燃料重整系统的制作方法

文档序号:3435647阅读:221来源:国知局
专利名称:燃料重整系统的制作方法
技术领域
本发明涉及一种由汽车燃料电池代表的移动燃料电池系统中的燃料重整系统。
背景技术
参照图1,该图描述了一种由汽车燃料电池所代表的移动燃料电池系统中的燃料重整系统的现有技术。一种装在燃料箱100中被用作燃料的水和甲醇的混合溶液101被送到蒸发器102中,加热蒸发后形成水(水气)和甲醇的混合气化物103,然后将该气化物送至混合器104。空气106也从压缩器105被送至混合器104中。混合气体103和空气106在混合器104中混合,然后送至一个自热重整反应器(ATR反应器)107中。
ATR反应器107利用水和空气中的氧通过如化学反应方程式1和化学反应方程式2所示的催化反应,重整用作燃料的甲醇并产生出富氧的重整气体。
(化学反应式1)(化学反应式2)化学反应方程式1表明甲醇的蒸汽反应(吸热反应),化学反应方程式2表示甲醇的部分氧化反应(放热反应)。化学反应方程式1所示的反应,主要按化学反应方程式3和4中所示的步骤进行。
(化学反应式3)(化学反应式4)化学反应式3表示甲醇的分解反应(吸热反应),化学反应式4表示一氧化碳的转移反应(放热反应)。ATR反应器107工作在自热环境中以平衡这些方程式中的吸热和放热反应。因此,一旦反应器的体积或结构,或者催化剂的性能被确定,则水蒸气的流速同甲醇燃料流速的比,以及空气流速的流速比就几乎被确定。
在部分氧化反应(POX)中所消耗的甲醇流速同所供应的甲醇总流速之比称为POX比。由于几乎所有供应的氧气都在方程式2的部分氧化反应(POX)中被消耗掉,因此甲醇总流速所需的空气流速可通过此POX比来确定。
在催化剂温度较低的开始阶段,同时发生如下面化学反应方程式5和6所示的辅助反应。
(化学反应式5)(化学反应式6)ATR反应器107的工作温度为300到600℃,从热力学化学平衡中可获得含有百分之几的一氧化碳的重整气体。一氧化碳毒化了由铂和其它固体聚合型燃料电池(FC)200组成的燃料电极催化剂,并大大地降低了其活性,因此有必要把一氧化碳的浓度降低至几十到100ppm,这通过由转移反应器108和选择性氧化反应器(PROX反应器)109组成的一氧化碳脱离器完成,然后把一氧化碳提供给燃料电池200。
包括百分之几一氧化碳的重整气体被送至转移反应器108,通过催化剂,一氧化碳在化学反应方程式4所示的转移反应中迅速减少。转移反应器108的工作温度为200-300℃,并且从热力学化学平衡看得到包括百分之几的一氧化碳的重整气体。转移反应器108可以和ATR反应器107结合在一起。通过转移反应减少了一氧化碳的重整气体被送至PROX反应器109,通过下列化学反应方程式7所示的催化氧化反应(放热反应),一氧化碳进一步减少,且最多可被减少到几十至100ppm。所需氧气由压缩器105像提供空气一样提供。
(化学反应式7)在PROX反应器109中,氧化反应在气体氛围中进行,且下面的氢气燃烧反应(放热反应)同时发生。因此,根据化学反应方程式8选择化学反应方程式7对燃料重整系统有重大影响。
(化学反应式8)PROX反应器109消除化学反应方程式7和8产生的热量,并将反应温度维持在几十度到100度。因此虽然图中没有显示,但是需要通过空气、LLC(冷却剂)、或油来冷却该反应器。
这样,一氧化碳被减少到极低浓度的重整气体,以及压缩器105提供的空气被送至燃料电池(FC)200的燃料电极和空气电极中,电能由此产生。
在燃料电池200中,重整气体中的全部氢不可能全部被利用,用于产生电能的包含有部分残余氢气的重整气体,以及用于产生电能的包含有部分残余氧气的空气,都被送至催化燃烧室110中燃烧。得到的高温废气被送至蒸发器102中,并作为蒸发甲醇和水的能量循环使用。
