可逆储氢体系及其使用方法

文档序号:3432225阅读:1334来源:国知局
专利名称:可逆储氢体系及其使用方法
技术领域
本发明涉及能可逆地释放氢的储氢组合物、制造所述储氢组合物的方法及其在储氢中的应用。
背景技术
由于氢可以与空气干净地反应产生副产物水,所以是一种可取的能源。为提高氢作为燃料源的可取性,特别是对于移动式应用来说,理想的是增加每单位体积存储介质的可用能量含量。目前,这是通过传统方法如在高压(数千磅/平方英寸)下存储、冷却到液态或将氢吸入固体如金属氢化物中来实现的。加压和液化需要相对昂贵的加工和存储设备。
将氢存储在固体材料中可以提供相对较高的体积氢密度和紧密的存储介质。存储在固体中的氢的可取之处在于,它在适当的温度与压力条件下可以被释放或解吸,从而提供一种可控的氢源。
目前,理想的是使储氢容量或从材料中释放的氢量最大化,同时使材料的重量最小化,来提高重量(gravimetric)容量。此外,许多现用材料都只在很高的温度和压力下吸收或解吸氢,这造成在成本上和工业上不切实际的能量需求。另外,这些体系中许多都不容易可逆,因为它们在合理的温度与压力条件下接触时都不能吸收氢,因而不能以工业上实际可行的方式循环地吸收和解吸氢。因此,理想的是找到一种能在相对较低的温度和压力下产生(释放)和重新吸收氢并具有高重量储氢密度的储氢材料。对于能最小化所需能量输入的可逆性高氢含量储氢材料存在日益增长的需要。
因此,针对对改进的储氢介质体系的期望,本发明提供一种在存储介质中存储氢和从中释放氢的方法,以及改进的储氢材料体系。
发明概述一方面,本发明提供一种在工业可行的温度与压力条件下可逆地存储氢的方法。此方法包括提供一种含有稳定储氢氢化物和去稳定氢化物的混合物。所述稳定氢化物能够在第一能级(E1)释放氢。所述稳定氢化物与所述去稳定氢化物在一个反应中反应以在第二能级(E2)释放氢。第二能级E2小于第一能级E1。上述反应在工业可行的压力和温度条件下是充分可逆的。
另一方面,本发明提供一种可逆地存储氢的方法,包括提供一种由稳定储氢氢化物和去稳定氢化物构成的混合物。所述稳定氢化物能够在第一能级(E1)释放氢并由通式AHx表示,其中A包括选自元素周期表的13或15族的元素。所述去稳定氢化物由通式MHy表示。所述方法包括使稳定氢化物与去稳定氢化物反应以在第二能级(E2)释放氢。E2小于E1。所述反应按以下反应进行nAHx+mMHy_AnMm+_(nx+my)H2其中M是不同于A的一或多种阳离子,选择n、m、x和y以保持电中性。上述反应在工业可行的压力和温度条件下是充分可逆的。
另一方面,本发明提供一种在工业可行的温度与压力条件下可逆地存储氢的方法。此方法包括提供一种具有稳定储氢氢化物和去稳定氢化物的混合物。所述稳定氢化物能够在第一能级(E1)释放氢。稳定氢化物与去稳定氢化物的反应可以在第二能级(E2)释放氢。E2小于E1,且E2与一个小于约10kJ/mol-H2且大于0kJ/mol-H2的自由能有关。上述反应在工业可行的压力和温度条件下是充分可逆的。
另一方面,本发明提供一种包含由通式AHx表示的稳定储氢氢化物和由通式MHy表示的去稳定储氢氢化物的可逆储氢材料,其中M是包括一或多种不同于A中含有的那些阳离子的阳离子。在某些优选实施方案中,A是含有选自元素周期表13和15族的至少一种元素的阳离子。在其它优选实施方案中,A是含有硼(B)的阳离子。选择“x”和“y”以保持电中性。所述稳定氢化物能够在第一能级(E1)释放氢。所述稳定氢化物在有所述去稳定氢化物存在的情况下,在第二能级释放氢。根据本发明,第二能级明显低于第一能级。
另一方面,本发明提供一种含有由通式AHx表示的稳定储氢氢化物的可逆储氢材料,其中A包含选自元素周期表13或15族的至少一种元素。该材料还含有由通式MHy表示的去稳定储氢氢化物,其中M是不同于A的一或多种阳离子,且选择x和y以保持电中性。所述稳定氢化物能够在第一能级释放氢,且所述稳定氢化物在有所述去稳定氢化物的情况下在第二能级释放氢。第二能级明显低于第一能级。
此外,本发明还涉及含有由通式AHx表示的稳定储氢氢化物和由通式MHy表示的去稳定储氢氢化物的可逆储氢材料。A是包括选自以下的一或多种元素的阳离子锂(Li)、钠(Na)、钾(K)、铍(Be)、镁(Mg)、钙(Ca)及其混合物。M是包括不同于A中那些并选自以下的一或多种阳离子的阳离子铝(Al)、砷(As)、硼(B)、钡(Ba)、铍(Be)、钙(Ca)、镉(Cd)、铈(Ce)、铯(Cs)、铜(Cu)、铕(Eu)、铁(Fe)、镓(Ga)、钆(Gd)、锗(Ge)、铪(Hf)、汞(Hg)、铟(In)、钾(K)、镧(La)、锂(Li)、镁(Mg)、锰(Mn)、钠(Na)、钕(Nd)、镍(Ni)、铅(Pb)、镨(Pr)、铷(Rb)、锑(Sb)、钪(Sc)、硒(Se)、硅(Si)、钐(Sm)、锡(Sn)、锶(Sr)、钍(Th)、钛(Ti)、铊(Tl)、钒(V)、钨(W)、钇(Y)、镱(Yb)、锌(Zn)、和锆(Zr)、甲基(CH3)及其混合物。选择x和y以保持电中性。所述稳定氢化物能够在第一能级释放氢,且所述稳定氢化物在有所述去稳定氢化物的情况下在第二能级释放氢。第二能级比第一能级小至少约10%。
