双金属板的制作方法

文档序号:3399008阅读:251来源:国知局
专利名称:双金属板的制作方法
技术领域
本发明涉及用于生产包括双金属板的复合金属制品的方法和成型设备。
在Sare等人的美国专利No.4953612(申请号为PCT、AU84/00123)中讨论了多种用于制造复合金属制品的现有技术方案。这些方案具有很多缺点和局限性,其中至少有一部分被USP4953612的技术所克服。由USP4953612所提出的方案十分适于生产一些其中包括一个结合到一个基体部分上的铸造部分的复合金属制品。但是,该方案不太适用于生产包括双金属板,特别是较薄的和/或具有较大表面面积的双金属板的复合金属制品。因此,在生产大尺寸的双金属板,例如大约为300×300mm或更大、其厚度小于约30mm且铸造金属与基体的厚度比大约为1.1或更小的双金属板时,USP4953612的方案会遇到一定的困难,例如不均匀的结合。
本发明试图提供一种能够生产较薄的双金属板的方法和成型设备。然而,在能够进行这种生产的同时,本发明也可适于生产较厚的板。在任何一种情况下,本发明均可生产尺寸较大的双金属板,例如达到并超过1800×1000mm,而迹象表明,本发明可以生产至少高达3000×1500mm的双金属板。
在本发明的方法中,由第一金属构成的板(以下称之为“基体”)具有一个由铸造于其上的第二金属形成的部分(以下称作“覆层”)以形成双金属板。用作基体的第一金属可以是钛,镍或钴,铁基合金,或钛基、镍基或钴基合金。用作覆层的第二金属可以是铜,镍或钴,铁基合金,或铜基、镍基或钴基合金。尽管并非必须如此,但第一和第二金属的成分通常是不同的。但是,当第一和第二金属是相同的或类似的,即其组分相近时,可以基于显微结构而获得不同的性质,例如,由于基体是经过热或冷加工制成的,而覆层则具有一个铸态显微结构。
如USP4953612中所述,将把熔融合金铸造于其上从而形成覆层的基体的表面应当是基本上无氧化物的。同时,基体要被预热并用适当的涂层加以保护以防止其氧化。涂层可用加在基体表面上的熔剂形成,并在预热的过程中熔化成保护膜。但是,也可采用其它保护涂层,诸如例如通过化学镀覆或电镀镍或其它金属而形成的适当金属的沉积物,或者也可采用非金属涂层,例如含有硅酸盐粘结剂的胶体石墨。根据所采用的保护涂层,它被铸造成覆层的合金所置换或者与之合金化,以有利于基体表面被铸造合金润湿。
同样,如USP4953612中所述,在过热的温度下浇注用于形成覆层的熔融金属,结合基体的预热,可有利于达到整体的热能平衡,从而获得覆层与基体之间的扩散结合。扩散结合优选地在向其上铸造覆层的基体表面基本上不存在熔化的情况下获得。
在生产双金属板时,可能很难达到用于在覆层和基体之间形成良好结合的足够的热能平衡。当板的面积较大和/或板较薄和/或覆层与基体的厚度比较小时,情况更是如此。在这些条件下,人们发现,向铸型的热能损失成为妨碍达到这种能量平衡的一个重要因素,而且这一损失来自预热的基体和流过基体的熔融合金。这种损失会由于对基体的预热和为了提供覆层而浇注熔融合金之间的延时和/或熔融合金的浇注时间过长而加重。同时还发现,热能平衡均匀性的丧失以及由此造成的结合的不均匀性可由熔融金属在基体上的不受控制的或不规则的流动而导致,例如可造成过长的流道和/或降低的合金流速。
我们已经发现,通过控制形成覆层的熔融金属的铸造,可生产显著得到改善的双金属板。在本发明的方法中,使铸造合金沿着一个受到控制的熔体前沿(melt front)流过基体的表面,而所述熔体前沿以如下所述的方式前进,即,考虑到基体的预热温度以及熔融合金的过热温度,基本上在基体的整个表面上并在足以在覆层和基体之间获得扩散结合的限度内,提供热能平衡。
尽管并非必须如此,双金属板可以是正方形或其它矩形形状的。为了便于进一步的描述,下面假定基体和所制成的板是矩形的。此外,为了便于描述,把熔体前沿穿过基体前进的方向定为纵向,而把熔体前沿相对于其前进方向横向扩展的方向定为横向。但是,尽管基体和所制成的板可能具有一个大于其横向尺寸的纵向尺寸,但情况也可以反过来,或者纵向和横向尺寸可以基本上相等。此外,在熔体前沿前进的纵向方向可以基本上是在基体的纵向相对边缘之间的同时,纵向熔体的前进可以覆盖基体纵向范围的一部分。另外,熔体前沿的横向尺寸以及因而也就是覆层在该方向上的宽度可以与基体的几乎整个横向尺寸或该尺寸的一部分重叠。
在本发明的方法中,借助于至少一个下述特点,使受控的熔体前沿以提供用于结合的所需热能平衡的方式前进(a)使熔融合金通过一组在横浇道与型腔之间形成连通的横向设置的浇口进入一个其中设置基体的型腔,在该型腔内,熔融合金形成一个横向延伸的熔体前沿;以及(b)使熔体前沿以在熔体前沿的横向范围内基本上均匀的速度在基体上纵向前进。
本发明的方法优选的利用每个特征(a)和(b)。
因而,根据本发明,提供了一种用于生产一种包括双金属板的复合金属制品的方法,其中,由第一金属形成的板(下面称之为“基体”)被预热,同时,在将被预热的基体置于一个模型的型腔内,并且基体的主表面朝上,同时填充型腔的一定深度的情况下,将由第二金属制成的一部分(下面称之为覆层)铸造在基体的所述主表面上,以与基体形成所述的双金属板;在铸造覆层之前,使所述主表面基本上无氧化物并通过适当的涂层得到保护以防止氧化;通过以过热的温度浇注形成覆层所需组分的熔体而铸造覆层,由此通过预热基体,在基体和覆层之间实现总的热能平衡,并在基体主表面与覆层之间获得扩散结合;以及通过以下方式方便地达到所需的热能平衡,即,使熔体经过在至少一个横浇道和型腔之间形成连通的一组浇口进入型腔,而且所述的一组浇口相对于流过的熔体流横向设置,由此熔体形成一个横向延伸的熔体前沿,同时使熔体前沿离开浇口,以在前沿的横向尺寸上基本上均匀的速度在基体表面上前进。
