一种用于制备铝(铜)基复合材料的金刚石预制体制备方法与流程

文档序号:12415818阅读:249来源:国知局

本发明涉及金属基复合材料,特别提供一种用于制备铝(铜)基复合材料的金刚石预制体的制备方法,适用于制备高性能金刚石预制体,以提高预制体的强度与增强效果,为铝、铜基热管理复合材料的制备解决关键问题。



背景技术:

现代光电元器件高密度集成化和大功率化对高导热、耐热冲击、低热膨胀材料的需求日益紧迫。航空航天部门根据目前的光电部件的功率密度(如北斗系列导航卫星、机载有源相控阵雷达等),明确提出了对高导热材料的迫切需求。然而,传统金属材料无法满足现代光电元器件高密度集成化和大功率化对散热的要求的(纯银~412W/m·K;退火铜~390W/m·K)。尤为重要的是,金属材料的热膨胀系数较高,在宽温域服役工况下与光电和精密器件等(如高分辨空间相机)的不匹配问题越来越突出。这对材料的热膨胀和导热等综合性能提出了更高的要求,亟需开发具有低热膨胀、高导热等优异综合性能的新型材料。

金刚石因具有优异的热物理性能而引起了广泛关注,其热导率高达~2000W/m·K,并具有低的密度(3.5g/cm3)与热膨胀系数(2.0×10-6/K)。将一定量的金刚石颗粒添加到具有高热导的铝、铜类金属基体中制成复合材料,即可利用金属易于成形、抗热冲击性好的特点,又可兼顾金刚石优异的热物理性能。因此,金刚石增强金属基复合材料已经成为国内外高导热材料的研究热点之一。

然而,需要指出的是,作为碳材料,金刚石与金属基体之间的物理、冶金性能差异巨大,无论在晶体结构、成键方式等本征属性还是在弹性模量、热膨胀系数等性能上都存在显著差异,而且易与金属发生化学反应,二者间存在诸多明显的不相容性。因此,要想制备出性能良好的金刚石/金属复合材料需要攻克一系列的相关难题:

(1)润湿性差,使材料制备时难以致密,分散度差,界面结合力弱。

(2)化学相容性差,易生成有害界面反应物,如高温下碳与Al容易发生界面反应生成针状的脆性Al4C3相,不利于复合材料的导热性能。

(3)物理相容性差,导热时碳材料和金属中起主导作用的分别是声子和电子。导热机制不同使传热方式不协调,在界面处产生很高的热阻,使强化作用难以发挥。

(4)力学相容性差,主要表现为弹性模量和弹塑性变形特性方面的巨大差异,在界面处产生的微观应力集中或形成缺陷,甚至导致界面脱粘或孔洞裂纹萌生。还会影响内应力场分布,产生弹性错配和塑性错配残余应力,与热错配残余应力叠加产生界面错配应力。

以带有涂层的金刚石颗粒制备铝(铜)基复合材料的研究工作目前在国际上尚处于起步阶段,相关的报道有限。

粉末冶金法工艺相对简单,温度较低,界面反应易于控制。对于SPS法制备的45~60vol.%TiC@金刚石/Cu复合材料,当金刚石颗粒直径为~75μm时,体积分数为50%的导热性能最好,热导率达473W/m·K(Y.Zhang,H.L.Zhang,J.H.Wu,X.T.Wang,Scripta Mater.2011,65:1097);当金刚石粒径为~180μm时,热导率达630W/m·K(Q.L.Che,J.J.Zhang,X.K.Chen,Y.Q.Ji,Y.W.Li,Mater.Sci.in Semiconductor Process.2015,33:67)。这应归因于较大的颗粒尺寸降低了界面面积,减小了界面热阻的影响。但该方法会引入氧元素及其它杂质,材料致密化程度也很难控制。另外,该方法制备的多是块状坯料,对后续的机加工切割造成极大困难。

相比之下,相同成分时,液相法制备的材料性能明显优于固相法,但液相温度高,界面调控更难,对界面调控与制备技术提出更高要求。对于气压浸渗法制备的50vol.%TiC@金刚石(~200μm)增强Cu基复合材料,其热导率达到716W/m·K(J.Li,H.Zhang,Y.Zhang,Z.F.Che,X.T.Wang,J of Alloys Compd.2015,647:941);通过在基体中添加少量Zr元素,利用界面反应在金刚石表面形成了ZrC层(~200nm),复合材料的热导率可达930W/m·K(J.W.Li,X.T.Wang,Y.Qiao,Y.Zhang,Z.B.He,Scripta Mater.2015,109:72)。在760℃、浸渗45min的条件下,气压浸渗法制备的金刚石/Al复合材料的热导率可达630W/m·K(J.M.Molina,M.Rheme,J.Carron,Scripta Mater.2007,58:393)。由于需要先将金刚石颗粒制备成预制体,工艺相对复杂。目前采用的金刚石多为大粒径,预制体中金刚石之间的搭接点较少,导致金刚石预制块的自身强度较低,这就要求尽可能采用较低的浸渗压力,但压力低不利于液态金属填充颗粒孔隙,并增加浸渗时间。此外,液相法可近净成形,有利于减少切削加工。

尽管液态法制备的金刚石增强铝(铜)基复合材料的导热性能已展现出很好的发展态势,但其导热性能仍有进一步提升空间。其中,金刚石预制体的制备非常关键,对复合材料的最终性能有重要影响。然而,目前关于金刚石预制体的研究还存在如下问题:

(1)表面涂层制备困难。

(2)预制体为过滤液体后的颗粒沉积形成,颗粒之间依靠搭接,结合强度难以保证,液相浸渗过程中熔融金属会推动金刚石移动,复合材料中金刚石的分布不均匀,是引起缺陷的主要原因之一。