由以下详细说明将明了本发明的进一步应用领域。应当明确,说明本发明优选实施方案的详细说明和具体实施例只用于说明目的,并不用于限制本发明的范围。
附图简述由以下详细说明和附图将可以更全面地理解本发明,其中

图1示出现有技术的稳定氢化物、硼氢化锂或LiBH4(图1A)与结合了稳定氢化物LiBH4和去稳定氢化物氢化镁或MgH2的本发明储氢材料的一个实施方案(图1B)的能量对比图;图2示出在常规的Sieverts装置中进行的对比容量分析,显示了在升温到450℃然后保持恒定时,本发明储氢材料(LiBH4和MgH2)的一个实施方案的脱氢随时间的变化及现有技术的稳定氢化物(LiBH4)的失重随时间的变化;图3示出本发明储氢材料的实施方案(LiBH4和MgH2)与现有技术的稳定氢化物(LiBH4)的氢吸收容量分析对比,其中以120℃每小时或2℃每分钟的恒定速率进行加热;图4是根据本发明的储氢材料(LiBH4和MgH2)在将稳定氢化物与去稳定氢化物研磨之后(曲线a)、在脱氢之后(曲线b)和在重新加氢之后(曲线c)测得的X射线衍射图案;图5是显示本发明储氢材料的一个实施方案(LiH和MgB2)的循环脱氢和再加氢的另一个容量分析;图6显示了本发明储氢材料的多个试样(带TiCb的LiH和MgB2)的吸收和解吸等温线,其中实心标记代表吸收而在400℃的空心标记代表解吸;图7是由对应于图6中4重量%的数据(在其中用“X”标记示出)的吸收等温线获得的显示平衡压力的van’t Hoff曲线;图8是显示稳定氢化物与去稳定氢化物在氢气气氛和氩气气氛下脱氢的X射线衍射(XRD)图。
优选实施方案详述对优选实施方案的以下说明本质上只是示例性的,决非意在限制本发明或其应用或用途。在考察此处给出的本发明的说明书时必须考虑以下定义和非限制性原则。说明书和任何具体实施例,在说明本发明的实施方案时,只用于说明目的,并不用于限制本发明的范围。此外,具有所述特征的许多实施方案的记述并不排除具有额外特征的其它实施方案或结合了所述特征的不同组合的其它实施方案。具体实施例用于说明如何制造和使用本发明的组合物和方法的目的,除非另外明确说明,并不代表本发明的给定实施方案已经或尚未被做出或尝试。
在本文中,“优选的”和“优选地”是指本发明的在某种情况下能提供某些优点的实施方案。不过,在相同或其它情况下,其它实施方案也可能是优选的。此外,一或多个优选实施方案的叙述并不意味着其它实施方案就不可用,也不意在从本发明的范围中排除其它实施方案。
在本文中,“包括”一词及其变体是非限制性的,因此列举中各个项的叙述并不排除其它也可用于本发明的材料、组合物、设备和方法中的类似项。
在本文中,除非另作说明,所有的组成百分比都是按全部组合物的重量计。
在本文中,术语“约”在用于本发明的组合物或方法的某一参数的值时,表示该值的计算或测量在不显著影响该组合物或方法的化学或物理属性的基础上允许一些小误差。如果出于某种原因由“约”提供的不精确性在本领域中根据此原意不能理解,则“约”在此表示该值可能有最多5%的变化。
在本文中,术语“组合物”泛指至少含有优选的化合物,但同时还可包含包括杂质在内的其它物质或化合物的物质。术语“材料”也泛指含有优选的化合物或组合物的物质。
本发明提供一种能够释放较高氢含量和在工业可行的温度与压力条件下可逆地存储氢的储氢材料体系。在本发明的各种实施方案中,提供了一种由稳定储氢氢化物组合物与去稳定组合物结合构成的混合物,以提供可逆的高氢含量储氢材料。所述去稳定组合物优选地含有至少一种去稳定氢化物。在存在所述去稳定氢化物的情况下,所述稳定氢化物在显著更低的温度和压力条件下释放氢并可逆地吸收氢,使得本发明的储氢材料特别适于移动式氢应用。
“可逆”是指一或多种氢起始材料能够在经济和工业上有效且可行的温度与压力条件下被再生。同样地,“不可逆反应”一般既指由于一般不能够通过同一反应机制途径反应的传统上被认为不可逆的反应,又包括那些通过暴露于氢来再生一种含氢起始材料是在不切实际的工艺条件如极端温度、极端压力或繁重的产物去除条件下进行,从而阻碍了其推广和实际应用的反应。目前,能吸热地释放氢的储氢组合物通常被认为是在理想温度与压力条件下可逆地储氢的最佳候选物。