本发明还提供了一种用于生产双金属板的成型设备,该双金属板具有一个由第一金属形成的板(下面称之为“基体”)和一个铸造在该基体上的由第二金属形成的部分(下面称之为“覆层”),其中,该设备包括一个具有一下型箱部分和一个上型箱部分的铸型;下型箱部分限定出部分由铸型构成的型腔,在该型腔部分中可以设置基体,而且基体的主表面向上;上型箱部分限定出部分型腔,由此当铸型处于闭合状态时,可以注入形成覆层所需的成分的熔体,以便充满在基体上方的型腔,从而形成覆层;铸型的各部分限定出一组使至少一个横浇道与型腔连通的浇口;浇口组相对于流过它们的熔体流横向地设置,从而可形成一个横向延伸的熔体前沿;而且所述设备的设置使得熔体前沿能够离开浇口,在基体表面上前进,其前进速度在前沿的横向尺寸方向上基本均匀,由此由于基体的预热和熔体的过热而在基体和覆层之间获得适当的热能平衡,并能够在基体的主表面与覆层之间实现扩散结合。
为获得特征(a),根据本发明的成型设备包括一个限定出一型腔的铸型,在该型腔中可以设置一种基体,同时能够将熔融合金铸造在基体的上表面上。该铸型限定出至少一个可接受熔融金属的进料直浇口,该进料直浇口与至少一个横向浇道连通,借此熔融金属从进料直浇口进入浇口组中的每一个浇口。至少在覆层从靠近浇口组的基体上表面的横向边缘延展的部位,型腔可具有一个长方形的字盘状部分,在该部分处浇口与型腔连通。
在利用提供特征(a)的铸型进行的铸造操作中,熔融金属经由每个浇口流入型腔,而且按顺序地来自每个浇口的熔融金属液流汇合成一个熔融金属的熔体前沿,该熔体前沿纵向地通过基体的上表面。在型腔具有一个长方形的字盘状部分的地方,优选地在熔体前沿到达基体之前于该长方形字盘状部分内发生液流的汇合。
为获得特征(b),可将横向浇道制成使得在浇口组中的每个浇口处金属压力基本上相等的形状。为此,可以沿着横向离开进料直浇口的方向在相继的每个浇口之后减小横浇道的横截面,例如,令横浇道具有逐渐降低的深度。此外,或者按另一种方式,通过具有下述构形的铸型可以方便地获得特征(b),即,当把基体置于型腔中时,基体的上表面从进料直浇口向上倾斜,也就是沿熔体前沿前进的方向向上倾斜。因此,在重力的影响下,沿熔体前沿的横向尺寸方向将熔体前沿限制成基本上均匀地前进。
尽管通常倾向于使基体的上表面基本上水平或从进料直浇口向上倾斜,但当令基体的上表面从进料直浇口稍稍向下倾斜时会带来一定的有利之处。也就是说,上表面可以沿熔体前沿前进的方向向下倾斜。向下倾斜的好处是可增大金属的流速。可以倾斜到何种程度取决于熔体的粘度,同时倾斜度的大小必须受到限制,以便确保在前沿的整个横向范围内保持基本上均匀的熔体前沿的前进速度。
尽管可以采用金属型,但已经发现在本发明中砂型非常适用。铸型被设计成分为两个主要部分,即,下型箱部分和上型箱部分。下型箱部分和上型箱部分优选地容纳在钢制的铸型支架内,借助该支架可把铸型的各部分例如用液压夹紧在一起。下型箱部分具有一个空腔,其中可放置基体,同时该空腔形成型腔的至少一部分。下型箱部分可具有一个浇口杯,其中接收来自进料直浇口的熔融合金,同时它还可以具有至少一个横向浇道。上型箱部分具有进料直浇口的底部,同时它还可以具有一个空腔,该空腔构成型腔的一部分,并且其中可铸造覆层。此外,上型箱部分也可以具有一组横向浇口,而且在远离进料直浇口的底部和浇口处,上型箱部分可具有一个用于接纳多余的覆层合金的横向空腔。
铸型的各个部分优选地能够借助一个夹紧力被夹持在一起,这与铸型的设计相结合可确保铸型达到足够的密封。因此,可以避免求助于设置在铸型各部分的相对或配合表面之间的密封装置,节省在预热基体和闭合铸型以准备铸造覆层合金之间的时间。
在一种适合的结构中,铸型的下型箱部分和上型箱部分在其各自的支架内用型砂和例如硅酸钠粘合剂的粘合剂制成。尽管可以采用其它的型砂,例如橄榄石砂和锆砂,但石英砂是适宜的。为了减少被熔融合金浸蚀,横浇道和浇口系统的关键部分可用例如从橄榄石砂、锆砂或铬铁矿砂中选择的水玻璃砂的粘结砂制成,或者如果是用石英砂制成的,则这些部分可用耐火铸型涂料进行保护。同时,为了改善铸造覆层的表面光洁度,可用耐火铸型涂料涂敷上型箱部分的型腔表面。每一部分的支架可由全焊接的低碳钢槽钢构成,优选地,下型箱部分的支架包括一个通过浇口杯下方的钢棒,用以抵抗着浇注的熔融合金所产生的力地支持型砂。
在这种结构的铸型中,下型箱部分中的空腔的尺寸,特别是沿横向和纵向的尺寸,足以允许基体的热膨胀。但是,当基体被置入该空腔内时,其上表面优选地与下型箱部分的一个相对的圆周上表面齐平,所述下型箱部分的上表面与上型箱部分的圆周下表面相接合。正如后面将要详细描述的那样,上型箱部分在被夹紧到下型箱部分上时优选地向基体的边缘提供一个夹持作用。
如上所述,在铸造覆层合金之前,基体被预热。非常理想的是,在完成预热和开始铸造之间的延时最短,而且在把基体置于下型箱部分的空腔内以后对基体进行预热是最实际的选择。实际上,不可能完全均匀地预热基体,因而基体变形或弯曲,通常其中心区域向上拱起,但在边缘处也极易出现一定程度的向上翘起。以这种形式在基体上铸造覆层合金会使变形或弯曲加重并进一步使得更加难于生产有用的双金属板。同时,变形或弯曲会例如使得达到上面所述的特征(b)变得困难。因而需要把基体的变形或弯曲降至最低限度或将其消除。
可以采用焊接在基体下表面上的金属螺栓并用螺母将其紧固在下型箱铸型支架上以补偿或防止基体的变形或弯曲。或者,可以利用将铸型的下型箱部分和上型箱部分夹紧在一起的力来产生压缩负载以将基体压成近似于平的状态,借此来抵消基体的变形或弯曲。在一个适合于此的工艺过程中,将一组横向间隔开的而且纵向延伸的金属带定位焊在基体的上表面上,从而在基体上形成铸造合金可沿其流动的纵向通道。在另外一个适合的工艺过程中,将多个金属型芯撑以适当设置的阵列点固焊到基体的上表面上。所述金属带被加工成一定的尺寸,以便形成深度基本上对应于所需的覆层厚度的通道,该金属带的成分可以类似于铸造合金的成分,并作为覆层的一部分被结合在覆层中。其厚度基本上对应于所需覆层的厚度的型芯撑也可以具有与之相似的成分并结合在覆层中。
通过闭合铸型并把下型箱部分和上型箱部分夹紧在一起,夹紧力使得上型箱部分接合金属带或型芯撑,由此利用所产生的压缩力迫使基体向下贴紧下型箱部分。可以迫使基体形成近乎扁平的状态,但在相邻的金属带或型芯撑之间稍有拱起。这种压缩力使得在铸造覆层的过程中能够将基体基本上保持在这种状态。