附图标记500是一个流速控制阀,用于控制提供给PROX反应器109的空气流速,501是一个流速控制阀,用于控制提供给ATR反应器107的空气的流速,502是一个流速控制阀,用于控制提供给燃料电池200中的空气电极的空气的流速。附图标记510是一个压力控制阀,用于调节燃料电池200中的燃料电极的工作压力,511是一个压力控制阀,用于调节燃料电池200中的中的空气电极的工作压力。附图标记520和521是压力传感器,用于感知燃料电池200中燃料电极和空气电极侧的工作压力,可以调节该压力以使得这些压力相等。
附图标记400是用来控制汽车能量管理的控制器,其将燃料重整系统的工作加载信号402送到燃料电池控制器401。该燃料电池控制器401根据工作加载信号402驱动泵111以得到ATR反应器107必需的燃料气体和空气的流速,控制将提供给蒸发器102的液体燃料的流速,并控制流速控制阀501。附图标记601和602是流速传感器。
作为蒸发器102,如果使用能够控制所产生气体的温度的巨大的蒸发器,或者如果一个有极大热容量或加热面积的蒸发器在恒温下工作,则从蒸发器102提供给ATR反应器107的蒸汽的温度能保持基本恒定。
这样的蒸发器也许可用在静止燃料电池的燃料重整系统中,但是移动燃料电池的燃料重整系统受空间限制,因此无法安装这种蒸发器。所以必须使用结构紧凑和简单的蒸发器102。

发明内容
然而,当使用这种蒸发器102时,从该蒸发器102中产生的气体的温度可能根据燃料重整系统的工作环境剧烈地变化,该温度变化范围可从一个接近于沸点的低温到一个从燃烧室110提供给蒸发器的废气的高温。因此,如果提供给ATR反应器107的蒸汽的温度比设计要求的高,则从ATR反应器107提供给转移反应器108的重整气体中的一氧化碳的浓度就比设计要求的高,且从转移反应器108提供给PROX反应器的一氧化碳浓度就变高,这样从PROX反应器109提供给燃料电池200的重整气体中的一氧化碳浓度就可能会超过燃料电池所允许的数值范围。
相反,如果ATR反应器107提供的蒸汽的温度低于设计要求的温度,则从ATR反应器107提供给转移反应器108的重整气体中残余甲醇的浓度就高于设计要求。当在转移反应器108和PROX反应器109中去除一氧化碳时,必须首先处理甲醇,且一氧化碳未被充分地去除,因此从PROX反应器109提供给燃料电池200的重整气体中一氧化碳的浓度就会超过该燃料电池的允许数值范围。
而且,未反应的甲醇成分的增长会导致电能产生性能的下降,该电能产生性能依赖于燃料电池200中所用的电极催化剂或氢离子过滤膜的类型。
因而,在传统的移动燃料电池系统的燃料重整系统中,由于从蒸发器提供给ATR反应器的蒸汽的温度变化剧烈,所以从ATR反应器提供给一氧化碳去除器的重整气合成物超出了该一氧化碳去除器能够处理的合成物技术要求,且从燃料重整系统提供给燃料电池堆的重整气合成物可能超出原始的技术要求所规定的合成物范围。
本发明基于解决上述传统问题而设计,因而其目的是提供一种用于移动燃料电池的燃料重整技术,运用该技术,既使当从蒸发器提供给燃料重整器的蒸汽温度剧烈变化时,也能得到一种可用于燃料电池的重整气体合成物。
本发明的燃料重整系统具有用于探测提供给燃料重整器107的燃料蒸汽和氧气流速的设备601、602,用于探测提供给燃料重整器的燃料蒸汽的温度、氧气的温度、燃料蒸汽和氧气的混合气体的温度中至少一个的设备600。根据温度探测设备的信号值来校正燃料蒸汽流速和氧气流速的比值,并根据该校正的比值提供氧气。
