一种镁合金表面铝复合防护层的制备方法与流程

文档序号:11246649阅读:795来源:国知局

本发明涉及一种在镁合金表面耐腐蚀的铝复合防护层的制备方法,属于金属表面处理领域。



背景技术:

镁合金是目前最轻的结构材料,具有优异的力学性能,是21世纪最具开发潜力和应用价值的“绿色材料”。在交通运输、航空航天、能源、3c产品、生物医学等领域有广阔的应用前景。但是它的化学性质非常活泼,标准电极电位只有-2.36v,且表面氧化膜(mgo)的pbr值为0.81,以致氧化物疏松多孔,耐腐蚀性能非常差,从而影响它的工业应用规模。因此提高镁合金材料的耐腐蚀性能,具有很广阔的前景和应用、经济价值。

提高镁合金耐腐蚀性能的主要途径有两种:选择合适的添加合金元素开发新型耐蚀的镁合金材料和通过表面处理技术在镁合金表面制备一层耐蚀防护涂层。其中表面处理技术是利用喷涂、电镀、化学镀、物理气相沉积等技术手段在镁合金表面制备一层防护层,阻碍腐蚀介质与基体之间相互接触从而减缓基体的腐蚀。在防护层材料的选择方面,铝由于电极电位低、耐蚀性好,且容易作进一步后续处理而被视为理想的镁合金防护材料。

物理气相沉积(pvd)技术包括磁控溅射、热蒸发、电弧离子镀等是一类绿色无污染的环境友好技术,适合在体积小、形状不规则的工件做表面防护,可以通过控制工艺参数得到晶粒细小、厚度均匀、膜/基结合力优异的防护层。然而目前在镁合金表面的pvd技术进展还比较缓慢,主要由于技术的限制。一般而言,pvd技术制备的涂层主要以柱状晶形态生长,晶粒之间难免存在孔隙。对于镁合金基体而言,由于其电位低于铝防护层,两种材料如果都接触腐蚀介质,镁合金将作为阳极被优先腐蚀。因此,铝涂层中的任何孔隙都是腐蚀介质渗透到镁合金基体的通道,反而加速基体的腐蚀。如韦春贝等(az91d镁合金磁控溅射镀铝膜及其化学转化后的耐蚀性,《电镀与涂饰》,2012,p30-33)采用磁控溅射法在镁合金上镀铝防护层后耐盐雾腐蚀寿命仅为4小时,其主要原因是防护层较薄,且防护层内存在一定的孔隙。由此可见,普通pvd技术制备的镁合金表面铝防护层其耐盐雾腐蚀寿命很难超过96h,无法满足工业的应用需求。如前所述,pvd涂层主要以柱状晶形态生长,膜层越厚,柱状晶越粗大,其晶粒间的孔隙越明显。因此,单纯增加铝防护层的厚度并不能明显改善其耐腐蚀效果,同时还存在结合力变差的风险。通常在物理气相沉积过程中为了打断柱状晶的生长,增加膜层致密性,会采用沉积过程中施加偏压轰击的形式。如中国专利201310556568.7(一种钕铁硼材料表面防护层及其制备方法)采用了高偏压轰击的方法提高致密性,从而改善基体的耐腐蚀性。即使在镀膜过程中的使用高偏压,也只能延缓晶粒长大但无法避免孔隙的存在,这对于镁合金基体的耐腐蚀防护是远远不够的。因此如何在保证厚度的同时获取致密的铝防护涂层是技术实现的关键。



技术实现要素:

本发明针对现有技术对镁合金表面耐腐蚀防护层处理的不足,提供一种结合力好、涂层致密、较厚、耐腐蚀性好的镁合金表面铝复合防护层,以解决一般物理气相沉积的镁合金防护层厚度薄、致密性差、结合性不佳的主要技术瓶颈,满足镁合金表面耐腐蚀的应用需求。

为解决上述问题,本发明技术方案为一种镁合金表面铝复合防护层的制备方法,由镁合金表面清洗、表面沉积铝过渡层、铝过渡层上沉积铝面层和化学转化步骤组成,其特征在于采用磁控溅射技术或热蒸发技术,在铝过渡层上沉积铝面层,再对铝面层喷丸处理,重复沉积铝面层和喷丸处理步骤1次以上。

采用磁控溅射技术,在靶电流10~25a,负偏压50~150v条件下制备,或采用热蒸发技术,在10~18kw,负偏压1000~1800v条件下制备铝面层。

每沉积一次铝面层,均对其进行喷丸处理,采用150#玻璃珠,压力0.2~0.4mpa,喷射角度60o~90o,喷丸处理后超声清洗,再辉光放电离子清洗,时间>10min。