为达到这种近似压平的状态而在基体的中心区上采用纵向的金属带或型芯撑会导致基体的边缘在下型箱部分的空腔内被向下推压。由此,可基本上防止用于形成覆层的熔融合金流到基体的下方。然而,有利于在纵向侧边缘处牢靠地压住基体。为了达到后一目的,对于基体的这些边缘中的每一个,可将一个相应的纵向耐火棒铸入铸型的上型箱部分内,这些耐火棒所处的位置为,当把下型箱部分和上型箱部分夹紧在一起时,相应的耐火棒接合并压住基体的一个边缘。或者,当下型箱部分和下型箱部分被夹紧在一起时,在上型箱部分的型砂具有足够强度的部位,上述相应的耐火棒可以覆盖并夹住基体的纵向边缘。
当铸型部分被夹紧在一起时,铸型部分在相对的圆周表面上贴靠在一起,接触面积足以使铸型各部分的型砂能够承受夹紧力。同时,直接位于基体的每一横向边缘上的上型箱型砂的区域,例如为25至30mm,可以承受由因为热应力而在基体边缘上产生的弯曲力作用于其上的压缩力。但是,在用于压平基体的纵向带或型芯撑处,单位面积上的压缩力可达到使上型箱部分的型砂发生损坏的程度。为避免这一点,上型箱部分可包括陶瓷销,用陶瓷覆盖尖端的金属销,纵向的耐火棒或类似物,它们将压缩力转移到金属带或型芯撑上。各种销,棒或类似物可固定于上型箱部分的支架上或与之接合,从而将压缩力从上型箱支架经过销、棒或类似物并经由金属带或型芯撑传递给基体。
在紧靠浇口处,可能很难压住基体的相邻的横向边缘。因而,在铸造过程中存在着基体的该边缘抬起并且熔融金属渗入基体下方的危险。由于过热的熔融金属及其快速的流动速度所引起的从基体的上表面到下表面的温度梯度以及在基体内所造成的弯曲力,这种危险性是很大的。但是,如果利用型芯撑将靠近浇口的基体的横向边缘压住,它们很可能会由快速流动的熔融金属而被迅速熔化,除非它们的尺寸足够大和/或位于从浇口排出的直接的金属流之外。如果采用金属带压住基体而不是采用型芯撑,也会出现类似的情况。除非这些金属带不与任何浇口直接对准地定位,从而在金属流中很少或不会引起紊流,而且很少有机会令金属带过快地熔化。因此,希望有一种另外的方法能够消除造成靠近浇口的横向边缘抬起的基体的变形或弯曲。
一种抑制基体横向边缘抬起的合适的方法是,弯曲基体,以便将横向边缘被迫下压到下型箱的型砂上。另一种抑制横向边缘的方法是沿着该边缘在基体的下侧焊接一个钢带。一个合宜的钢带,诸如低碳钢钢带,其横截面可以例如为25×6mm,并焊接在一个约10mm厚的基体的边缘上。该钢带被容纳在一个于下型箱部分中相应设置的横向槽内,在该处使下型箱部分的空腔的深度加深。在铸造过程中,在该槽中设置的钢带防止熔融金属渗透到基体边缘的下面。
为了实现本发明,可以设有一个对铸型的下型箱部分提供牢固支撑的铸造部,用于方便地操纵预热炉的装置,以及用于在完成基体的预热周期时相对于下型箱部分精确地放置并夹紧上型箱部分的装置。在铸造部,可具有一个安装到牢固的支撑面上的支撑结构,并利用其支架把下型箱部分安置或固定在该支撑结构上。在支撑结构附近,设有用于浇注熔融合金以便铸造覆层的装置。该装置可以是一个在其中接收来自附近的熔化炉的合金的浇包。但是优选地是,熔化炉靠近支撑结构并适于把熔融合金浇注到铸型中。熔化炉例如可以是一个倾动式感应电炉。
铸型的上型箱部分可受到支撑或安装,以便在需要时能够从一个可夹紧下型箱部分的位置处升高或下降到该位置处。可借助任何适当的装置例如高架绞车、伸缩式液压致动器等完成上型箱部分的这种运动。上型箱部分的支架优选地设有支撑在支撑结构的支柱上的滚轮,从而在上型箱部分的运动过程中对其进行导向。
在其抬高的位置处,上型箱部分可在下型箱部分的上方离开一个足够大的距离,以便将预热炉设置于其间。支撑结构可包括水平设置的轨道,构成预热炉的一部分或对预热炉进行支撑的一个滑架可沿该轨道在一个退回位置和一个前进位置之间行进,在所述前进位置处,预热炉处于下型箱部分的上方。
预热炉可采用多种不同的形式,例如煤气燃烧预热器,感应式预热器或者电预热器。为了对10mm厚、大约1950mm长和1050mm宽的基体进行试验,一种适当的预热炉具有一个向下开口的不锈钢外壳,并以125mm厚的低热容量隔热材料对内部顶部表面和侧表面进行隔热,同时采用由陶瓷管支撑的螺旋型尼克罗姆镍铬合金电阻丝元件。使该预热炉与一个三相415V的控制箱相连且其最大输出功率为150KW。
为了更易于理解本发明,现参照附图进行说明,其中

图1是用于根据本发明的试验的铸造设备的示意侧视图;图2是图1所示设备的俯视图;图3是图1所示设备的部分端视/剖视图;图4是图1所示设备中可供选择的另外一种部件的侧视图;图5是图4所示的可供选择的另外一种部件的俯视图;图6是图1所示设备的下型箱铸型支架的俯视图;图7是图6所示支架的侧视图;图8是图6所示的支架的端视图;图9至11类似于图6至8,但表示的是上型箱支架;图12是用于图1所示设备的铸型的常见形式的示意俯视图;图13是图12所示铸型的端视图;图14是沿图12的A-A线截取的剖视图;图15示意地表示图1所示设备的铸型的横浇道和浇口系统的端视图;图16是图15所示系统的示意平面图;图17对应于图12,但表示利用图1所示设备所作试验中采用的铸型的细节;
图18是沿图17的X-X线截取的剖视图;以及图19是沿图17的Y-Y线截取的剖视图。
参照图1,铸造设备10具有一个支撑结构12,它由焊接的钢构件制成并用螺栓固定在一个混凝土基础14上。在铸造部16,结构12具有一个固定于其内的铸型19的下型箱部分18。在铸造部16的上方,结构12还与铸型19的上型箱部分20相接合,同时在靠近结构12的铸造部16处,设备10包括一个熔化炉22。下型箱部分18在一个固定的位置处放置于结构12上。但是,上型箱部分20由一个高架吊车(未示出)的链条系统(未示出)支撑,从而上型箱部分20可在图1所示的提升位置与一个降低位置之间移动,在降低位置上,上型箱部分可被夹紧在下型箱部分18上,以便闭合铸型19,从而进行铸造操作。在这一运动过程中,上型箱部分20由所设置的滚轮(未示出)进行导向,所述滚轮在结构12的支柱(也未示出)的导轨部分上行进。
