时间的图。
具体实施方式
在本发明的银被覆铜粉的制造方法的实施形态中,将表面被覆有含银层的铜粉添加到金镀液中以使金承载于被覆有含银层的铜粉表面上。如果金由此承载在被覆有含银层的铜粉表面上,该铜粉没有被含银层被覆的外露部分则被金被覆,能阻碍铜粉的氧化,能获得具有优异的保存稳定性(可靠性)的银被覆铜粉。
所述含银层较好为由银或者银化合物构成的层。相对于所述银被覆铜粉,所述含银层的被覆量较好在5重量%以上,更好在7重量%~50重量%的范围,最好在8重量%~40重量%的范围,最为理想在9重量%~20重量%的范围。如果所述含银层的被覆量不到5重量%,因为对银被覆铜粉的导电性产生恶劣影响,所以不理想。另外一方面,如果所述含银层的被覆量超过50重量%,因为增加了银的使用量而提高了成本,所以不理想。
相对于所述银被覆铜粉,所述金的承载量较好为0.01重量%以上,更好在0.05重量%~0.7重量%的范围。如果所述金的承载量低于0.01重量%,银被覆铜粉的没有被银被覆的铜粉的外露部分没有被金充分被覆。如果所述金的承载量超过0.7重量%,阻碍所述铜粉的氧化的效果的提高相对于金的增加量的比例小,提高了成本,所以不理想。
所述金镀液较好是能金电镀没有被银被覆的铜粉的外露部分且不溶解含银层的溶液,较好包含氰化金钾溶液。所述金镀液可包括任何的酸性、中性以及碱性的金镀液,较好包含酸性的氰化金钾溶液,该溶液包含例如柠檬酸等的有机酸。该金镀液还包含含有选自一水合柠檬酸三钾、无水柠檬酸和L-天冬氨酸的至少一种的氰化金钾溶液。该金镀液可含有钴作为光亮剂。另外,添加表面被含银层被覆的铜粉到金镀液的方法可以是如下方法等的任何方法:将金镀液与分散液进行混合,该分散液是将被覆有含银层的铜粉分散在例如水等的溶剂中形成的。当被覆有含银层的铜粉与金镀液进行接触时,被覆有含银层的铜粉较好分散在液体中。刚刚在将被覆有含银层的铜粉添加到金镀液后的液体中的金浓度较好在0.0001g/L~5g/L,更好在0.0002g/L~0.9g/L。如果被覆有含银层的铜粉被添加到金镀液之后的液体中的金浓度过高,因为除了没有被银被覆的铜粉外露部分以外,其他部分也被金被覆,增加了金的使用量,因而提高了成本,所以不理想。
对于铜粉的粒径,由激光衍射粒度分析仪(通过helos方法)测量的对应于铜粉的累积分布中的累积值50%的粒径(D50直径)较好在0.1μm~15μm的范围内,更好在0.3μm~10μm的范围内,最好在1μm~5μm的范围内。如果粒径(D50直径)不到0.1μm,因对银被覆铜粉的导电性有恶劣影响,所以不理想。相反,如果粒径(D50直径)超过15μm,因很难形成微细布线,所以不理想。
铜粉可通过湿式还原法、电解法、气相法等方法制得。较好通过所谓的雾化方法(例如,气体雾化方法或者水雾化方法),在不低于熔点温度的温度下熔化铜,一边使熔化铜从中间包(a tundish)下部滴下,一边使高压气体或者高压水冲击该熔化铜,以快速冷却凝固铜制得微细粉末。特别是如果通过喷洒高压水的所谓水雾化方法制得铜粉,则能获得具有小粒径的铜粉,在该铜粉被用作制备导电糊料时,就能增加颗粒之间的接触点的数量,所以就能提高导电糊料的导电性。
作为用含银层被覆铜粉的方法,可使用如下方法:通过置换法或者还原法将银或者银化合物沉积到铜粉的表面上。所述置换法使用以银置换铜的置换反应;所述还原法使用了还原剂。例如,可以采用一边搅拌溶剂中含有铜粉和银或者银化合物的溶液,一边使银或者银化合物沉积在铜粉的表面上的方法,以及一边搅拌混合溶液(该混合溶液通过将溶剂内含有铜粉和有机物质的溶液和溶剂内含有银或者银化合物和有机物质的溶液混合而制得的混合溶液),一边使银或者银化合物沉积在铜粉的表面上的方法等的方法。
作为溶剂,可用水、有机溶剂或者它们的混合溶剂。如果使用将水和有机溶剂混合而成的溶剂,要求使用室温下(20~30℃)为液体的有机溶剂,以及水对有机溶剂的混合比例可根据所用的有机溶剂的不同进行适当调整。作为用作溶剂的水,只要没有混入杂质的可能性,可使用蒸馏水、离子交换水、工业用水等。