重复铝面层的沉积和喷丸过程1次以上,每次沉积的铝面层厚度10µm以上。

要获取厚实、致密的铝防护层,就需要每次沉积铝层后进行喷丸密实处理,如果膜基结合力较差,容易导致喷丸时铝防护层直接剥落。本发明首先在镁合金表面制备一层致密的铝过渡层,采用炉内高能离子轰击,使部分铝原子可渗入到镁合金基体中实现冶金结合,最终达到提高铝复合防护层与基体结合强度的目的。同时这层致密的、结合牢固的铝过渡层还可作为镁合金基体的最后一道屏障,延缓腐蚀过程。

采用物理气相沉积技术制备的铝层以柱状晶形式生长,膜层越厚,其晶粒间间隙越明显,导致防护层对改善镁合金基体耐腐蚀性能的作用有限。当铝层较厚时(>10µm),普通的炉内离子轰击作用只能在纳米级范围内有效果,本发明采用的炉外喷丸处理,其主要过程是以玻璃珠为媒介在一定的压力下对每层铝进行冲击,原本的一些孔隙被挤压变形消失。本发明采用间歇式多次沉积,重复沉积铝面层加上炉外喷丸工序,使铝面层之间有一个明显的界面,隔断了柱状晶的连续生长从而减少柱状晶间的孔隙,其表面致密度大大提高,更有利于改善涂层耐腐蚀性能。

本发明采用的是多层密实铝防护层,在保证了防护层厚度的基础上通过喷丸密实及间歇式沉积引入界面,改善涂层致密性,是提高其耐腐蚀性能的关键。

最后的化学转化处理,可在铝面层表面再生成一层致密、耐蚀的铬酸盐转化膜,转化膜填充了膜层表面的微观孔隙,进一步增长铝膜的耐蚀性能。

因此,本发明结合了物理气相沉积技术以及其他多种处理方法,在镁合金表面制备出了结合力好、涂层致密、较厚、耐腐蚀性好的铝复合防护层,有效的解决目前物理气相沉积技术在镁合金耐腐蚀防护处理上的技术瓶颈。

附图说明

图1镁合金表面铝复合防护层的扫描电镜截面形貌。

具体实施方式

实施例1

对镁合金基体通过干法磨至1000#,然后在丙酮、酒精中超声清洗;工件清洁后装进炉内进行等离子体清洗,随后进行磁控溅射过渡层处理,方法如下:在沉积过程中开启300v偏压辅助,之后用1000v高偏压轰击,沉积铝过渡层的厚度600nm;

制备铝面层方法如下:磁控溅射电流15a,负偏压100v,厚度为10µm,出炉采用0.2mpa压力下玻璃珠喷丸,角度60o,喷丸后在丙酮、酒精中超声清洗,再次镀铝前进行炉内辉光放电离子清洗,时间20min。重复以上步骤10次,得到约100µm的多层铝面层。对上述多层铝面层进行化学转化处理,阿洛丁溶液浓度8g/l,温度25℃,转化时间60s。

采用性能测试方法如下:1)膜层厚度通过扫描电镜截面法观察来测量。2)镀铝结合力试验:按照gbt9286-1998方格结合力试验法进行试验。3)耐腐蚀性能按照gb/t10125-1997进行中性盐雾试验。

得到的复合铝防护层结合力等级达到1级,划格上没有膜层剥落。耐盐雾腐蚀时间到达400h膜层不鼓泡,且表面金属光泽性很好,铝膜被腐蚀氧化很轻。

实施例2

对镁合金基体通过干法磨至1000#,然后在丙酮、酒精中超声清洗;工件清洁后装进炉内进行等离子体清洗,随后进行磁控溅射过渡层处理,方法如下:在沉积过程中开启500v偏压辅助,之后用1800v高偏压轰击,沉积铝过渡层的厚度1000nm;

制备铝面层方法如下:热蒸发镀铝功率15kw,负偏压1500v,厚度为50µm,出炉采用0.4mpa压力下玻璃珠喷丸,角度90o,喷丸后在丙酮、酒精中超声清洗,再次镀铝前进行炉内辉光放电离子清洗,时间30min。重复以上步骤2次,得到约100µm的双层铝面层,面层之间结合紧密,如图1所示。对上述多层铝面层进行化学转化处理,阿洛丁溶液浓度12g/l,温度35℃,转化时间70s。得到的复合铝防护层结合力等级达到1级,划格上没有膜层剥落。耐盐雾腐蚀时间到达365h膜层不鼓泡,膜层表面颜色变暗,铝膜没有被腐蚀氧化。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1