特别优选的“可逆”反应包括那些将一或多种产物组合物暴露于氢从而再生一或多种起始材料,且氢释放量为约5重量%或更多,和优选地约7重量%或更多的反应。如本领域技术人员所知,工业上实际可逆的概念包括评价所释放的氢的重量百分数,其与可逆地循环(释放和吸收)氢所需的能量输入相等。例如,吸热型储氢材料可能需要高能量输入来释放氢。不过,此能量输入可以由较高的氢含量(从材料中释放的氢浓度)抵销,从而使所释放的一些氢可作为能量被消耗用于释放额外的氢。不过,总的来说,该储氢材料释放足够量的氢以成为燃料电池应用的合适选择。
本发明的一个方面在于存储和随后释放氢所需的总能量降低了的储氢材料体系。最小化与储氢材料体系有关的总焓变使得所涉及的燃料电池体系的总效率得到提高。随着总焓变的增加,维持热交换系统(加热和冷却操作)的需求也会增加。特别是,将含有消耗氢的燃料电池的流动设备(例如车辆或电子设备)中的加热和冷却系统最小化是非常有利的,因为额外的系统会引起附加的能量并增加移动装置的总重,从而降低其重量效率。
为了更好地理解本发明的发明构思,在此提供一些简单的背景。更高的氢容量被认为是商业开发氢/氧质子交换膜燃料电池驱动的车辆及其他移动产品所必需的。根据对储氢材料的现有了解,似乎多数过渡金属基氢化物材料并不具有大于4-6重量%的氢容量。因此,开发集中在低Z复合氢化物上,其中Z是元素的原子序数,而“低Z”是指具有较低原子序数的化合物即轻化合物。所述低Z复合氢化物包括例如铝氢化物(AlH4-)、氨化物(NH2-)和硼氢化物(BH4-)。既由于动力学又由于热力学的限制,这种氢化物很难用于储氢。例如,许多复合氢化物的可逆形成与慢动力学相关,尽管可以通过适当的催化剂来提高反应速率。在热力学上,复合氢化物的稳定性必须位于特定范围之内以在可行的压力和温度下产生加氢/脱氢相边界。许多低Z铝氢化物通常被认为过于不稳定和难以控制,因为它们易于在环境温度和压力下释放氢。但是,某些铝氢化物,例如NaAlH4,确实会形成需要更高温度和压力来放出氢的氢化物。大多数硼氢化物例如LiBH4和NaBH4非常稳定,由此在一般的燃料电池工作温度和压力条件下难以使用。
图1A显示了现有技术的储氢氢化物材料纯硼氢化锂LiBH4的能量图。图1A显示了根据预期产物和使用HSC化学计算的LiBH4的能量图。虽然LiBH4的总氢含量较高在约18重量%以上,纯LiBH4并不能可逆地存储大量氢,且LiBH4的分解产物还没有清楚确定。一种预期的部分分解反应产生LiH、B和3/2H2且氢的理论产率为13.6重量%氢。但是,此反应的计算标准焓为约+67kJ/mol-H2,因此即使是可逆的,1bar的平衡压力也需要超过400℃的温度。这样的温度对于实际的储氢应用来说一般被认为是过高的。
以这种方式,LiBH4可被定义为“稳定”氢化物,意思是指由于该组成是热力学稳定的,所以它要释放氢的话需要禁止的能量输入。术语“禁止的”是指所需的能量在工业上特别是对于移动消费产品来说是不可行的,并且由于过多的能量需求倾向于排除使用该材料。
加氢/脱氢热力学的改变可以使用各种物质体系通过采用与稳定氢化物组合物形成合金或化合物的去稳定添加剂来实现。当向稳定储氢组合物中施加了去稳定组合物以有利地改变储氢应用的热力学时,平衡压力增加,由此降低整个体系所需的能量输入。在一个实施例中,去稳定化合物与稳定储氢化合物反应形成额外的或改性的反应物和/或产物以达到更合适的热力学。在本领域中已知许多(周期表)第2和3周期的元素的氢化物具有较高的氢密度,例如大于5-6重量%。不过,这些氢化物中大多数都十分稳定,在1bar下直到温度超过250℃才会释放氢。
这种材料的两个例子是氢化锂(LiH)和氢化镁(MgH2)。氢化锂含有12.5重量%的氢,但对于1bar的平衡压力需要910℃。氢化镁含有7.7重量%的氢,且在275℃具有1bar的平衡压力。氢化镁的热力学可以通过使用在加氢和/或脱氢态与Mg形成合金或化合物的添加剂来改变。一个著名的例子是向镁中添加镍以在起始材料中形成Mg2Ni,它在加氢时形成含3.6重量%氢且在245℃时平衡压力为1bar的Mg2NiH4。已经发现元素铝能通过在脱氢时形成Mg/Al合金来破坏MgH2的稳定。该反应是可逆的,MgH2和Al在加氢过程中会重新形成和分离。在280℃,更合适的平衡压力比纯MgH2的平衡压力大3倍。
为了对强结合的稳定氢化物体系实现更高的平衡压力(它体现为脱吸氢时更少的能量需求),可以向稳定氢化物中引入添加剂以与脱氢的金属形成化合物或合金。去稳定作用的发生是由于体系可以在氢化物与新形成且热力学上更有利的一种或多种化合物而非不太有利的一种或多种脱氢元素金属之间循环。去稳定元素例如硅(Si)使某些稳定氢化物存储体系如氢化锂或氢化镁去稳定。添加的硅与锂或镁形成相对较强的键合。这些新形成的强键合能降低脱氢焓和增加平衡氢气压力。稳定氢化物的其它有效元素去稳定剂包括例如硅(Si)、铝(Al)和(Cu)。