设备10还包括一个可调节地安装在支撑结构12上的预热炉24。为了进行这种安装,结构12具有一对沿横向间隔开的纵向轨道12b,所述轨道从下型箱部分18的每一侧开始沿离开熔化炉22的方向伸出下型箱部分之外。预热炉24借助一个液压致动器29安装在一个滑架28上,并且滑架28具有滚轮30,借助滚轮30,滑架28可在轨道12b上行进,从而使预热炉24可从图1中实线所示的退回位置运动到图1中双点划线所示的位置,在后一位置预热炉介于铸型部分18与20之间,紧位于下型箱部分18的上面(假定上型箱部分20处于其提升位置)。
如图3最清楚地表示的那样,预热炉24具有一个成倒置的槽的外壳24a,因此它是向下敞开的。该外壳最好用不锈钢制造且其横向和纵向尺寸均大于基体S的相应尺寸。外壳24a的内表面衬有低热容量的隔热材料24b,而且在外壳24a内装有横向延伸的电阻加热元件24c的纵向阵列。加热元件24c可以例如包括支撑在陶瓷管上的螺旋形尼克罗姆镍铬合金电阻丝,并适于被来自一适当电源(未示出)的能量加热。
如图12至图14所示,铸型具有下型箱部分18和上型箱部分20的相应砂型部分18a和20a。部分18a和20a分别在一个焊接的钢制下型箱支架18b(见图6至8)和焊接的钢制上型箱支架20b(见图9至11)内形成。如可最清楚地从图12至14中所看到的,下型箱铸型部分18a具有一个大的其中可放置基体S的矩形空腔34。空腔34具有对应于基体厚度的深度,其纵向和横向尺寸足以容纳基体S并具有一个允许基体S热膨胀的空隙36。
在离熔化炉22较近并邻近空腔34的一个端部的端部处,下型箱铸型部分18a具有一个浇口杯38,在浇口杯38的每一侧具有一个相应的横向浇道40(也示于图15和图16中)。在上型箱铸型部分20a的同一端部处,设有一个底部进料直浇口部42,它与浇口杯38垂直地对齐,而且在直浇口部42的每一侧具有4个浇口44。部分20a也具有一个大的矩形空腔46,其深度可近似于空腔34的深度,这视用于基体S的所需覆层厚度而定。但是,空腔46的横向宽度小于空腔34的横向宽度,而且在其离熔化炉22更近的端部处,空腔46伸出空腔34之外以形成一个长方形的字盘状部分并实现可与每个浇口44连通。在空腔46的另一个端部,部分20a具有一个加大的溢流抑制腔47,它在基体S的端部上方。
铸型的下型箱部分18安装或固定在支撑结构12上,从而它的上表面,因而也就是基体S与水平方向成一小的角度。具体地说,如图1中清楚所示,其设置方式为,基体S从其靠近熔化炉22的端部到其远端向上倾斜一个为几度的角度,例如至多为大约5°,例如向上倾斜大约3°。上型箱部分20可以同样地倾斜,或者它可以基本上是水平的,但当它下降到部分18上时是可调的,由此以与部分18类似的方式倾斜,从而便于闭合铸型。此外,在滑架28上方支撑预热炉24的致动器29能够将预热炉24保持成与水平方向成一定的角度,从而使预热炉24基本上平行于基体S,而且致动器29在需要时可以改变预热炉24在滑架28上方的高度,例如将预热炉24下降到基体S上方的所需距离处。
如上所述,铸型19的下型箱部分18和上型箱部分20的砂型部分18a和20a在相应的焊接的钢制支架18b和20b上形成。如图6至8所示,支架18b具有一组横向间隔开且纵向延伸的截面为(C形的下部槽钢48a,这些槽钢的腹板位于最上面。在槽钢48a上,支架18b具有一组纵向间隔开且横向延伸的截面为C形的上部槽钢48b,它们的腹板也位于最上面。围绕由槽钢48a和48b形成的矩形栅格,支架18b具有一个由C形截面的槽钢48c提供的矩形周边。这些槽钢在它们的交界处被牢固地焊接在一起,同时每个槽钢48c的上凸缘具有沿其长度以一定间隔形成于其上的开口。
如图9至11所示,上型箱支架20b在一定程度上类似于下型箱支架18b,而且上槽钢49a和下槽钢49b分别对应于槽钢48a和48b,周边槽钢49c对应于槽钢48c。
如上所述,在闭合铸型时,需要将下型箱部分18和上型箱部分20牢牢地夹紧在一起,以便密封部分18和20之间的界面,防止熔融金属泄漏,同时需要迅速地实现夹紧,以便把热损失降低至最低限度。为此,可以采用多种形式的夹紧装置。但是,优选的形式为图9中所示的装置70,在围绕铸型周边的许多位置中的每个位置上设置一个相应的装置70。每个装置装在沿支架20b的每个槽钢49c以一定间隔焊接的一个相应支架71上。每个装置70均包括一个液压回旋式夹钳,例如可从市场上购得的商标为ENERPAC的SU(L/R)S201型,它在大约35MPa的油压下可提供大约为18.8KN的夹紧力。这些装置具有一个安装在上型箱部分20的支架20b上的缸体72,以及一个从缸体72伸出的相关活塞杆74。液压管线(未示出)向缸体72供油,以便使杆74能相对于缸体72伸出和缩回。杆74及其缸体72之间的接合方式是,当杆伸出或缩回时,它沿一个方向或另一个方向旋转。
在每个装置70的下方,下型箱部分18的支架18b具有一个相应的在相应槽钢48c的上凸缘上切出的上述开口(未示出)中的一个。每个开口的尺寸为,当上型箱部分20下降到下型箱部分18上且杆74伸出时,杆74和固定在杆74上的一个偏心环75通过该开口。于是,杆74可以被退回,并在同步旋转时,其环75接合到在其上切出所述开口的凸缘的下方。因此,在数个装置70的同时作用下,下型箱部分18和上型箱部分20可被牢固地夹紧在一起。
当闭合铸型时,要求部分18和20被夹紧在一起,以便在围绕空腔34和46的相对表面之间获得密封,从而基本上防止熔融金属在其间的泄漏。所述夹紧最好能够通过在铸型部分18和20之间的型砂-型砂表面接触来获得,而无需采用密封装置。