作为含银层的原料,因为必须使银离子存在于溶液中,所以较好使用对水和许多有机溶剂都具有高溶解性的硝酸银。为了尽可能均匀地进行以含银层被覆铜粉的反应(银被覆反应),较好使用在溶剂(水、有机溶剂或者混合溶剂)中溶解硝酸银而制得的硝酸银溶液,而不使用固体的硝酸银。根据目的含银层的量来确定所用硝酸银溶液的量、硝酸银溶液中的硝酸银的浓度以及有机溶剂的量。
为了更加均匀地形成含银层,可添加螯合剂到溶液中。作为螯合剂,较好使用对铜离子等具有高复合物形成常数的螯合剂,以防止作为通过银离子与金属铜的置换反应的副产物形成的铜离子等的再沉淀。具体地,较好根据对铜的复合物形成常数来选择螯合剂,这是因为作为银被覆铜粉的核心的铜粉含有作为主要组成元素的铜。具体地作为螯合剂,可以使用选自下组的螯合剂:乙二胺四乙酸(EDTA)、亚氨基二乙酸、二亚乙基三胺、三亚乙基二胺及其盐。
为了稳定和安全地进行银被覆反应,可以向溶液中加入pH的缓冲液。作为pH的缓冲液,可以使用碳酸铵、碳酸氢铵、氨水或者碳酸氢钠等。
在进行银被覆反应时,较好向如下制得的溶液中加入含银盐的溶液:即该溶液是通过在加入铜粉之后并且在加入银盐之前搅拌该溶液来使铜粉充分分散的溶液。在该银被覆反应中的反应温度可以是不引起反应溶液的凝固和蒸发的温度。反应温度较好设为10~40℃,更优选15~35℃。反应时间可设为1分钟~5小时的范围内,但是其可以根据被覆银或银化合物的量以及反应温度的不同而变化。
另外,以含银层被覆的铜粉的形状(银被覆铜粉的形状)可实质上为球形或者薄片形。
实施例
按照本发明的银被覆铜粉及其制备方法的实施例会在下文中详细描述。
[实施例1]
准备通过雾化法制得的市售铜粉(由日本雾化金属粉末公司(Nippon Atomized Metal Powders Corporation)制造的雾化的铜粉SF-Cu(5μm))。求出该铜粉(被银被覆之前)的粒度分布,作为结果,对应于该铜粉的累积分布中的累积值10%的粒径(D10)为2.26μm。对应于该铜粉的累积分布中的累积值50%的粒径(D50)为5.20μm。对应于该铜粉的累积分布中的累积值90%的粒径(D90)为9.32μm。另外,该铜粉的粒度分布由激光衍射粒度分析仪(日机装株式会社(Nikkiso Co.,Ltd)制造的微-轨迹(Micro-Track)粒度分布测定仪MT-3300)测量以求出该铜粉的粒径D10、D50和D90。
接着,通过将1470g的EDTA-4Na(43%)和1820g的碳酸铵溶解在2882g的纯水中制得溶液(溶液1),通过添加235.4g的含有77.8g的银的硝酸银水溶液到将1470g的EDTA-4Na(43%)和350g的碳酸铵溶解在2270g的纯水中所制得溶液中以形成溶液(溶液2)。
然后,在氮气氛下将700g的前述铜粉添加到溶液1中,一边搅拌所制得的溶液,一边将该溶液温度提高到35℃。然后将溶液2添加到分散了所述铜粉的溶液中,搅拌该溶液30分钟。之后过滤该溶液,以水清洗,干燥得到以银被覆的铜粉(银被覆铜粉)。
然后,将制得的0.5g的银被覆铜粉添加到8g的纯水中,再添加到0.1mL的金镀液(酸性的金镀液)中,在室温下搅拌30分钟。之后,一边喷洒提取水,一边将溶液过滤,以纯水清洗滤纸上的固体物,通过真空干燥器在70℃下干燥该固体物5小时,制得金承载于表面的银被覆铜粉。另外,作为金镀液,使用了如下的金镀液:通过在含有20g/L金的氰化金钾溶液中,添加含有50重量%的一水合柠檬酸三钾、38.9重量%的无水柠檬酸、10重量%的L-天冬氨酸和1.1重量%的硫酸钴的建浴用添加剂而形成。滤液的量为77.7g,该滤液中的Au、Ag和Cu的浓度通过ICP质谱装置(ICP-MS)测得。作为结果,Au的浓度小于1mg/L,Ag的浓度小于1mg/L,Cu的浓度为120mg/L。
