通过使用基于氮化钼的涂层的磨损和/或摩擦减少的制作方法

文档序号:14072384阅读:362来源:国知局

本发明涉及用于在部件的表面上获得减少的磨损或减少的摩擦的涂层。此类部件例如可以用于汽车领域或紧密部件(即,高度工程化部件)领域中。在此方面,这些部件可以是例如活塞销、凸轮从动件或活塞环或喷嘴针。



背景技术:

使用钼涂层或包括涂层的钼众所周知。特别地,在部件的表面上使用氮化钼作为磨损减少涂层众所周知。

然而,部件的衬底表面与氮化钼涂层之间的界面的行为现今仍不令人满意,并且不足以在如此涂覆的部件的应用期间满足当前工业要求。

当待涂覆衬底材料不够硬时,已经尤其观察到此情况,这意味着,在此背景下,衬底材料具有例如在50-65hrc之间、在任何情况下不高于65hrc的硬度。

具体实施方式

图1示出在洛氏压痕hrc之后经涂覆表面的图片,其中衬底的硬度在50与65hrc之间,并且衬底涂覆有mon。围绕hrc洛氏压痕可以清楚观察到mon涂层的环形断裂。

所观察到的环形断裂可能已经由于mon涂层的硬度和杨氏模量与衬底材料的硬度和杨氏模量之间的巨大差异而产生。可想像的,由于实际上氮化钼涂层的硬度和杨氏模量与衬底相比显著较高,并且因此衬底可能已经在压痕负载的施加期间显著变形,而mon涂层较少变形,并且因此mon涂层破裂。

为此,当可变负载(间歇性负载)施加在部件的经涂覆衬底上时,这可能特别是一个大问题。

实质上,此问题可通过使用具有较高硬度的衬底(诸如例如由硬质合金制成的衬底)来避免。然而,在许多汽车应用中使用的部件由具有低于65hrc的洛氏硬度的材料制成。

本发明的目的是改性氮化钼涂层和/或待涂覆的衬底表面,以便当衬底展现65hrc或更低的硬度并且经涂覆衬底经受负载或尤其经受间歇性负载时改善衬底表面与mon涂层之间的接触。

尤其,旨在的是,本发明解决方案使得当衬底硬度低于或等于65hrc时在洛氏压痕期间通过在涂覆有基于mon的涂层的衬底中进行hrc洛氏测试无环形断裂线产生。

本发明的目的通过提供根据权利要求1的在衬底表面与包括至少一个mon层的涂层之间具有层或层系统的部件来达成。

发明人发现,令人惊讶的是,可通过使待涂覆有mon涂层的衬底经受氮化过程来避免环形断裂线,其中衬底表面硬度在沉积mon涂层之前增加。然后,将mon涂层施加在通过上述氮化而先前硬化的部件表面上。

在本发明的背景中,mon涂层通过使用反应性pvd工艺沉积。

特别地,反应性电弧pvd工艺被证明适于在如上所述硬化的部件表面上沉积mon涂层。

所使用方法的特别优点是:衬底的氮化过程和涂覆过程可以在涂覆机的相同真空室中进行。

以此方式,保证氮化层与涂层之间的良好粘附,而不形成白色层。

可以沉积mon涂层,其展现六角相或立方相或六角相和立方相的混合。

图2示出根据上述发明解决方案涂覆的表面的图片,其然后根据标准hrc洛氏测试来测试。在此图中,清楚看见,无法观察到围绕洛氏压痕的环形断裂线。

发明人还令人惊讶地发现,可通过借助经改性mon涂层使部件的衬底表面经受涂覆来避免环形断裂线。在此情况下,无需先前改性待涂覆的部件表面,这意味着不需要先前的氮化步骤。

具体来说,发明人提出应用多层结构的mon/crn涂层,其包括交替沉积的mon单独层和crn单独层。当多层涂层的厚度为约4至5μm时,通过使用此第二发明解决方案特别观察到特别良好的结果,即,无环形断裂线或进一步粘合失效的洛氏压痕。