因此,在本发明的一个方面,提供使一或多种稳定氢化物去稳定的方法。为此,一个目的是增加各种强键合稳定氢化物的平衡压力,以根本上降低所需的体系焓和稳定脱氢态。稳定脱氢态可以降低用于脱氢的焓,从而增加平衡氢气压力。使用此方法,可逆储氢材料体系的热力学特性有可能调整到比单独用各个材料获得的更精细的程度,以在实用的温度与压力条件下实现可逆的氢释放。
不过,提高整个储氢体系的氢含量也是可取的。本发明提供相对较高的储氢材料释放氢气量,并同时最小化该可逆体系所需的能量输入。在各种实施方案中,本发明提供重量相对较轻的可逆储氢材料。在本发明的某些实施方案中,可逆储氢材料的重量容量为大于5-9重量%氢。
因此,本发明在各种实施方案中提供高氢含量储氢体系,它包含稳定氢化物材料和去稳定氢化物材料,其中每种反应物均可能对供燃料电池消耗的释放氢量有贡献。因此,稳定氢化物和去稳定氢化物都提供氢以增加释放氢量。另外,根据本发明,如前所述,稳定氢化物中的去稳定氢化物的添加有利地改进了反应热力学,由此通过提高储氢体系的平衡压力降低了所需的能量输入或焓。应当理解,预计的热力学和平衡压力对挑选本发明的储氢材料有用,不过经常会发现在和能级有关的计算或预计值(例如平衡压力、焓)与实测值之间会存在偏差。
在某些实施方案中,本发明提供一种在工业实际可行的温度与压力条件下可逆地存储氢的方法。将稳定储氢氢化物与去稳定氢化物混合。所述稳定氢化物的特征在于在具有第一自由能级(E1)的第一反应中释放氢。该第一能级与由ΔH表示的焓变有关。同样与氢的释放有关的是由ΔS表示的熵变。焓变和熵变可用于确定吉布斯自由能的变化,通常表示为ΔG=ΔH-TΔS=-RT(ln Keq) (式1),其中Keq是平衡常数,H是焓,S是熵,T是以K为单位的绝对温度,R是气体常数,而Keq是平衡常数。吉布斯自由能的变化与化学反应的热力学上可行性有关。如果ΔG>0,则反应不能自发地发生。如果ΔG<0,则沿反应途径没有动力学限制的话反应可以自发地发生。反应变为热力学可行的温度就是ΔG=0或者Keq=1的温度。此温度通常通过以下公式确定T(ΔG=0)=ΔH/ΔS (式2)熵对自由能的贡献,由TΔS表示,补偿为使特定反应发生所必须达到的更高焓或能级。由于氢气是一种低分子量双原子气体,氢气的熵在很大程度上主导与氢释放反应相关的熵变,无论所涉及的固相成分如何。因此,自由能一般可被表示为要使期望的反应发生所必须向体系中施加或输入的所需“能级”。
因此,混合稳定氢化物与去稳定氢化物的效果可通过相关的焓变或能级变化来大致确定。当稳定氢化物与去稳定氢化物结合在一起时,可以在具有更低ΔH和因此更低反应温度的第二反应中释放氢。在将稳定氢化物与去稳定氢化物混合之后,形成一种两相储氢材料。稳定氢化物然后与去稳定氢化物在具有第二能级(E2)的第二氢释放反应中反应。根据本发明,第二反应的能级E2小于稳定氢化物自己的第一能级E1。所述能级变化显示在图1B中,其中储氢材料含有与去稳定化合物(MgH2)结合在一起的稳定氢化物硼氢化锂(LiBH4)。换言之,稳定氢化物能够在第一能级释放氢。但是,当存储材料在有去稳定氢化物存在的情况下含有稳定氢化物时,存储材料在第二能级释放氢,且第二能级显著低于第一能级。
从上述图1A所描述的现有技术可以看出,不存在氢化镁时,稳定氢化物硼氢化锂在一个需要ΔH=+66.6 kJ/mol-H2且平衡压力为1bar的温度为410℃的吸热反应中释放氢。然而,根据图1B所示的本发明(其中储氢体系含有稳定氢化物LiBH4和去稳定氢化物MgH2),通过添加去稳定氢化物,该结合的储氢材料具有降低的焓ΔH=+45.6kJ/mol-H2,其中在170℃的温度下平衡压力计算为1bar。MgB2合金的稳定性将脱氢所需的标准焓从约+66 kJ/mol-H2降到了约+46kJ/mol-H2,它相当于能量减少30%。在1bar压力下温度降低为240℃,这同样等同于所需能量输入的减少。
第二能级E2小于稳定氢化物自身的第一能级E1。应当注意,在这种情况下将稳定氢化物LiBH4与去稳定氢化物MgH2结合实际上既使LiBH4又使MgH2失稳,以在一个比稳定氢化物或去稳定氢化物本身更低的焓下释放氢,如下面所将详述。
由此,对于本发明的各种实施方案,优选地第二能级E2显著低于储氢材料的第一能级E1。“显著”降低优选地是在两个能级之间至少降低10%。在某些优选实施方案中,第二能级E2比第一能级E1小至少20%,在特别优选的实施方案中,能级差为至少30%。
在本发明的各种实施方案中,第一能级和要单独从稳定氢化物释放氢时体系必须达到的第一温度有关,而第二能级和在稳定氢化物与去稳定氢化物之间的反应中释放氢所需的第二温度有关。在优选实施方案中,在1bar压力下,第一温度为大于约250℃,第二温度为小于250℃。在更优选的实施方案中,第二温度为小于约200℃。在备选实施方案中,第二温度小于约175℃。优选地,将储氢材料释放氢所需的第二温度尽可能地降低。