在将如此制得的银被覆铜粉(在表面承载了金)溶解于王水之后,添加纯水过滤,以氯化银的形式回收银。然后,以ICP质谱装置(ICP-MS)测定滤液中的Au的含量,由所回收的氯化银通过重量法求出Ag的含量。作为结果,银被覆铜粉中的Au的含量为0.60重量%,银被覆铜粉中的Ag的含量为11.0重量%。
然后,通过评价高温稳定性来对所获得的银被覆铜粉(金承载在表面上)的保存稳定性(可靠性)进行评价。银被覆铜粉(金承载在表面上)的高温稳定性的评价如下进行:首先,通过热重分析-差热分析仪(TG-DTA)求出银被覆铜粉(金承载在表面上)的重量(在大气中以升温速率10℃/分从室温(25℃)升温至400℃时,在200℃、250℃、300℃、350℃和400℃的温度测得的各个重量)与加热前测得的银被覆铜粉重量(40mg)之间的重量差(加热所增加的银被覆铜粉的重量)。然后,使用该分析仪求出重量增加百分比(%),该重量增加百分比(%)是前述重量差(加热所增加的银被覆铜粉的重量)对加热前的银被覆铜粉重量的增加百分比(%)。基于重量增加百分比(%)来评价大气中的银被覆铜粉(对于氧化)的高温稳定性,假定所有由加热增加的银被覆铜粉的重量都是由氧化增加的银被覆铜粉的重量。作为结果,200℃、250℃、300℃、350℃的重量增加百分比分别是0.10%、0.08%、0.37%和1.96%。
[实施例2]
除了将3g的实施例1获得的银被覆铜粉添加到15g的纯水、以及将金镀液的量定为0.55mL以外,其余都与实施例1同样获得金承载于表面的银被覆铜粉。再者,滤液的量为123.65g,Au,Ag和Cu在滤液的浓度通过与实施例1同样的方法测得。作为结果,Au的浓度小于1mg/L,Ag的浓度小于1mg/L,以及Cu的浓度为66mg/L。
通过与实施例1同样的方法测得所得银被覆铜粉(金承载于表面)中的Au和Ag的含量。其结果是:Au的含量为0.30重量%,Ag的含量为11.0重量%。
通过与实施例1同样的方法求出所得银被覆铜粉(金承载于表面)在200℃、250℃、300℃、350℃的重量增加百分比。其结果是:200℃、250℃、300℃、350℃的重量增加百分比分别是0.11%、0.10%、0.63%和2.63%。
[实施例3]
除了将3g的实施例1获得的银被覆铜粉添加到15g的纯水、以及将金镀液的量定为0.25mL以外,其余都与实施例1同样获得金承载于表面的银被覆铜粉。再者,滤液的量为74.74g,Au,Ag和Cu在滤液的浓度通过与实施例1同样的方法测得。其结果是:Au的浓度小于1mg/L,Ag的浓度小于1mg/L,以及Cu的浓度为99mg/L。
通过与实施例1同样的方法测得所得银被覆铜粉(金承载于表面)中的Au和Ag的含量。其结果是:Au的含量为0.16重量%,Ag的含量为10.1重量%。
通过与实施例1同样的方法求出所得银被覆铜粉(金承载于表面)在200℃、250℃、300℃、350℃的重量增加百分比。其结果是:200℃、250℃、300℃、350℃的重量增加百分比分别是0.10%、0.17%、0.88%和3.26%。
[实施例4]
除了将5g的实施例1获得的银被覆铜粉添加到15g的纯水、以及将金镀液的量定为0.25mL以外,其余都与实施例1同样获得金承载于表面的银被覆铜粉。再者,滤液的量为110.5g,Au,Ag和Cu在滤液的浓度通过与实施例1同样的方法测得。其结果是:Au的浓度小于1mg/L,Ag的浓度小于1mg/L,以及Cu的浓度为110mg/L。
通过与实施例1同样的方法测得所得银被覆铜粉(金承载于表面)中的Au和Ag的含量。其结果是:Au的含量为0.09重量%,Ag的含量为10.1重量%。
通过与实施例1同样的方法求出所得银被覆铜粉(金承载于表面)在200℃、250℃、300℃、350℃的重量增加百分比。其结果是:200℃、250℃、300℃、350℃的重量增加百分比分别是0.09%、0.21%、0.87%和3.36%。