换言之,本发明的燃料重整系统的燃料重整方法的特征在于所述燃料重整系统有一个用以通过利用氧和包括燃料蒸汽的气体或液体燃料产生含氢重整气体的燃料重整器;用于将气体燃料或液体燃料与一种含氢气体混合的混合器;通过该混合器将气体燃料或液体燃料蒸汽提供给燃料重整器的第一供应器;在将液体燃料提供给第一供应器的条件下通过所述混合器将含氧气体提供给燃料重整器的第二供应器;探测提供给燃料重整器的气体燃料或液体燃料蒸汽的温度;根据探测到的温度确定气体燃料蒸汽的第一流速与含氧气体的第二流速的比值的第一校正系数;探测所述蒸汽的第一流速;依据探测到的第一流速和所确定的第一校正系数确定将提供给第二供应器的第二流速;依据所确定的第二流速,通过控制第二供应器调节进入燃料重整器中的含氧气体的流速。


图1是现有技术的方框图;图2是本发明的第一实施例的方框图;图3是第一实施例的控制时序图;图4是第一实施例所用的曲线图A(POX比校正系数与蒸汽温度的关系);图5是第一实施例所用的曲线图B(空气流速与蒸汽流速的关系);图6示出了第一实施例中ATR反应器所排出的重整气废气中甲醇浓度与提供给ATR反应器的蒸汽的温度之间关系的曲线图,图中点a至点e点对应图4中的相应点;图7示出了第一实施例中ATR反应器所排出的重整气废气中一氧化碳浓度和提供给ATR反应器的蒸汽的温度之间关系的曲线图,图中点a至点e对应图6中的相应点;图8是本发明第二实施例的方框图;图9是本发明第三实施例的方框图;图10是本发明第四实施例的控制时序图;图11是第四实施例中所用的曲线图C(燃料流速校正系数和POX比校正系数的关系)。
具体实施例方式参照图2至图7来说明第一实施例中的燃料重整系统。图2所示的第一实施例的燃料重整系统的特征在于引入温度传感器600探测将送至一个自热重整反应器107的混合物的温度,该温度传感器600的输出被传输至燃料重整控制器401。在图2中,与图1所示现有技术中构成部件相同的构成部件使用同样的附图标记。
燃料重整系统的燃料重整控制器401的控制时序参照图3进行说明。
步骤1燃料重整控制器401读取从控制器400传送来的燃料重整系统的一个工作加载信号402;步骤2该燃料重整控制器401根据工作加载信号402控制泵111,并提供一个进入蒸发器102的液体燃料的必要流速;步骤3燃料重整控制器401从温度传感器600读取蒸汽温度信号值;步骤4燃料重整控制器401根据温度传感器600的蒸汽温度信号值,通过利用图4的曲线A确定POX比的校正系数kpox(%);步骤5从温度传感器601中读取蒸汽燃料流速信号值;步骤6根据从步骤5中读取的蒸汽燃料流速的信号值,和步骤4中确定的POX比的校正系数kpox(%),通过利用图5所示的曲线B确定所提供的空气流速。曲线B是下列的换算公式1的图形表示。
Fair=(1+kpox/100)·k1·rpox,0/100·FFuel,vap(1)
其中Fair(g/sec)空气流速FFuel,vap(g/sec)燃料蒸汽流速rpox,0(%)设计要求的POX比;k1变换系数在此公式中,rpox,0在接近自热条件下大约为30(%);步骤7调节流速控制阀501的阀门打开程度以便设置在步骤6中所确定的空气流速。
在这个控制时序中,根据蒸汽流速和从蒸发器102提供的蒸汽的温度将燃料提供给ATR反应器107,同时空气流速总是由曲线A所校正的POX比所控制。
第一实施例的燃料重整系统的工作过程如下所述。图6示出了从ATR反应器107提供给转移反应器108的重整气废气的甲醇浓度与提供给ATR反应器107的蒸汽温度之间的关系。类似地,图7示出了由ATR反应器107提供给转移反应器108的重整气废气中的一氧化碳浓度与提供给ATR反应器107的蒸汽温度之间的关系。这些关系是通过利用在ATR反应器108中所用催化剂的化学反应速率,对在解释现有技术时提到的一系列化学反应方程式进行模拟的结果。