能级的降低还可能与各个储氢体系的平衡压力有关。因此,现有技术的体系如LiBH4在400℃时平衡压力为小于或等于约1bar,而本发明的储氢材料体系的某些实施方案在400℃时平衡压力显著增加,为大于10bar和优选地大于12bar。由此,第一能级与反映在400℃时的低平衡压力(约1bar或更小)的第一平衡压力相关,而第二能级与在相同温度下显著更高(大于约10bar)的第二平衡压力有关,与降低的第二能级相关。
因此,在优选实施方案中,去稳定氢化物的添加改变了储氢材料氢解吸反应的热力学,并进一步允许可逆的加氢反应,其中在脱氢反应过程中形成的一或多种产物在暴露于氢气时可被再加氢。反应可逆性的难易与产物的能级有关。随着氢释放的整体吉布斯自由能级趋近0,可逆性越来越容易产生。如前所述,储氢材料的一个具体应用是移动式燃料电池应用。优选地储氢材料在工业实际可行的温度与压力下既能释放又能再填充氢。一般而言,车辆燃料电池应用中的这些温度相应于从大致室温到燃料电池工作温度的范围。例如工作温度通常达到约150℃。特别优选的工作温度为约80℃到约100℃。在某些实施方案中,选择储氢材料以在移动式燃料电池的工作温度附近解吸和吸收。例如,这可以通过选择其自由能在适当的温度条件下趋近零(由于式1中的焓项(ΔH)几乎等于熵项(TΔS))的储氢材料体系来实现。在特别优选的实施方案中,反应焓是吸热的。在本发明的某些实施方案中,与优选工作温度范围有关的第二能级E2相应于在从环境温度(环境温度包括移动式应用可以工作的温度范围,它包括例如约-35℃到25℃)到约150℃以及环境压力(约1bar)下小于约+45 kJ/mol-H2且大于约+30 kJ/mol-H2的焓,表明是一个相当容易并可控的可逆反应体系。在特别优选的实施方案中,该焓为约35 kJ/mol-H2,它与在移动式燃料电池应用的当前工作温度下的良好控制和可逆性有关,尽管可以针对任何温度范围和相应的焓选择材料。
在本发明的某些实施方案中,去稳定氢化物能够在第三反应(不存在稳定氢化物时)中释放氢,并具有第三能级E3。对于某些去稳定氢化物,第二能级E2小于第三能级E3,由此构成本发明储氢材料的组合氢化物在释放氢时与任一氢化物本身的自由能相比将遇到更低的组合自由能。它的一个例子是当去稳定氢化物为MgH2而稳定氢化物为LiBH4时。当这些化合物被结合在一起时,自由能小于各单独化合物在氢释放时各自的自由能。
由此,在某些优选实施方案中,本发明提供一种固态储氢材料体系,它包含氢被“存储”在反应物中的加氢态和另一个在氢释放之后与产物相对应的脱氢态。在本发明的某些实施方案中,加氢态包括两个分离的固体相,第一相对应于稳定氢化物,而第二固相对应于去稳定化合物或氢化物。在各种实施方案中,固相反应物被研磨以降低平均直径粒径和在反应之前增加颗粒的表面积。应当注意,使用本发明的储氢材料体系,球磨可以降低粒径和混合起始反应物,但通常不促进它们之间的反应,这与对其它储氢材料体系进行球磨时所观察到的不同。在某些优选实施方案中,平均粒径被降低到小于约25μm,更优选地小于约15μm。
稳定储氢氢化物由通式AHx表示,其中A包含选自元素周期表13或15族的元素。储氢材料还包含可以用MHy表示的去稳定储氢氢化物,其中M是不同于A的一或多种阳离子。此外,选择x和y以保持电中性。当不存在去稳定氢化物时,稳定氢化物将需要一个禁止的能量输入来释放氢。
稳定氢化物的阳离子A包括除氢之外的一或多种元素,优选地这些元素选自IUPAC元素周期表的13或15族。在某些实施方案中,阳离子A包含铝(Al)、硼(B)、镓(Ga)、铟(In)、铊(Tl)、砷(As)、氮(N)、锑(Sb)或其混合物。根据本发明的某些实施方案,特别优选的稳定氢化物是阳离子A包含硼(B)的稳定氢化物。
在本发明的某些优选实施方案中,A是包含两种或两种以上不同阳离子的复合阳离子。所述氢化物往往被称作复合氢化物,在本发明中它也被进一步考虑到了。复合氢化物包含除氢之外的两种阳离子,不过其中一种阳离子与氢形成阴离子团,此阴离子团进一步与第二种阳离子相互作用。此概念可以由下式表示,其中氢化物表示为AxHx,A包含两种不同的阳离子A′和A”,因此A=A′+A”。由此该氢化物通常可以表示为A′da(A”bHc)a-d,其中(A′bHc)是阴离子团,其中d=(c-b)且选择a、b、c和d以保持复合物的电荷平衡和电中性。如本领域技术人员所知,适合的复合氢化物包括那些其中A包含不同于上述通式的额外阳离子的复合氢化物,且只要保持复合氢化物的电荷平衡和电中性,A可以包含多种阳离子或化合物。