通过抬高铸型部分20,将基体S定位在空腔34内。在此之前,至少对基体S的上表面进行处理,以便除去所有的氧化物。这例如可以通过喷砂或喷丸清理、采用轮式或皮带式研磨机或酸洗来进行。当将经过清理的基体S放入空腔34内时,其上表面由熔剂涂层进行保护,所述熔剂涂层例如由包含熔剂粉末,液体熔剂或在液态悬浮体内的熔剂粉末的熔剂形成。熔剂可基本上防止基体S的再次氧化,如果需要的话,也可采用本说明书中详细描述的其它手段来代替熔剂。然后,沿轨道12b将预热炉24移动到其在下型箱部分18上方的位置处,以便将基体S加热到足够的预热温度。
可以理解,预热炉24利用热能把基体S的温度升高到一个足够的程度,从而与在熔化炉22内的熔融合金的过热相结合,实现与铸造覆层合金形成的所需结合。尽管预热炉24可以如上所述地优选地是一个电加热器,但也可以是煤气加热器或感应炉。
在详细描述铸造覆层的循环操作之前,应当理解,由预热炉24对基体预热,例如预热到大约750℃,将会在基体S内引起热应力并导致其变形。此外,通过向包括空腔34和46的型腔内浇注合金而将熔融合金铸造到基体S上会加大热应力和变形。在如到此为止所描述的结构中,变形会明显地妨碍有用的双金属板的生产。为了生产这种产品,需要采用许多进一步的特性,并与下型箱部分18及基体S的倾斜以及横浇道40和浇口44的配置相结合。
如图所示,在每一浇口44之后,每个横浇道40的底部40a是向上成阶梯形的,从而每个横浇道40的横截面沿直浇口杯38的横向减小。特别是,在下面将要详细描述的浇注状态下,每个横浇道的形状为,熔融金属以基本相同的压力和流速流向并通过每个浇口44。通过浇口44的熔融金属所产生的分离的液流极迅速地形成一个单一的熔融金属流,同时不会沿基体S产生熔融金属的不均匀的纵向流动。通过使基体S倾斜也有利于避免这种不均匀的流动,因为沿着基体的熔融金属的流动是反抗着重力的作用的。与产生不均匀流动的情况相反,事实上将会产生一个熔体前沿,该前沿最好在基体S的横向上是基本均匀的,并基本上以这种形式沿基体S纵向前进。
为了弥补在更靠近熔化炉22的基体S的横向边缘处的热应力效应,在该边缘处,横过基体S的下表面地将一个钢带50(例如其横截面大约为25×6mm)焊接在边缘上。在下型箱铸型部分18a中并在空腔34的对应端部处形成一个对应的横向通道52,从而当将基体S放入空腔34内时,钢带50整齐地容纳在通道52内。通过设置钢带50,基本上防止了紧靠浇口44的基体S的形变,同时也基本上防止了在该边缘处熔融合金向基体S下面的泄漏。通过在钢带50的下方于通道52内设置陶瓷纤维密封件或类似物可进一步地抑制上述泄漏。此外,如果预热炉的容量较低,也可以在空腔34内并在基体S的几乎整个区域下方设置一层陶瓷纤维纸,因为在基体下方的这种隔绝材料可帮助缩短预热基体S所需的时间。
正如将会理解的那样,设置钢带50只是由于防止基体S在其更接近熔化炉22的横向边缘处变形或弯曲的一种合适的布置。如上面所详细描述的,为达到这一目的的其它方式包括在基体S的上表面上采用型芯撑或纵向钢带,或者将金属螺栓焊接在基体S的下侧上。或者,可采用适当的铸型设计,以使基体S的横向边缘能够由上型箱铸型的型砂被迫地压在下型箱铸型上。
如前面所述,上型箱铸型部分20a中的空腔46的横向尺寸小于下型箱铸型部分18a中的空腔34的横向尺寸。这种尺寸差大于热膨胀间隙36,因而当闭合铸型时,基体S的纵向边界S′被上型箱铸型部分20a的交叠区所接合。至少对于这种交叠的主要部分而言,部分20a可以设有一个耐火的陶瓷插入条54。插入条54的结构为,在下型箱部分和上型箱部分夹紧在一起的情况下,每一个条54被迫向下压在一个相应的各基体边界S′上。用于闭合铸型以进行密封从而防止熔融金属泄漏所必须的力足以使插入条54将边界S′基本上保持在平的状态,并从而防止熔融金属经由这些边界明显地泄漏到基体S的下方。但是,并非必须要设置陶瓷条54,因为在上型箱型砂的强度足以使边界S′保持基本上是平的的情况下,可用覆盖边界S′的上型箱型砂实现它们的作用。
控制基体S的变形以便防止熔融金属泄漏到基体边缘的下方,这对于进行有用的双金属板的生产是十分重要的。但是,对于覆层而言,其厚度具有良好的均匀度也是十分重要的,特别是在基体的中心区,因为在该区域基体的上拱常常十分严重。为了至少降低中心区的这种变形,在基体的上表面上设置由适当合金制成的合适的间隔装置,并例如通过定位焊固定该间隔装置。在图示的结构中,所述装置包括一排圆形的型芯撑或圆盘56,它们中的每一个的厚度对应于覆层所需的厚度。当把下型箱部分和上型箱部分夹紧在一起时,加在圆盘56上的压缩力起着把基体向下压入空腔34内的作用,从而基体呈现略微扁平的状态。在相邻的圆盘56之间,基体S仍然会发生向上的拱起,但是这种拱起相对很小,同时其范围可借助圆盘56之间的间隔进行控制。如图所示,在基体S的整个中心区域上可采用圆盘56,同时也可沿着其远离炉22的横向边缘采用这种圆盘。
为了在预热的基体S上形成铸造覆层以制造双金属板,将处于适当的过热温度的熔融合金由炉子22浇注到铸型内,以填充空腔46。非常需要的是快速填充空腔46。这将确保将由预热的基体S和过热的合金所带来的整体热能平衡保持在一个合适的水平,直到完成空腔46的填充为止,从而在覆层与基体S之间获得于其间的几乎整个交界面上的所需结合。为了能够快速地填充空腔46,在上型箱部分20上安装有一个池形外浇口。
在图1中示出了一个池形外浇口58,它用于生产基板和覆层的厚度分别为10mm的大约为600×600mm的双金属板的最初实验。外浇口58借助于一个上进料直浇口部59相对于上型箱部分20进行安装,所述进料直浇口部59使外浇口58的内部与上型箱部分20的底部进料直浇口部42连通。外浇口58和上直浇口部59与上型箱部分一起上升和下降。随着部分20被下降并夹紧到下型箱部分18上,在熔化炉22向前倾斜,即倾斜到外浇口58上方时,外浇口58被设置成用于接纳来自熔化炉22的熔融合金。