在此情况下,还可以沉积mon层,其展现六角相或立方相或六角相和立方相的混合。

如上所述,使用此第二发明解决方案,需要约4至5μm的多层结构mon/crn涂层的厚度用于在hrc洛氏测试之后获得图片,其示出无环形断裂线,并且也没有进一步粘合失效的迹象。然而,可能此种但具有小于4μm的厚度的mon/crn多层涂层适于特定应用,因为实际应用中的负载可能不像在hrc洛氏测试中那样高。在此情况下,例如2μm的厚度可能对施用于在在真实汽车应用中使用的部件上的mon/crn多层涂层足够。

可以例如通过使用反应性pvd工艺沉积mon和crn单独层。根据第二发明解决方案的优选实施例,反应性电弧pvd工艺用于沉积多层涂层的mon和crn单独层。

由于如在第一发明解决方案中所述,待涂覆有mon涂层的部件表面必须先前被氮化,并且标准氮化过程在450℃或更高的温度下进行,仅由可抵抗此温度的材料制成的部件可以以此方式处理。

在此方面,第二发明解决方案(使用mon/crn多层涂层)涉及以下优点:涂覆过程可以在低于450℃的温度(例如200℃)下进行。由于已经提及的那样不需要氮化步骤,因此可以处理由温度敏感材料制成的部件,像例如活塞销。

观察到,在一些情况下,在本发明的背景中,通过提供由crn制成的粘附层获得进一步经改善接触。此粘附层例如分别在根据第一发明解决方案沉积mon涂层之前或在根据第二发明解决方案沉积经改性mon涂层之前沉积。优选地提供crn粘附层,其具有至少30nm的层厚度。crn粘附层的厚度优选地在0.05μm与1μm之间。

特别地,在关于本发明的实验的背景中,借助第一和第二发明解决方案处理类型活塞销、凸轮从动件、活塞环和喷嘴针的部件。

特别非常令人惊奇的是,根据第一发明解决方案处理的凸轮从动件在氮化步骤之后并不示出任何损坏。然而,可以根据本发明处理的部件不受此说明书的限制。

根据本发明(根据第一以及第二发明解决方案)处理的部件的表面另外展现非常良好的摩擦学性质,特别是关于耐磨性的增加。

实例:根据本发明处理不同汽车和紧密部件,并且获得关于耐磨性的增加的巨大改进。

在下文中,将使用凸轮从动件的实例更详细地解释本发明。一些凸轮从动件根据目前工艺水平处理,并且其它凸轮从动件根据本发明的一些优选实施例处理。随后,所有经处理凸轮从动件经受不同分析和测试。

由在涂覆具有钢表面的测试件之前具有硬度64hrc的1.284219mncrv8制成的合格参考样品(下文称为qrs)和至少一个凸轮从动件经受以下处理:

处理a(目前工艺水平):qrs和待测试凸轮从动件的表面涂覆有具有在qrs上大约2.5μm并且在凸轮从动件上4.5μm的厚度的mon层。在mon层与凸轮从动件的表面之间,沉积具有大约50nm的厚度的薄crn层作为粘附层。该mon层通过使用反应性电弧pvd技术沉积。通过mon层的沉积,mo靶在包括氮气作为反应气体的真空气氛中电弧汽化。氮气分压维持在3pa,并且衬底温度(即,被处理的凸轮从动件的表面的温度)为大约200℃。形成mon层,其基本上包括仅氮化钼的六角相。

处理b(本发明):qrs和待测试凸轮从动件的表面涂覆有与处理a中所述相同的涂层,但是凸轮从动件表面先前经受硬化步骤,该硬化步骤包括在包括氮气的真空室中执行等离子体氮化过程。衬底温度(在经受处理的表面处测量的部件的温度)为大约480℃。以此方式,形成具有大约50μm的厚度的硬化含氮表面层。随后,通过使用反应性电弧pvd技术沉积mon层。通过mon层的沉积,mo靶在包括氮气作为反应气体的真空气氛中电弧汽化。氮气分压维持在3pa,并且衬底温度(即,被处理的凸轮从动件的表面的温度)为大约480℃。形成mon层,其包括氮化钼的六角相和至少一个立方相的混合。对于一些实验,沉积具有大约50nm的厚度的薄crn层作为mon层与硬化含氮表面层之间的粘附层。