在本发明的某些实施方案中,当稳定氢化物为复合阳离子时,除了选自元素周期表13和15族的元素之外A进一步包含选自元素周期表1和2族的至少一种元素或其混合物。由此,优选地当稳定氢化物是复合氢化物时,A包含选自以下的一或多种元素钡(Ba)、铍(Be)、钙(Ca)、铯(Cs)、钾(K)、锂(Li)、镁(Mg)、钠(Na)、铷(Rb)、锶(Sr)及其混合物。在更优选的实施方案中,当稳定氢化物是复合氢化物时,A包含选自以下的一或多种元素硼(B)、铝(Al)、锂(Li)、钠(Na)、钾(K)、铍(Be)、镁(Mg)、钙(Ca)及其混合物。在特别优选的实施方案中,稳定氢化物是包含硼(B)且包含锂(Li)、镁(Mg)或钠(Na)的复合氢化物。在替代实施方案中,稳定氢化物是复合氢化物且A包含选自元素周期表3-12族的过渡金属。
在本发明的各种实施方案中,稳定氢化物选自以下化合物硼氢化锂(LiBH4)、硼氢化钠(NaBH4)、铝氢化锂(LiAlH4)、硼氢化镁Mg(BH4)2、铝氢化镁Mg(AlH4)2、铝氢化钠(NaAlH4)、硼氢化钙(Ca(BH4)2)、铝氢化钙(Ca(AlH4)2)及其混合物。在本发明的特别优选实施方案中,稳定氢化物选自以下化合物硼氢化锂(LiBH4)、硼氢化钠(NaBH4)、硼氢化镁Mg(BH4)2及其混合物。
优选地去稳定氢化物MHy中的阳离子M包含不同于A中那些阳离子的一或多种阳离子。阳离子M的元素优选地不同于稳定氢化物中的那些,以使根据本发明的氢释放反应的热力学能得以改变。
应当理解,在本发明中阳离子M可以由除氢之外的单种阳离子或阳离子的混合物(例如复合氢化物)来代表。合适阳离子的例子包括金属阳离子、非金属阳离子(如硼)和有机的非金属阳离子如CH3。在某些实施方案中,去稳定氢化物包含选自元素周期表3-12族的过渡金属。某些优选的阳离子通常包括铝(Al)、砷(As)、硼(B)、钡(Ba)、铍(Be)、钙(Ca)、镉(Cd)、铈(Ce)、铯(Cs)、铜(Cu)、铕(Eu)、铁(Fe)、镓(Ga)、钆(Gd)、锗(Ge)、铪(Hf)、汞(Hg)、铟(In)、钾(K)、镧(La)、锂(Li)、镁(Mg)、锰(Mn)、钠(Na)、钕(Nd)、镍(Ni)、铅(Pb)、镨(Pr)、铷(Rb)、锑(Sb)、钪(Sc)、硒(Se)、硅(Si)、钐(Sm)、锡(Sn)、锶(Sr)、钍(Th)、钛(Ti)、铊(Tl)、钒(V)、钨(W)、钇(Y)、镱(Yb)、锌(Zn)和锆(Zr)以及包括甲基(CH3)在内的有机阳离子。
对于去稳定氢化物的阳离子M来说特别优选的阳离子包括选自以下的一或多种元素铝(Al)、钡(Ba)、铍(Be)、硼(B)、钙(Ca)、铯(Cs)铁(Fe)、镓(Ga)、锗(Ge)、铟(In)、锂(Li)、镁(Mg)、氮(N)、钾(K)、铷(Rb)、硅(Si)、钠(Na)、锶(Sr)、钛(Ti)、铊(Tl)、锡(Sn)、锆(Zr)及其混合物。在某些更优选的实施方案中,氢化物是复合氢化物,M包含选自以下的一或多种元素铝(Al)、铍(Be)、硼(B)、钙(Ca)、锂(Li)、镁(Mg)、氮(N)、钾(K)、钠(Na)及其混合物。
在本发明的某些实施方案中,去稳定氢化物是“二元”氢化物,意思是指氢化物包含氢和另外只一种其它阳离子M。在二元氢化物中,一般阳离子M是碱金属或碱土金属(元素周期表的1和2族)。二元氢化物的非限制性例子包括LiH、NaH、MgH2和CaH2等。
在本发明的各种实施方案中,去稳定氢化物选自以下化合物氢化锂(LiH)、氢化钠(NaH)、氢化钾(KH)、氢化镁(MgH2)、氢化钙(CaH2)、铝氢化锂(LiAlH4)、硼氢化钠(NaBH4)、硼氢化锂(LiBH4)、硼氢化镁Mg(BH4)2、铝氢化钠(NaAlH4)及其混合物。
根据本发明的一个实施方案,包含稳定氢化物和去稳定氢化物的储氢材料按以下可逆反应释放氢nAHx+mMHy_AnMm+_(nx+my)H2其中选择n、m、x和y以保持电中性。反应既产生H2,又产生副产物AnMm。应当注意,副产物AnMm在热力学上有利于分解成进一步更小和/或不同的副产物。这些进一步的副产物是由与初级副产物相同的大致组分构成的,但如本领域技术人员所知,根据阳离子种类的不同它们具有不同的价态、原子比或化学计量。这种额外的不同副产物可能包括金属氢化物,它可能会稍微降低产生的氢总量1/2(nx+my)H2。例如,在一个实施方案中,其中稳定氢化物是复合氢化物(即其中A是复合阳离子),该材料按以下可逆反应释放氢nA′cA′′dH(c+d)+mMHy_A′nHc+A′′nMm+_(nd+my)H2其中选择n、m、c、d、x和y以保持电中性。