图6和图7中的直线320和321表明规定从ATR反应器107提供给转移反应器108的重整气体中甲醇和一氧化碳的浓度上限的技术要求浓度。
图6中的曲线300示出了在自热条件下,即当POX比一定时温度的依赖关系,且点a为设计点。当蒸汽温度升高时,甲醇浓度降低,因此不会有问题。但是,当蒸汽温度降低时,甲醇浓度升高,这就可能无法满足对提供给转移反应器108的重整气体的甲醇浓度的技术要求。
图7中的曲线301示出了在自热条件,即当POX比一定时温度的依赖关系,且点a为设计点。当蒸汽温度降低时,一氧化碳浓度减小,因此不会有问题。但是,当蒸汽温度升高时,一氧化碳浓度增大,这可能就无法满足对提供给转移反应器108的重整气体的一氧化碳浓度的技术要求。
ATR反应器107放出的甲醇和一氧化碳的浓度同蒸汽温度成交换关系,即换位(trade-off)关系。
同时,图6和图7也显示了当POX比rpox(%)如下述数学公式2所示,通过利用POX比的校正系数kpox=±2α,±α(%)被校正时的模拟结果。
rpox=(1+kpox/100)·rpox,0(2)从此可知,当进行校正时,甲醇浓度降低,一氧化碳的浓度升高,从而POX比rpox(%)增加;相反,当进行校正以减小POX比rpox(%)时,甲醇浓度升高,一氧化碳的浓度降低。
通过在图6中由直线320规定的技术要求浓度下面的浓度区域内画出工作曲线310,当对应每一蒸汽温度在工作曲线310上确定点c,b,d,e的POX比,并且在图7中绘出对应每一点的一氧化碳浓度时,便可获得工作曲线311。
当按照蒸汽温度和POX比的校正系数kpox之间的关系给出在所得到的工作曲线310,311上的一些点时,便得到图4中的曲线A。因此,当利用图4中的曲线A,按照蒸汽温度校正POX比时,从ATR反应器107提供给转移反应器108的重整气体的甲醇和一氧化碳的浓度就由蒸汽温度和图6,图7中的工作曲线310,311所确定。因此,如果蒸汽温度波动,浓度仍在直线320,321确定的技术要求浓度以下,且如果蒸汽温度变化,ATR反应器107能提供可在转移反应器108中消除一氧化碳的重整气体。因此,PROX反应器109就能提供一氧化碳的浓度减小了的重整气体,以供燃料电池200使用。
本发明的第二实施例可参照图8来说明。第二实施例的特点在于,图2所示的第一实施例中的温度传感器600的位置移到连接蒸发器102和混合器104的管道上。其它的组成部件与第一实施例相同。第二实施例的控制时序和工作也与第一实施例相同。
本实施例涉及一种燃料重整系统,其中引入到ATR反应器107的气体的温度变化主要是由提供给蒸发器102的蒸汽温度的变化所导致的。并且在本系统中,取代引入到ATR反应器107的气体的温度,可以探测到蒸发器102提供的蒸汽的温度,以便通过使用一类似的曲线图进行控制。
现参照图9说明本发明第三实施例中的燃料重整系统。第三实施例的特征在于,图2所示的第一实施例中的温度传感器600被移到用于为混合器104提供空气的管道上。因此,其它组成部件和第一实施例的相同,且其控制时序和工作也和第一实施例相同。
本实施例涉及一种燃料重整系统,其中引入到ATR反应器107的气体温度的变化主要是由提供给ATR反应器107的空气温度的变化所导致的。并且在本系统中,取代输入给ATR反应器107的气体的温度,可以探测到所提供的空气的温度,以便通过使用一类似的曲线图进行控制。
下面说明本发明第四实施例中的燃料重整系统。第四实施例的构造同图2所示的第一实施例相同,但燃料重整控制器401的控制时序与图3所示的第一实施例的时序不同,图10示出了本实施的控制时序。
第四实施例中燃料重整系统的燃料重整控制器401的控制时序参照图10说明。