[实施例5]
除了将7g的实施例1获得的银被覆铜粉添加到15g的纯水,并将其添加到0.25mL的由含49g/L金的氰化金钾溶液构成的金镀液中以外,其余都与实施例1同样获得金承载于表面的银被覆铜粉。再者,滤液的量为84.82g,Au、Ag和Cu在滤液的浓度通过与实施例1同样的方法测得。其结果是:Au的浓度小于5mg/L,Ag的浓度小于1mg/L,以及Cu的浓度为4mg/L。在该实施例中,因为没有添加柠檬酸等,所以金镀液不是酸性,由此不易进行金镀反应,所以Au存在滤液中。
通过与实施例1同样的方法测得所得银被覆铜粉(金承载于表面)中的Au和Ag的含量。其结果是:Au的含量为0.17重量%,Ag的含量为10.1重量%。
通过与实施例1同样的方法求出所得银被覆铜粉(金承载于表面)在200℃、250℃、300℃、350℃的重量增加百分比。其结果是:200℃、250℃、300℃、350℃的重量增加百分比分别是0.06%、0.24%、1.07%和3.34%。
[实施例6]
除了从包含0.91g的含10g/L金的氰化金钾溶液、1.87g的一水合柠檬酸三钾以及0.07g的无水柠檬酸的溶液中分出1mL的金镀液用作金镀液,且将3g的实施例1获得的银被覆铜粉添加到15g的纯水以外,其余都与实施例1同样获得金承载于表面的银被覆铜粉。再者,滤液的量为100.57g,Au、Ag和Cu在滤液的浓度通过与实施例1同样的方法测得。其结果是:Au的浓度小于1mg/L,Ag的浓度小于1mg/L,以及Cu的浓度为83mg/L。
通过与实施例1同样的方法测得所得银被覆铜粉(金承载于表面)中的Au和Ag的含量。其结果是:Au的含量为0.70重量%,Ag的含量为10.9重量%。
通过与实施例1同样的方法求出所得银被覆铜粉(金承载于表面)在200℃、250℃、300℃、350℃的重量增加百分比。其结果是:200℃、250℃、300℃、350℃的重量增加百分比分别是0.13%、0.13%、0.81%和2.95%。
[实施例7]
除了从添加0.05g的一水合柠檬酸三钾和0.041g的无水柠檬酸到5mL的含有10g/L金的氰化金钾溶液中所形成的溶液中分出1mL的金镀液用作金镀液,且将10g的实施例1获得的银被覆铜粉添加到15g的纯水以外,其余都与实施例1同样获得金承载于表面的银被覆铜粉。再者,滤液的量为123.9g,Au、Ag和C u在滤液的浓度通过与实施例1同样的方法测得。其结果是:Au的浓度小于1mg/L,Ag的浓度小于1mg/L,以及Cu的浓度为120mg/L。
通过与实施例1同样的方法测得所得银被覆铜粉(金承载于表面)中的Au和Ag的含量。其结果是:Au的含量为0.01重量%,Ag的含量为10.1重量%。
通过与实施例1同样的方法求出所得银被覆铜粉(金承载于表面)在200℃、250℃、300℃、350℃的重量增加百分比。其结果是:200℃、250℃、300℃、350℃的重量增加百分比分别是0.15%、0.31%、0.99%和3.52%。
[实施例8]
除了从添加0.05g的一水合柠檬酸三钾、0.041g的无水柠檬酸以及0.0085g的L-天冬氨酸到5mL的含有10g/L金的氰化金钾溶液中所形成的溶液中分出1mL的金镀液用作金镀液,且将10g的实施例1获得的银被覆铜粉添加到15g的纯水以外,其余都与实施例1同样获得金承载于表面的银被覆铜粉。再者,滤液的量为88g,Au、Ag和Cu在滤液的浓度通过与实施例1同样的方法测得。其结果是:Au的浓度小于1mg/L,Ag的浓度小于1mg/L,以及Cu的浓度为140mg/L。
通过与实施例1同样的方法测得所得银被覆铜粉(金承载于表面)中的Au和Ag的含量。其结果是:Au的含量为0.01重量%,Ag的含量为10.3重量%。