在本发明的某些优选实施方案中,稳定氢化物是复合氢化物,而去稳定氢化物是二元氢化物。在一个实施方案中,稳定氢化物为硼氢化锂(LiBH4),而去稳定氢化物为氢化镁(MgH2)。在另一个实施方案中,储氢材料具有稳定氢化物硼氢化钠(NaBH4)和去稳定氢化物氢化锂(LiH)。在又一个实施方案中,储氢材料中稳定氢化物是硼氢化钠(NaBH4),去稳定氢化物是氢化镁(MgH2)。其它实施方案包括,稳定氢化物硼氢化锂(LiBH4)和去稳定氢化物氢化钠(NaH);稳定氢化物硼氢化镁(Mg(BH4)2)和去稳定氢化物氢化锂(LiH);稳定氢化物硼氢化镁(Mg(BH4)2)和去稳定氢化物氢化钠(NaH);稳定氢化物硼氢化锂(LiBH4)和去稳定氢化物硼氢化钠(NaBH4);稳定氢化物硼氢化锂(LiBH4)和去稳定氢化物硼氢化钠(NaBH4);稳定氢化物硼氢化锂(LiBH4)和去稳定氢化物铝氢化锂(LiAlH4);稳定氢化物硼氢化锂(LiBH4)和去稳定氢化物铝氢化钠(NaAlH4);稳定氢化物硼氢化钠(NaBH4)和去稳定氢化物铝氢化钠(NaAlH4)。
在本发明的备选实施方案中,储氢材料可能包含多种不同的稳定氢化物组合物,或多种去稳定氢化物组合物,或多种稳定氢化物和去稳定氢化物。在其它实施方案中,储氢材料包含稳定氢化物和去稳定氢化物,并进一步包含不同于所述去稳定氢化物的去稳定化合物,其中该去稳定化合物促进在从稳定氢化物本身的能级降低的能级从存储材料中释放氢。在某些实施方案中,该额外的去稳定化合物实现了比使用不存在该额外的去稳定化合物的去稳定氢化物和稳定氢化物的混合物所能达到的第二能级E2的更大降低或第二能级。某些去稳定化合物的例子包括元素形式的硅(Si)、铝(Al)和铜(Cu)。
根据本发明降低了储氢体系能量的优选反应的例子包括1)2LiBH4+MgH2→2LiH+MgB2+4H2(反应1),它理论上产生11.4重量%氢且预计反应焓为+45.6 kJ/mol-H2,且预计在170℃下平衡压力为1bar(尽管测量的平衡压力在大约225℃为1bar)。
根据本发明的备选优选实施方案的其它非限制性实施例中,根据预计的热力学发生制氢,包括以下示例性反应2)NaBH4+1/2LiAlH4→NaH+1/2LiH+1/2AlB2+9/4H2(反应2),其理论上产生7.8重量%氢,在20℃下预计反应焓为32.6kJ/mol-H2且预计平衡压力在70℃下为1bar。
3)LiBH4+1/2LiAlH4→3/2LiH+1/2AlB2+9/4H2(反应3),其理论上产生10.9重量%氢,在20℃下预计反应焓为16.8kJ/mol-H2且预计平衡压力在90℃下为1bar。
4)LiBH4+1/2NaAlH4→LiH+1/2NaH+1/2AlB2+9/4H2(反应4),其理论上产生9.1重量%氢,在20℃下预计反应焓为23.3kJ/mol-H2且预计平衡压力在0℃下为1bar。
5)NaBH4+1/2NaAlH4→3/2NaH+1/2AlB2+9/4H2(反应5),其理论上产生6.9重量%氢,在20℃下预计反应焓为39.2kJ/mol-H2且预计平衡压力在150℃下为1bar。
6)NaBH4+1/2MgH2→NaH+1/2MgB2+2H2(反应6),其理论上产生7.9重量%氢,在20℃下预计反应焓为63.6kJ/mol-H2且预计平衡压力在350℃下为1bar。
储氢材料优选地理论氢含量大于约5重量%,优选地大于7重量%。在某些实施方案中,储氢材料的理论氢含量大于9重量%。如本领域技术人员所知,理论产量经验上很难实现,实际产率往往小于预计的理论产率。
同样如本领域技术人员所知,储氢材料可以开始就包含上述反应的脱氢产物,并可以随后被加氢,由此根据本发明循环地释放和存储氢。例如,在一个实施方案中,起始材料包含LiH和MgB2。起始材料被暴露于氢气,它们在其中转化成加氢态的LiBH4和MgH2,并能随后如前所述可逆地释放和吸收氢。
在本发明的各种实施方案中,采用了催化剂来提高反应动力学。这种催化剂是本领域技术人员所熟知的。可用于本发明的催化剂包含选自以下的元素Fe、Ni、Co、Pt、Pd、Sr及其化合物和混合物。合适的催化剂化合物包括TiH2、TiHx、TiF3、TiCl2、TiCl4、TiF4、VCl3、VF3、VHx。催化剂通常被添加到任何一种储氢起始材料中或全部两种储氢材料中。优选地对材料进行研磨以达到理想的粒径和均匀混合。不过,本发明也考虑了特别是通过从溶液中沉淀、蒸气相沉积、化学输运或溅射沉积来处理催化剂。储氢材料体系中的优选催化剂浓度为从约0.1到约10原子%。
在某些实施方案中,本发明提供一种可逆地存储氢的方法,其中在有氢存在的情况下从起始材料中释放氢。在这类实施方案中,在氢气气氛下在稳定氢化物与去稳定氢化物之间发生的制氢反应在工业实用的压力和温度条件是充分可逆的。因此,在某些实施方案中,稳定氢化物与去稳定氢化物释放氢的反应是在基本上全部由氢气构成的氢气气氛(氢气可以含有少量不对该反应造成负面影响的杂质)中进行的,反应中形成的一或多种反应产物能够在暴露于氢时重新形成所述起始材料(即脱氢反应是可逆的)。在某些实施方案中,所述氢气气氛的最低氢气压力为至少约10atm(大概约1000kPa)、更特别地至少约8atm(大概约800kPa);至少约6atm(大概约600kPa);至少约5atm(大概约500kPa);至少约4atm(大概约400kPa);至少约3atm(大概约300kPa);至少约2atm(大概约200kPa);和至少约1atm(大概约100kPa)。在可逆的氢释放反应优选地在有氢气气氛存在的情况下进行的实施方案的一个实施例中,稳定氢化物为硼氢化锂(LiBH4),而去稳定氢化物为氢化镁(MgH2)。氢气气氛似乎能促进更容易可逆的产物LiH和MgB2(除氢之外)而非Mg和B金属的其它产物的形成,如下列实施例3所将进一步描述。