步骤11燃料重整控制器401读取一个从控制器400送来的燃料重整系统的工作加载信号402;步骤12根据该工作加载信号402和存储在存储器中的,提供给蒸发器102的燃料流速校正系数kFuel(%),利用下面的数学公式3可确定所需的燃料流速Ffuel,liqFfuel,liq=(1+kFuel/100)·k2·rcon(3)其中Ffuel,liq所需的液体燃料流速rcon(kW)加载信号k2变换系数步骤13把所需的液体燃料流速Ffuel,liq提供给蒸发器102;步骤14读取温度传感器600输出的蒸汽温度信号值;
步骤15根据温度传感器600输出的蒸汽温度信号值,利用图4的曲线A可确定POX比的校正系数kpox(%);步骤16读取流速传感器601输出的燃料蒸汽流速信号值;步骤17根据燃料蒸汽流速信号值和步骤15中确定的POX比的校正系数kpox(%),利用图5的曲线B可确定所提供的空气的流速;步骤18调节流速控制阀501的打开程度以适合于步骤16中确定的空气流速;步骤19根据步骤15确定的POX比的校正系数kpox(%),利用图11所示的曲线C可确定提供给蒸发器102的燃料的燃料流速校正系数kFuel(%),并将该系数存储在存储器中。在此,如果POX比的校正系数kpox(%)为3%,则燃料流速校正系数kFuel(%)的值大约是1%,存储器的初始值为0。
第四实施例中燃料重整系统的工作过程说明如下。在前述的第一实施例中,如果设计要求(自热的条件下)的POX比例如为30%,且其校正率在±10%的范围,则校正后的POX比是27%到33%。如果按此程度变化,则重整气体中氢气流速的变化大约仅为±1%,且燃料电池200放出大约20%的未使用的氢气以便在燃烧室110中燃烧。因此所获重整气体中氢气流速的变化位于误差范围内,并不需要采取特别的措施。然而,当把第一实施例应用于一个POX比显著变化的系统时,如果引入到ATR反应器107的气体的温度发生变化,从ATR反应器107获得重整气体的甲醇浓度和一氧化碳浓度能够满足技术要求。但是,如果POX比的校正系数是一个很大的正值,则所获氢气量会减少,因而无法产生燃料电池200所需的电能。相反,在一个POX比的校正系数是一个很大的负值的系统中,燃料电池200放出的未燃烧氢气的量就会增加,这可能导致系统效率降低,或者使得燃烧室110或蒸发器102过热。
相比之下,在第四实施例中,当POX比的校正系数为正时,燃料流速会增加以便控制所获氢气量不会减少;或者当POX比的校正系数为负值时,燃料流速会减小以便控制所获氢气量不会增加。因此,如果POX比发生变化,氢气量也可维持不变。
虽然参照具体的

了实施例,但本发明并不仅仅局限于这些描述和说明。下面介绍其它的例子。
在前述的实施例中,POX比被用作控制参数,燃料流速所需的空气流速由POX比确定,且POX比依据引入到重整器的气体温度来校正。但并不局限于这一机制,不用POX比参数,也可用燃料流速所需空气流速的曲线图或函数,且POX比也能依据引入到重整器的气体温度来校正。
如不测量引入到重整器的气体温度,也可利用任何其它值,直到可以估算出引入到重整器的气体温度变化。利用该值,并通过其各自的流速,可估算出引入到混合器的蒸气和空气的温度及引入到燃料重整器的气体温度。
可以用于测量蒸气流速的流量计的信号作为蒸气流速,但蒸气流速也可由其它适当的值代替,例如,从提供给蒸发器并在其中产生蒸气的原始液体燃料流速中转换而来的蒸汽流速,或从泵的转动速转换而来的蒸汽流速,或者从蒸发器的特性曲线、损耗时间或时间常数中估算出的蒸汽流速。类似地,对空气流速,不用流量计信号,也可用代表空气流速的其它适当的值,例如,一个从阀门的打开程度和反压力估算出的值。
在此,甲醇可用作液体燃料,但也可用汽油或其它的液体燃料,或者也可以视情况采用诸如甲烷这样的气体燃料。