利用外浇口58和直浇口部59的操作通常可满足生产尺寸大到600×600mm的双金属板的要求。但是,对于这种板,已发现最好采用图4和图5中所示的结构,而对于生产更大尺寸的双金属板而言,则必须采用这种结构。图4和图5的结构包括一个池形外浇口58′和一个上进料直浇口部59′。图4和图5所示的外浇口58′和直浇口部59′与图1所示外浇口58和部分59之间的重要区别在于(ⅰ)部分59′的高度降低,并相应地增加外浇口58′的高度和内部容积;(ⅱ)外浇口58′的出口位置相对于直浇口部59′更靠近中心;以及(ⅲ)在外浇口58′上设置一个顶部,从而当倾斜熔化炉22以向外浇口58′内浇注熔融合金时,外浇口58′被基本上围绕熔化炉22的出口地封闭。
由于这些差别,实质上可以向外浇口58′内倾倒形成适当尺寸的双金属板的铸造覆层所需的基本足量的熔融合金。此外,由于利用外浇口58′可以在很大程度上形成更直接的贯通流动,熔融合金能够以更高的流速经由直浇口部59′从外浇口流入铸型19内。因而,在铸型19中的基体S上形成的熔融合金的熔体前沿能够以更快的速度穿过基体S前进,从而在一个可以维持热能平衡与均匀结合一致的期间内完成铸造。
可以理解,向外浇口58′内倾倒熔融合金能够在铸型19内快速地形成一个熔体前沿。此外,熔体前沿可以快速地开始穿过基体S前进。因而,使在开始浇注和穿过基体S地产生一个适当的熔融合金的流动之间有最短的时间,从而也就是使热能的损失最小。这一优点可以和由设备10所能达到的下述其它特征相互结合起来,即,在基体S被预热炉24预热之后,预热炉可以很快地沿轨道12b被撤回,然后上型箱部分20能够以极短的延迟时间下降并被夹紧到下型箱部分上。因而,可以将从完成预热直到完成铸造这一期间内的热能损失降至最低。
如图4和图5所示,池形外浇口58′具有矩形块体的形状。它具有一个用钢板制造的外壳60和一个耐火材料的内衬61。在它的下半部分内,内衬61的内表面向一个通向直浇口部59′的出口会聚,外浇口58′具有一个略微类似于矩形截面的漏斗的内部。
熔化炉22是一个用于熔化覆层合金的感应炉,而且它可以倾斜,以便能够将熔融的合金炉料倾注到外浇口58′内。在使用时,熔融的炉料被倾倒到外浇口58′内,从而使其中的熔融金属的压头提供一个稳定的但是很强的驱动力,以用于填充空腔46。在图1所示结构的情况下,外浇口58具有一个呈细长的矩形的敞开顶部64,以用于限定出一个位于直浇口部42a和熔化炉22之间的腔室66,该腔室被一个横向脊68与直浇口部59隔开。熔体被浇注而不是倾倒进入在腔室66处的外浇口58,同时,当熔体流动以填充直浇口部59和42以及当熔体的高度升到外浇口58中的脊68上方时,脊68起着防止在熔体内产生过度的紊流的作用。
在图17至19中,示出了一个采用图1所示设备时由于试验中的铸型119的详细情况,在该试验中,生产1800×1000×10mm再加上10mm厚的双金属板,也就是该板的面积为1800×1000mm,将10mm的铸造覆层结合到10mm厚的基体上。在图17至19中,对应于图12至14中所示部件的部件具有相同的参考标号,但在该标号上再加上100。然而,所进行的描述则主要限于铸型119不同于图12至14所示铸型19之处。
铸型119具有由粘结的型砂制造的一个下型箱铸型部分118a和一个上型箱铸型部分120a。尽管在图17至19中没有示出,但是每个部分118a和120a是在一个相应的钢制支架内形成的,对于部分118a,所述支架如图6至8所示,对于部分120a,所述支架如图9至图11所示。
铸型部分118a的空腔134具有大约为1120mm的横向尺寸,这比基体S的初始横向尺寸大大约20mm,由此在基体S的每一侧留出约10mm的膨胀间隙136。同样,基体S具有大约为1950mm的初始纵向尺寸,而空腔134的纵向尺寸大约为1970mm,从而在基体S的远离熔化炉22的端部(图1)和底部直浇口部142处提供大约为20mm的间隙136。另外,部分118a和120a通过其间的型砂对型砂的接触被夹紧在一起以达到密封。为此并且为了防止基体S在其边缘处抬起,上型箱铸型部分120a的空腔146的横向宽度大约为1050mm,从而开始时约为25mm宽的基体S的各侧向边界S′被上型箱铸型部分120a的重叠的表面区域压住。此外,沿着基体S的远离熔化炉22的端部不设置芯棒,而是使基体S的一个端部边界S″类似地被上型箱铸型部分120a的重叠的表面区域压住。边界S″开始时也是大约25mm宽,它是由于以下事实造成的,即,空腔146的纵向尺寸约为1925mm,而基体S的初始尺寸约为1950mm(以及,和下型箱铸型部分118a中的空腔134的纵向尺寸约为1970mm相比,它有一个端部间隙136)。
如图17至18所示,直浇口142的每一侧有两个浇口144,借助它们能够使熔融合金从每一横浇道140流过来。同样,每一横浇道140在每一浇144之后逐渐地降低深度,以便使通过每一浇口144的熔体压力和流速基本上相等。
在铸型119的远离炉子22的端部,上型箱铸型部分120a同样限定出一个溢流抑制腔147,它位于基体S的相应端部的上方。但是比较图14和图19之后可以看出,在铸型19和铸型119之间有一个差别。在铸型19中,空腔47的位置是跨在基体S的端部边缘上。相反,在铸型119中,空腔147位于基体S的上方并由边界S″与该边缘隔开。在图14中,所示的空腔47简单地为一个上型箱铸型部分120a中的向下开口的横向通道,但是需要通过部分20a地通气。在图19中,空腔147同样也是一个向下开口的横向通道,例如在图19的剖视图中约为115×115mm,不过空腔147通过沿其长度设置三个通气147a而与上型箱铸型部分120a相通。
如上所述,铸型119在两个边界S′和另一个边界S″处把基体S压住。同时如图所示,基体S邻近熔化炉22和直浇口142的横向边缘地设有一个横向带150,它位于在下型箱铸型部分118a内形成的横向通道152内。尽管图中没有示出,但需要设置防止基体S向其边缘内变形的装置,这种装置可包括如前面所详细描述过的合金带或型芯撑。