通过与实施例1同样的方法求出所得银被覆铜粉(金承载于表面)在200℃、250℃、300℃、350℃的重量增加百分比。其结果是:200℃、250℃、300℃、350℃的重量增加百分比分别是0.14%、0.28%、0.96%和3.57%。
[比较例1]
通过与实施例1同样的方法测得实施例1制得的银被覆铜粉(没有将银被覆铜粉添加到金镀液中,所以就没有金承载于表面)中的Ag的含量。其结果是:Ag的含量为10.9重量%。通过与实施例1同样的方法求出银被覆铜粉在200℃、250℃、300℃、350℃的重量增加百分比。其结果是:200℃、250℃、300℃、350℃的重量增加百分比分别是0.16%、0.46%、1.27%和3.80%。
[比较例2]
准备通过雾化法制得的市售铜粉(由日本雾化金属粉末公司制造的雾化铜粉SFR-5μm)。通过与实施例1同样的方法求出该铜粉的粒度分布,作为结果,该铜粉的粒径D10为2.12μm,该铜粉的粒径D50为4.93μm,该铜粉的粒径D90为10.19μm。
接着,通过将含有38.89g银的123.89g的硝酸银的水溶液添加到将337.83g的EDTA-4Na(43%)和9.1g的碳酸铵溶解到1266.3g的纯水中所形成的溶液中制得溶液(溶液1),通过将735g的EDTA-4Na(43%)和175g的碳酸铵溶解到1133.85g的纯水中制得溶液(溶液2)。
然后,在氮气氛下将350g的前述铜粉添加到溶液1中,一边搅拌所制得的溶液,一边将该溶液温度提高到35℃。然后将溶液2添加到分散了所述铜粉的溶液中,搅拌该溶液30分钟。之后过滤该溶液,以水清洗,干燥得到以银被覆的铜粉(银被覆铜粉)。通过与实施例1同样的方法测得该银被覆铜粉中的Ag的含量,其结果是:Ag的含量为10.1重量%。
通过与实施例1同样的方法求出所制得的银被覆铜粉在200℃、250℃、300℃、350℃的重量增加百分比。其结果是:200℃、250℃、300℃、350℃的重量增加百分比分别是0.22%、0.46%、1.07%和2.74%。
[实施例9]
首先,通过如下制得金镀液:
将1.4633g的氰化金钾(由小岛化学公司制得)、0.8211g的无水柠檬酸(由和光纯药工业株式会社制得)、0.1708g的L-天冬氨酸(由和光纯药工业株式会社制得)以及0.9998g的一水合柠檬酸三钾添加到100g的纯水中,在30℃将其搅拌11分钟而制得。
然后,将100g的比较例2制得的银被覆铜粉添加到150g的纯水,再添加10.299g的前述的金镀液,在30℃将其搅拌30分钟,然后一边喷洒提取水,一边过滤该溶液,之后,以纯水清洗滤纸上的固体物,通过真空干燥器在70℃下将其干燥5小时,制得金承载于表面的银被覆铜粉。滤液的量为650g。通过与实施例1同样的方法测量该滤液中的Au、Ag和Cu的浓度,作为结果,Au的浓度为2mg/L,A g的浓度小于1mg/L,Cu的浓度为150mg/L。
通过与实施例1同样的方法测得银被覆铜粉(金承载于表面)中的Au和Ag的含量。其结果是:Au的含量为0.10重量%,Ag的含量为10.0重量%。
通过与实施例1同样的方法求出银被覆铜粉(金承载于表面)在200℃、250℃、300℃、350℃的重量增加百分比。其结果是:200℃、250℃、300℃、350℃的重量增加百分比分别是0.13%、0.27%、0.80%和2.27%。
将各个实施例和比较例所获得的银被覆铜粉的制备条件和性质显示在表1~3中。图1显示了实施例1~5和比较例1所制得的各个银被覆铜粉的重量增加百分比对温度的情况。
表1
表2
表3
如表1-3和图1所示那样,各个实施例中的金承载于表面的银被覆铜粉的大气压中加热后的重量增加百分比均小于各个比较例的无金承载于表面的银被覆铜粉的重量增加百分比。其原因被认为是因为这样可改善抗氧化性而使保存稳定性(可靠性)优异。