处理c(本发明):qrs和待测试凸轮从动件的表面如处理b中所述类似处理,但是在硬化步骤之后,冷却涂覆室,直到待涂覆衬底达到大约200℃的温度,并且然后通过使用3pa的氮气分压、但大约200℃的衬底温度沉积mon层。以此方式,形成mon层,其基本上包括仅氮化钼的六角相。硬化含氮表面层的厚度为大约50μm。mon层的厚度为在qrs上约2.5μm和在凸轮从动件上4.5μm。对于一些实验,沉积具有大约50nm的厚度的薄crn层作为mon层与硬化含氮表面层之间的粘附层。

处理d(本发明):qrs和待测试凸轮从动件的表面涂覆有具有在qrs和凸轮从动件两者上大约4的厚度的多层mon/crn涂层膜。该多层mon/crn涂层膜通过使用反应性电弧pvd技术进行沉积。通过多层mon/crn涂层膜的沉积,一个mo靶和一个cr靶在包括氮气作为反应气体的真空气氛中电弧汽化。氮气分压维持在3pa,并且衬底温度为大约200℃。mon单独层和crn单独层如图3中所示彼此交替沉积。对于一些实验,沉积具有大约50nm的厚度的薄crn层作为多层mon/crn涂层膜与待涂覆表面之间的粘附层。在此情况下,qrs和凸轮从动件表面不通过使其经受如在处理b和c中所述的硬化步骤来改性。

图3示出根据本发明的对应于沉积在凸轮从动件上的多层mon/crn涂层膜的一部分的横截面的图片。

在多层mon单独层的沉积期间,仅mo靶电弧汽化,同样,在crn单独层的沉积期间,仅cr靶电弧汽化。在mon单独层与crn单独层之间沉积中间层。在中间层的沉积期间,mo靶和cr靶两者同时被电弧汽化。以此方式,形成mocrn中间层(即,包括cr、mo和n的中间层)。

包括在以此方式沉积的多层mon/crn涂层膜中的单独mon层包括氮化钼的六角相和至少一个立方相的混合。

经处理qrs通过使用hrc洛氏测试来测试,并且凸轮从动件在多达200小时期间在不同旋转速度下通过使用发动机阀测试来测试。

发明人观察到,借助根据目前工艺水平的处理a处理的凸轮从动件的所有表面在不连续机械负载测试之后呈现强烈磨损,并且实际上,在所有情况下,涂层在2小时之后完全被移除,并且凸轮从动件自身示出深磨损凹槽。

相反,借助根据本发明的处理b、c和d处理的凸轮从动件的所有表面在发动机测试中在200小时之后令人惊讶地呈现实际上无磨损。在这些情况下观察到的最高磨损为0.35μm。这意味着,在最糟糕情况下,从总涂层厚度仅移除0.35μm。

qrs的经处理表面通过使用如上所述hrc洛氏测试来测试。借助根据目前工艺水平的处理a处理的qrs的所有表面在hrc洛氏测试之后呈现环形断裂。相反,借助根据本发明的处理b、c和d处理的qrs的所有表面在hrc洛氏测试之后令人惊讶地呈现无环形断裂。

具体来说,本发明涉及:

-一种包括涂覆有涂层的衬底表面的部件,所述涂层包括具有不小于40nm的厚度的至少一个mon层,其中在所述衬底表面与所述至少一个mon层之间包括衬底表面硬化层,其是硬化的含氮衬底表面层并且具有不小于10μm、优选地不小于20μm并且不大于150μm的厚度,所述硬化的含氮衬底表面层通过在所述衬底表面处进行氮化处理产生,