利用图1所示的设备进行试验,其中,采用图17至19所示的铸型,该铸型装在图6至8所示的支架及图9至11所示的支架中。在这些试验中,将铸型布置成使它从熔化炉22向上倾斜大约3°。基体为10mm厚的可锻250号低碳钢板,其初始尺寸为1050mm宽,1950mm长。用于在每一基体上形成10mm厚的覆层的合金为具有最近共晶成分的15/3Cr-Mo高铬白口铁,它适合于形成一种耐磨的覆层材料。
通过对每一基体的上表面,即其上将要结合覆层的表面进行喷砂清理以制备基体。每一基体的经喷砂清理的表面基本上没有氧化物,然后在喷砂表面上涂敷可从CIGWELD获得的商用铜和黄铜熔剂的悬浮液,用于保护基体在预热过程中不被氧化并促进扩散结合的形成。此外,在每一基体的底面上涂敷氧化锆基的铸型涂料,以防止基体与任何渗透到基体下方的铸造合金之间的结合。
在基体经受喷砂清理之前,将一个25×6mm的钢带横过其前边缘,即更靠近炉22的横向边缘地焊接到每一基体的底面的边缘上。这是为了降低在铸造过程中熔融金属渗透到基体的下方的危险。此外,在每一基体的上表面上设置弯曲控制装置。在第一组基体的情况下,控制装置包括三个10×3mm的被定位焊在每个基体的上表面上的钢带,以形成四个具有相同的横向宽度的不同的纵向通道,铸造熔融合金可沿这些通道流动。在第二组基体中,不采用这种钢带;但是,用于每个基体的控制装置由24个盘状高铬白口铸铁型芯撑构成,其直径为25mm,厚度为10mm,它们以一个均匀的阵列被点焊在基体上。在每种情况下,控制装置都可确保抑制基体的弯曲,从而它在一定范围内不会干扰熔融合金的流动,由此所有的熔融合金将流过基体的一个区域而不会润湿其它区域。
对于每个试验,在倾动式感应炉内把大约260kg的过共晶高铬白铸铁熔化并加热到1600℃至1650℃之间。这表示大约过热350℃。在熔化周期的过程中将熔体成分调整成适合的成分并在即将进行铸造之前提取一份最终的光谱样品。
在熔化过程中,将一个基体置于铸型的下型箱部分内并预热到大约750℃。在该预热温度下,熔剂为液态的,润湿基体并极大地降低了氧化,但在铸造白铸铁之前,应将基体保持在这个温度的时间降低到最低限度。由于在预热过程中使整个基体的温度完全均匀在物理上是不可能的,而且边缘部分比基体的中心部分的温度低,顶面比底面的温度高,所以基体将稍微向上拱起和弯曲。因此,在达到预热温度之后应对基体进行10分钟左右的均热,这使得温度趋于均匀化并降低拱起。预热周期的时间应使得当基体被完全预热时,液态金属处于正确的过热温度并可用于铸造。
在完成预热时,关闭预热炉,将其抬起并移向旁边。通过降低上型箱并用液压将铸型的各部分夹紧而将铸型闭合。然后,立即注入液态金属并使之在基体上流过。移开预热炉,闭合铸型以及浇注的整个操作需要需要相当快地进行,以便将热损失降至最低。这些操作最好花费不到一分半钟,从而使预热的基体和熔体的温度下降均相当小。浇注260kg的金属仅在几秒钟内完成,以便确保液态金属在基体表面上的快的流速。
在铸造之后,使铸型保持夹紧状态约30分钟,以便允许在横浇道和溢流腔内有足够的凝固。然后,卸下上型箱并令铸件进一步冷却。当冷却时,把双金属板从铸型中取出,切除板后面的浇口和多余的金属并清理该板。此外,因为基体在边界处被夹持在铸型各部分之间,致使覆层不能延伸到基体的边界上,所以把该边界也切除,从而提供一个面积为1800×1000mm并且在10mm厚的基体钢板上具有一个厚10mm的白口铁覆层的双金属板。
在形成用于初始试验的铸型的上型箱部分时,将快速响应的R型和顶端裸露的K型热电偶安装在上型箱铸型中,从而使它们穿过型砂伸入覆层空腔内。R型热电偶用于测量在铸造之后基体上方的铸造金属温度,K型热电偶的作用是测量铸造金属的流速和料流分布。在试验程序的过程中发现,R型热电偶的响应时间几乎和K型热电偶的响应时间相等,所以在以后的试验中仅使用R型热电偶。
已发现,通过这些试验制成的双金属板的质量极佳。尽管有些板在冷却时有稍微的弯曲,但这些弯曲可以被消除。还发现,白口铁覆层基本上没有缺陷并且其厚度有良好的均匀度。同时发现,覆层已达到与基体完美无瑕的扩散结合,其特征为,它具有一个很窄的结合区,其上基本上没有显示出基体熔化的痕迹。此外,在覆层的层内也类似地结合有控制装置。
这些试验表明,为了生产具有良好质量的双金属板,需要(a)在钢基体上提供高铬白铸铁的覆层的情况下,为获得在所有部位的良好结合,当熔体流过基体时,在铸型中的任何一个位置处,熔体的温度都不应降低到大约1400℃以下,而且,基体处于一个适当的预热温度。
(b)铸造金属必须基本上均衡地流过整个基体表面。
(c)为了避免在熔体中使用过高的过热温度,浇注必须快。
(d)预热炉的移走和铸型的夹紧必须极快地进行,以便将预热基体和熔体的热损失降至最低。
(e)为了节省时间,必须不采用外部密封件地获得铸型的密封。
最后,应当理解,在不超出本发明的主旨和范围的前提下,可以对上面所描述的各部分的构造和布置进行各种变化、改型和/或补充。
权利要求
1.一种用于生产包括双金属板的复合金属制品的方法,其中,将由一种第一金属制成的板(下面称之为“基体”)预热,同时,将预热基体置于一个铸型的型腔内,并令基体的主表面朝上,为了填充型腔的深度的一部分,将一个由第二金属制成的部分(下面称之为“覆层”)铸造到基体的所述主表面上,以与基体一起形成所述的双金属板;在铸造覆层之前,使所述主表面基本上没有氧化物并用适当的涂层对其进行保护以使其不被氧化;覆层由该覆层所需成分的熔体铸造而成,并在一过热温度下进行浇注,从而与对基体的预热一起,在基体和覆层之间达到整体的热能平衡,并使得可在基体的主表面和覆层之间实现扩散结合;同时其中,借助以下方式使得更容易达到所需的热能平衡,即,使熔体通过一组在至少一个横浇道与型腔之间形成连通的浇口进入型腔,而且所述浇口组相对于熔体的通过其中的流动横向设置,借此,熔体形成一个横向延伸的熔体前沿,并令熔体前沿离开浇口地在基体表面上以一个在熔体前沿的整个横向范围内基本上均匀的速度前进。
2.如权利要求1所述的方法,其特征为,形成基体的第一种金属选自钛,镍,钴,铁基合金,钛基合金,镍基合金和钴基合金。
3.如权利要求1或2所述的方法,其特征为,形成覆层的第二种金属选自铜,镍,钴,铁基合金,铜基合金,镍基合金和钴基合金。