液体燃料甲醇和水存储在一个罐中用作混合溶液,但它们也可存储在不同的罐中,或者不用一个蒸发器,而用两个蒸发器分别蒸发甲醇和水。
如同图11的曲线C,也可使用一幅POX比校正系数和燃料流速校正系数的线性函数曲线图。但是,仅当超过一特定范围时,才可使用用以校正燃料流速的曲线图,且一直到POX比校正系数处于此范围内都不校正燃料流速。
如同燃料重整器,例如也可应用一个自热反应器,但是本发明也可类似地应用于利用含氧气体的燃料重整反应,就如同应用在基于部分氧化反应的部分氧化反应器中那样。
权利要求
1.一种燃料重整系统,包括一个用于通过利用包含气体燃料或液体燃料蒸汽和氧气的气体产生包含氢气的重整气体的燃料重整器;用于混合气体燃料或液体燃料蒸汽和含氢气体的混合器;通过所述混合器给所述燃料重整器提供气体燃料或液体燃料蒸汽的供应器;用于通过所述混合器给所述燃料重整器提供含氧气体的供应器;以及用于控制提供给所述燃料重整器的气体燃料或液体燃料蒸汽的第一流速及提供给所述燃料重整器的含氧气体的第二流速的控制器,所述燃料重整系统还包括用于探测所述蒸汽的第一流速的探测器;用于探测所述气体的第二流速的探测器;和用于探测提供给所述燃料重整器的气体燃料或液体燃料蒸汽、提供给所述燃料重整器的含氧气体、以及气体燃料或液体燃料蒸汽和含氧气体的混合物中至少一种的温度的温度探测器;其中,依据所述温度探测器的输出校正所述蒸汽的第一流速同所述气体的第二流速的比,并依据该校正的比来提供含氧气体。
2.如权利要求1所述的燃料重整系统,其中,根据气体燃料或液体燃料蒸汽的流速同含氧气体的流速的比的校正值来校正和提供气体燃料的流速,液体燃料蒸汽的流速,或液体燃料的流速。
3.一种燃料重整系统的燃料重整方法,所述燃料重整系统包括一个用于通过利用包含气体燃料或液体燃料蒸汽和氧气的气体产生包含氢气的重整气体的燃料重整器;用于混合气体燃料或液体燃料蒸汽和含氢气体的混合器;用于通过所述混合器给所述燃料重整器提供气体燃料或液体燃料蒸汽的第一供应器;以及用于通过所述混合器给所述燃料重整器提供含氧气体的第二供应器,所述燃料重整方法包括下列步骤向第一供应器提供液体燃料;探测提供给所述燃料重整器的气体燃料或液体燃料蒸汽的温度;根据所探测的温度,确定气体燃料蒸汽的第一流速同含氧气体的第二流速的比率的第一校正系数;探测所述蒸汽的第一流速;根据所探测的第一流速和所确定的第一校正系数,确定提供给第二供应器的第二流速;根据所确定的第二流速,通过控制第二供应器以调整进入所述燃料重整器的含氧气体的流速。
4.如权利要求3所述的一种燃料重整系统的燃料重整方法,其中在提供液体燃料之前,根据存储的燃料流速校正系数确定提供给第一蒸汽供应器所需的液体燃料流速;在调整了所述气体流速之后,根据所确定的第一校正系数确定燃料流速校正系数。
全文摘要
本发明提供了一种可用于移动燃料电池系统的燃料重整技术。既使从蒸发器102提供到燃料重整器107的蒸汽温度显著变化,利用该技术仍可获得一种能用于燃料电池200的重整气体合成物。本系统包括:用于探测将提供给燃料重整器107的燃料蒸汽和氧气的流速的流速探测装置601,602;用于探测提供给燃料重整器的燃料蒸汽的温度、氧气温度、以及燃料蒸汽和氧气的混合气的温度中至少一个的温度探测装置600。其中,燃料蒸汽的流速同氧气的流速的比值根据所述温度探测装置的信号值来校正,并且根据该校正的比值提供氧气。
文档编号C01B3/48GK1383417SQ01801578
公开日2002年12月4日 申请日期2001年5月8日 优先权日2000年6月1日
发明者岩崎靖和 申请人:日产自动车株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1