(3)导热时碳材料和金属中起主导作用的分别是声子和电子,使传热方式不协调在界面处产生很高的热阻,使强化作用难以发挥。而常规预制体制备工艺中,颗粒之间为自然接触,无实质性连通,处于“孤岛”状态,切断了声子的传导通道,是复合材料的导热性能很难提高的主要原因。

本申请针对这一问题,开发了一种用于制备铝(铜)基热管理复合材料的金刚石预制体的制备方法,将金刚石表面涂层与预制体制备合二为一,在金刚石搭接点处形成碳化物烧结点,提高预制体强度,并实现金刚石预制体的网络连通,有利于提高其热传导效率。



技术实现要素:

本发明的目的在于提供一种用于制备铝(铜)基热管理复合材料的金刚石预制体的制备方法,适用于制备金属基复合的金刚石增强体制备。

本发明具体提供了一种用于制备铝(铜)基热管理复合材料的金刚石预制体制备方法,其特征在于:将金刚石表面涂层与预制体制备步骤合二为一,采用溶胶-凝胶法与熔盐法对金刚石颗粒进行表面碳化物涂覆处理,在石墨模具中制备成具有一定孔隙率的预制体坯料。对石墨模具连同预制体坯料进行真空焙烧,在获得预制的同时,在金刚石颗粒表面获得一层纳米级涂层,以改善与基体浸润性的同时,在颗粒搭接点处形成碳化物烧结点,实现焊接强化,提高预制体强度,并实现预制体的网络连通,有利于提高其热传导效率。

以制备TiC涂层为例:以钛酸丁酯(Ti(OC4H9)4)为前驱体制备TiO2溶胶,以乙酰丙酮作为螯合剂,硝酸作为抑制剂。钛酸丁酯、无水乙醇、去离子水、乙酰丙酮的比例为1:(8-12):(0.5-2):(0.1-0.5),首先将去离子水与三分之一的无水乙醇混合,用硝酸调节pH值到3左右,得到第一份溶液。将钛酸丁酯和乙酰丙酮溶液加入到其余的无水乙醇中得到第二份溶液。将第一份溶液倒入第二份溶液中,获得均匀透明的溶胶。将金刚石颗粒与溶胶共同放入石墨模具中,浸泡2-5小时,并在室温下干燥3-5天,然后将盛有金刚石颗粒的石墨模具在1300-1500℃下真空烧结3-5小时,得到金刚石预制体。

作为优选的技术方案,所述金刚石颗粒尺寸为100-300μm。碳化物涂层主要成分可以为TiC、WC、SiC、CrC和NbC。预制体坯料孔隙率为40-60%。真空焙烧温度为1200-1600℃(优选1300-1500℃),时间为1-10小时(优选3-5小时)。碳化物涂层厚度为10-100nm。

本发明所述方法,具体过程为:首先采用改进的溶胶-凝胶法与熔盐法对尺寸为100-300μm金刚石颗粒进行表面碳化物涂覆处理,并制备成孔隙率为40-60%的预制体坯料。然后在真空环境下,对预制体坯料进行焙烧,焙烧温度为1200-1600℃,时间为1-10小时。最终碳化物涂层厚度为10-100nm,并实现颗粒接触点间的碳化物焊接。

本发明创造性的将金刚石表面涂层与预制体制备步骤合二为一,在金刚石搭接点处形成碳化物烧结点,提高预制体强度,并实现金刚石预制体的网络连通,有利于提高其热传导效率,解决了传统工艺中的不足,有理由相信这种新工艺将有着广阔的工业应用前景。

具体实施方式:

下面的实施例将对本发明予以进一步的说明,但并不因此而限制本发明。

实施例1

采用溶胶-凝胶法与熔盐法对尺寸为200μm的金刚石颗粒进行成分为TiC与CrC表面涂覆处理,并制备成孔隙率为50%的预制体坯料。然后在真空环境下,对预制体坯料进行焙烧,温度为1300-1500℃,时间为3小时。涂层厚度50nm,颗粒接触点间存在碳化物焊接现象。进行铝液浸渗时,无界面反应,预制体未出现裂纹。

对比例1

采用常规的过滤法将尺寸为150μm的金刚石颗粒制备成孔隙率为50%的预制体坯料。进行铝液浸渗时,金刚石在高温下与铝液发生严重的界面反应,预制体出现裂纹,形成铝线缺陷。

对比例2

采用溶胶-凝胶法与熔盐法对尺寸为100μm金刚石颗粒进行成分为TiC表面涂覆处理,涂层厚度20nm。然后制备成孔隙率为50%的预制体坯料。进行铝液浸渗时,由于存在涂层,防止了金刚石与铝液间的界面反应,但预制体出现裂纹,形成铝线缺陷。

实施例2

采用溶胶-凝胶法与熔盐法对尺寸为100μm金刚石颗粒进行成分为SiC表面涂覆处理,并制备成孔隙率为40%的预制体坯料。然后在真空环境下,对预制体坯料进行焙烧,温度为1300-1500℃,时间为5小时。涂层厚度90nm,颗粒接触点间存在碳化物焊接现象。进行铝液浸渗时,无界面反应,预制体未出现裂纹。

实施例3

采用溶胶-凝胶法与熔盐法对尺寸为300μm金刚石颗粒进行成分为TiC表面涂覆处理,并制备成孔隙率为60%的预制体坯料。然后在真空环境下,对预制体坯料进行焙烧,温度为1200-1300℃,时间为3小时。涂层厚度30nm,颗粒接触点间存在碳化物焊接现象。进行铝液浸渗时,无界面反应,预制体未出现裂纹。

上述实施例只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡根据本发明精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围之内。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1