4.如权利要求1至3中的任何一项所述的方法,其特征为,第一和第二种金属的成分是不同的。
5.如权利要求1至3中的任何一项所述的方法,其特征为,第一和第二种金属的成分基本相同或紧密相关。
6.如权利要求1至5中任的何一项所述的方法,其特征为,扩散结合是在基体的所述主表面上基本上不存在熔化的情况下获得的。
7.如权利要求1至6中的任何一项所述的方法,其特征为,基体的所述主表面通过一种选自喷砂清理,喷粒清理,喷丸清理,用轮式或带式磨光机磨光或酸洗的方法基本上去除氧化物。
8.如权利要求1至7中的任何一项所述的方法,其特征为,通过在所述表面上施加熔剂同时在预热时将熔剂熔化以形成保护膜来保护基体的主表面不被氧化。
9.如权利要求1至7中的任何一项所述的方法,其特征为,通过沉积适当的金属来保护基体的所述主表面不被氧化。
10.如权利要求9所述的方法,其特征为,用化学镀覆或电镀的方式沉积适当的金属。
11.如权利要求1至7中的任何一项所述的方法,其特征为,通过施加包含有一种硅酸盐粘结剂的胶体石墨的涂层来保护基体的所述主表面不被氧化。
12.如权利要求1至11中的任何一项所述的方法,其特征为,所述基体是矩形的,同时,靠近并沿着基体的一个边缘地形成熔体前沿,该熔体前沿向与所述的一个边缘相对的基体边缘前进。
13.如权利要求1至12中的任何一项所述的方法,其特征为,熔体前沿的横向范围基本上延伸过基体的整个横向范围。
14.如权利要求1至13中的任何一项所述的方法,其特征为,以使熔体压力在每个浇口处基本上相等的方式使熔体进入型腔。
15.如权利要求14所述的方法,其特征为,熔体压力的相等至少部分地是通过把基体以下述方式放置在型腔中而实现的,即,使基体的主表面沿熔体前沿前进的方向向上倾斜,由此,在熔体前沿的整个横向范围内,重力的影响约束熔体前沿基本上均匀地前进。
16.如权利要求1至15中的任何一项所述的方法,其特征为,基体的预热是在把基体放置在型腔内之后进行的。
17.如权利要求1至16中的任何一项所述的方法,其特征为,基体以一种至少部分消除因热效应而造成的弯曲或形变的方式受到约束。
18.如权利要求17所述的方法,其特征为,由一组焊接到基体下侧上并由螺母牢固地限制在铸型的下型箱铸型支架上的螺栓来约束基体。
19.如权利要求17所述的方法,其特征为,通过利用把铸型的上型箱部分和下型箱部分夹紧在一起的夹紧力来约束基体,由此产生一个压缩载荷,该载荷起着将基体压成近乎于平的状态的作用。
20.如权利要求19所述的方法,其特征为,由定位焊接在基体主表面上的一组横向间隔开的且纵向延伸的金属带来约束基体,并且将金属带的大小做成可形成多个其深度基本上对应于所需覆层的厚度的通道,由此夹紧力借助支靠在金属带上的上型箱部分压紧基体。
21.如权利要求17所述的方法,其特征为,基体由多个定位焊接在基体主表面上的金属型芯撑加以约束,而且所述型芯撑的厚度对应于所需的覆层厚度,由此夹紧力借助支靠在型芯撑上的上型箱部分压紧基体。
22.一种用于生产双金属板的成型设备,该双金属板具有一个由第一种金属形成的板(下面称之为“基体”)和一个由铸造在基体上的第二种金属形成的部分(下面称之为“覆层”);其中,所述设备包括一个具有一下型箱部分和一上型箱部分的铸型;下型箱部分限定出部分由铸型形成的型腔,其中能够以使基体的主表面向上的方式放置基体;上型箱部分限定出型腔的一部分,借此,当铸型处于闭合状态时,能够浇注用于形成覆层所需的成分的熔体,以便填充基体上方的型腔部分,从而形成覆层;铸型的各部分限定出一组在至少一个横浇道与型腔之间形成连通的浇口;浇口组相对于通过它们的熔体的流动横向设置,从而能够形成一个横向延伸的熔体前沿;该设备的结构为,熔体前沿可离开浇口地在基体表面上以在前沿的横向范围内基本上均匀的速度前进,由此,在通过基体的预热和熔体的过热而在基体和覆层之间获得适当的热能平衡的同时,在基体的主表面和覆层之间能够实现扩散结合。
23.如权利要求22所述的设备,进一步包括用于使上型箱部分垂直地在一个下降位置和一个上升位置之间移动的装置,在所述下降位置,上型箱部分和下型箱部分可被夹紧在一起以将铸型闭合,在所述上升位置,可把基体定位在由下型箱部分限定出的型腔部分内。
24.如权利要求22或23所述的设备,进一步包括加热装置,当铸型的上型箱部分从下型箱部分离开时,该加热装置可在下型箱部分上方从一个退回位置移动到前进位置处,由此该加热装置能够预热置于下型箱部分内的基体。
全文摘要
通过提供由第一种金属制成的基体(S)和铸造在该基体表面上的由第二种金属形成的覆层部分而由基体(S)和覆层部分一起形成双金属板,其中,预热的基体(S)被置于一个型腔(34)内,并且基体(S)的主表面朝上,同时覆层部分填充型腔(34)的深度的一部分。在铸造覆层之前,使基体主表面上基本上没有氧化物并防止其氧化。通过以过热温度浇注所需成分的熔体而铸造覆层,由此与预热的基体(S)一起,在基体(S)和覆层之间实现整体的热能平衡。热能平衡使得在基体(S)的主表面和覆层之间实现扩散结合,通过使熔体经由一组使至少一个横浇道(40)和型腔(34)连通的浇口(44)进入型腔(34),可更容易地获得热能平衡。这组浇口(44)相对于流经其中的熔体的流动横向设置,从而熔体形成一个横向延伸的熔体前沿。通过令熔体前沿离开浇口(44)地在基体(S)的表面上以在前沿的整个横向范围内基本上均匀的速度前进,可更加容易地达到热能平衡。
文档编号B22D19/00GK1301204SQ99806262
公开日2001年6月27日 申请日期1999年4月16日 优先权日1998年4月16日
发明者特尼斯·海耶库普, 伊恩·罗伯特·迪克, 伯纳德·伯德纳兹, 杰弗里·马丁·高斯, 菲利普·戴维·派德森, 罗伯特·西德尼·布伦顿, 威廉·特利克特·怀特 申请人:联邦科学和工业研究组织
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1