或者

-一种包括涂覆有涂层的衬底表面的部件,所述涂层包括具有不小于40nm的厚度的至少一个mon层,其中在所述衬底表面与所述至少一个mon层之间:

o包括衬底表面硬化层,其是硬化的含氮衬底表面层并且具有不小于10μm、优选地不小于20μm并且不大于150μm的厚度,所述硬化的含氮衬底表面层通过在所述衬底表面处进行氮化处理产生,和

o包括由多于2个mon层和多于2个crn层组成的层系统,其中形成所述层系统的mon和crn层是彼此交替沉积以形成多层mon/crn涂层膜的单独层,

或者

-一种包括涂覆有涂层的衬底表面的部件,所述涂层包括具有不小于40nm的厚度的至少一个mon层,其中在所述衬底表面与所述至少一个mon层之间包括由多于2个mon层和多于2个crn层组成的层系统,其中形成所述层系统的所述mon和crn层是彼此交替沉积以形成多层mon/crn涂层膜的单独层。

根据本发明的优选实施例,如果无多层mon/crn涂层膜包括在所述衬底表面与所述至少一个mon层之间,则所述至少一个mon层具有不小于500nm的厚度。在此情况下,所述至少一个mon层可以以一种方式沉积,使得其由包括至少大部分六角相δ-mon或仅六角相δ-mon的氮化钼组成。然而,如果对部件的使用有益,则在此情况下还可沉积由氮化钼组成的至少一个mon层,其中其包括相混合,所述混合包括:

-六角相δ-mon和立方相γ-mo2n,或

-六角相δ-mon和过饱和立方相ζ-mon,或

-六角相δ-mon和立方相γ-mo2n以及过饱和立方相ζ-mon。

优选地,所述至少一个mon层的总厚度不小于1μm并且不小于15μm、更优选地不小于1.5μm并且不大于10μm。

根据本发明的进一步优选实施例,如果无硬化含氮衬底表面层包括在所述衬底表面与所述至少一个mon层之间,则所述多层mon/crn涂层膜具有不小于460nm的厚度。在此情况下,具有不小于40nm的厚度的上述至少一个mon层还可以包括在两个多层mon/crn涂层膜之间,其中每一多层mon/crn涂层膜优选地具有不小于460nm的膜厚度。

优选地,多层mon/crn涂层膜和所述至少一个mon层两者的厚度的总和不小于1μm并且不大于15μm、优选地不小于1.5μm并且不大于10μm。

根据本发明的进一步优选实施例,至少在一个单独mon层与一个单独crn层之间包括包含mo、cr和n的单独中间层。

根据本发明的进一步优选实施例,该单独中间层具有的厚度不小于10nm并且不大于紧接于所述单独中间层的所述单独crn层的厚度或所述单独mon层的厚度。

根据本发明的进一步优选实施例,至少大多数所述单独mon层具有不小于40nm并且优选地不大于500nm的单独层厚度。

根据本发明的进一步优选实施例,至少大多数所述单独crn层具有不小于20nm并且优选地不大于500nm的单独层厚度。

根据本发明的进一步优选实施例,所述多层mon/crn涂层膜的总厚度不小于1μm并且不大于15μm、优选地不小于1.5μm并且不大于10μm。

根据本发明的进一步优选实施例,所述单独mon层由包括相混合的氮化钼组成,所述混合包括:

-六角相δ-mon和立方相γ-mo2n,或

-六角相δ-mon和过饱和立方相ζ-mon,或

-六角相δ-mon和立方相γ-mo2n以及过饱和立方相ζ-mon。

当该部件是汽车部件或紧密部件时,并且更特别地当该部件的衬底表面具有等于或低于65hrc的硬度时,根据本发明的处理特别有利。

用于生产根据本发明的实施例中的至少一者的部件的优选方法包括借助于反应性pvd工艺对所述至少一个mon层或所述单独mon层中的至少一者的沉积。

优选地,该方法涉及使用反应性电弧pvd工艺作为反应性pvd工艺,其中在所述mon层或所述mon单独层的沉积期间,至少一个mo靶充当阴极并且以此方式在包括氮气作为反应气体的气氛中通过使用电弧pvd技术进行蒸发。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1