从在制备各个实施例的金承载于表面的银被覆铜粉时获得的滤液中具有非常低浓度的Ag和高浓度的Cu来看,可推测金选择性地镀敷于铜粉外露部分(没有被银涂覆)。因此,非常少量金被覆于铜粉外露部分(没有被银涂覆)能改善银被覆铜粉的抗氧化性,以使能制得具有优异的保存稳定性(可靠性)的银被覆铜粉。
通过使用行星式离心真空脱气混合机(株式会社新基社(株式会社シンキー社)制脱泡练太郎)将87.0重量%的比较例2和实施例9的各个银粉、3.8重量%的环氧树脂(三菱化学公司制得的JER1256)、8.6重量%的作为溶剂的丁基卡必醇乙酸酯(由和光纯药工业株式会社制得)、0.5重量%的固化剂(味之素微技术公司制得的M-24)和0.1重量%的作为分散剂的油酸(由和光纯药工业株式会社制得)混合(预混炼)后,用三辊研磨机(奥托赫尔曼公司(オットハーマン社)制EXAKT 80S)对得到的混合物进行混炼,得到导电糊料1。
另外,将45L的工业氨水加入到502.7L的含有21.4g/L银离子的硝酸银溶液中,以形成银氨络合物溶液。通过添加8.8L的含有100g/L的氢氧化钠的氢氧化钠溶液以调整所制得的银氨络合物溶液的pH。通过添加462L的水稀释该溶液,并向其中添加作为还原剂的48L的工业福尔马林,紧接着向其中添加含有16重量%的硬脂酸的121g的硬脂酸乳液,形成银糊料,以对其过滤、以水清洗、干燥,获得21.6kg的银粉。以亨歇尔混合机(高速混合机)对该银粉进行表面光滑处理后,进行分级以除去大于11μm的大的银凝集体。
然后,通过使用行星式离心真空脱气混合机(株式会社新基社(株式会社シンキー社)制脱泡练太郎)将85.4重量%的所制得的银粉、1.2重量%的乙基纤维素(由和光纯药工业株式会社制得)、7.9重量%的溶剂(是以1:1含有texanol(由J MC公司制得)和丁基卡必醇乙酸酯(由和光纯药工业株式会社制得)的混合溶剂)、作为添加剂的1.5重量%的玻璃料(由旭硝子公司制得的ASF-1898B)和3.2重量%的二氧化碲(由和光纯药工业株式会社制)混合(预混炼)后,通过三辊研磨机(奥托赫尔曼公司制EXAKT 80S)混炼,得到导电糊料2。
然后,准备二片硅晶片(由E&M公司制得,80Ω/□、6英寸单晶)。在用丝网印刷机(微技术株式会社制MT-320T)将铝浆(东洋铝株式会社制ALSOLAR14-7021)印刷在每个硅晶片的背面上后,使用热风型干燥器在200℃下干燥10分钟。然后,在用丝网印刷机(微技术株式会社制MT-320T)将如上所述的导电糊料2以100个宽50μm的指状电极的形状印刷在各个硅晶片的表面(正面)后,使用热风型干燥器在200℃下干燥10分钟,然后,在高速烧成IR炉(日本绝缘子株式会社(日本ガイシ株式会社)制快速烧成试验四室炉)中在峰值温度820℃下以进出时间21秒钟进行烧成,然后,通过丝网印刷机(微技术株式会社制MT-320T)将导电糊料1(导电糊料1由比较例2和实施例9的银被覆铜粉制得)以三个宽1.3mm的母线电极的形状印刷在每个硅晶片的表面(正面),然后,使用热风型干燥器在200℃下干燥40分钟,进行固化制得太阳能电池。
然后,通过用太阳模拟器(和冠电创株式会社制)的氙灯对上述太阳能电池照射光照射能量100mWcm2的模拟太阳光,进行电池特性试验。其结果是:由比较例2和实施例9的导电糊料制得的太阳能电池的转化效率Eff分别为18.34%和20.12%。
作为耐候性试验(可靠性试验),各个前述太阳能电池被放入温度设定在85℃和湿度设定为85%的恒温恒湿试验腔室内,分别求出24小时和48小时后的转化效率Eff,其结果是:由比较例2的导电糊料制得的太阳能电池在24小时后的转化效率Eff为17.87%,48小时后的转化效率Eff为16.79%。由实施例9的导电糊料制得的太阳能电池在24小时后的转化效率Eff为19.18%,48小时后的转化效率Eff为18.90%。这些结果表示在图2中。从这些结果可知:如果使用金承载于表面的银被覆铜粉形成太阳能电池的母线电极,即使在耐候性试验后,也能抑制转化效率的降低。