实施例1在根据本发明的一个优选实施方案所述的制造储氢化合物的方法进行的实验一中,制备摩尔比为2∶1的LiBH4与MgH2的混合物,该混合物按上述化学反应式反应。LiBH4可从Lancaster Synthesis,Inc.,Windham,New Hampshire商购(并指定纯度≥95%),MgH2可以95%的纯度从Gelest商购。将起始粉末以摩尔比2 LiBH41 MgH2混合,并在研磨过程中添加2摩尔百分比的催化剂(TiCl3)。称重1.2克起始材料并添加和密封到处于氩气(Ar)惰性气氛下的80cm3硬化钢球磨机容器中。密封之前把30个直径7mm的铬-钢研磨球放在具有粉末的容器中。然后将材料在Fritsch Pulversette 6行星式磨机中以400rpm高能球磨至少一个小时。最后在磨机中剩下的化合物(们)的平均粒径优选地为约5μm到约15μm。
图2显示了由质谱仪监视从Sievert装置中排出的气体所获得的容量分析。图2以失重显示了对于根据实施例1制备的含LiBH4和MgH2的研磨后的储氢组合物样品的氢释放随时间的变化。图2还以失重描绘了对于根据上述步骤制备的球磨后的LiBH4不过没有任何去稳定氢化物(例如MgH2)的样品的氢释放随时间的变化图。LiBH4也添加有TiCl3催化剂。各个样品以2℃每分钟的速率连续加热直到450℃(以虚线表示)。曲线“a”代表本发明的具有LiBH4和MgH2的储氢材料,而曲线“b”代表现有技术的单独的LiBH4。尽管LiBH4和MgH2储氢材料的特性是复杂的,仍有几乎10重量%的氢从储氢材料中产生(不包括催化剂的重量%)。相比之下,LiBH4只产生不到8重量%的氢(不包括催化剂)。因此,根据本发明制备的储氢材料显示出比现有技术改进了的氢释放。
类似地,图3显示了根据实施例1制备的样品的脱氢混合物的吸氢特性。还提供了带0.1TiCl3催化剂的纯LiBH4的脱氢样品用于对比。对于实施例1的样品,LiBH4和MgH2被以2℃每分钟的速率加热到300℃的温度之后保持恒温。现有技术的LiBH4样品被以2℃每分钟的速率加热到400℃的温度之后保护恒温。由图3可知,由曲线“a”代表的LiBH4和MgH2混合物吸收超过8重量%的氢。相反,即使在400℃,由曲线“b”代表的纯LiBH4也只吸收不到4重量%的氢。由此,在较低的温度下,本发明的具有稳定氢化物和去稳定氢化物的LiBH4和MgH2混合物与现有技术的稳定氢化物自己相比显示在较低温度下的良好氢吸收。
图4显示了根据实施例1制备的样品的X射线衍射图案。在图4中,“LB”代表LiBH4,“MH”代表MgH2,“MB”代表MgB2,“LC”代表LiCl3。曲线“a”是将LiBH4和MgH2一起机械研磨之后获得的,它表明研磨产生了一种不带稳定氢化物与去稳定氢化物之间反应产物的物理混合物。不过,可以看出,由研磨过程中可能发生的TiCl3与LiBH4的反应产生了低浓度的氯化锂。没有观察到任何含有Ti的物质的衍射。在脱氢发生(由曲线“b”表示)之后产生副产物MgB2和LiH。在重新加氢(由曲线“c”表示)之后350℃处的图案表明LiBH4和MgH2重新形成,同时来自LiCl的衍射峰消失。在2θ为25°附近的四重峰和18°处的峰清楚地表示LiBH4并说明它的可逆形成。此数据证实了LiBH4/MgH2储氢材料体系是可逆的。
实施例2在实验二中,将大约1.2g的LiH+1/2MgB2(反应产物)+0.03TiCl3(催化剂)的混合物如前面实验一中所述机械研磨1小时。
图5显示了根据实施例2制备的样品的加氢和脱氢。在两个常规Sieverts装置中进行温度匀变脱氢/加氢和等温线测量。使用无油泵站(可从Danielson Associates获得的Tribodyn 100/120-HVP)泵送该体系。通过用电离压力计置换样品容器测量样品的压力。在泵送一夜之后,可以达到1×10-6Torr的压力(1.3×10-4Pa)。使用低量程(0-100psia或大约7.0×102kPa)和高量程(0-3000psia或大约2.1×104kPa)电容压力计在75-575℃的范围内选择的温度处测量氢气压力。
在以2℃/分的速率加热期间,从100bar初始氢气压力进行的氢吸收在230到250℃开始。对于首次循环,加氢相对较慢,在300℃2小时之后吸收2.5重量%的氢。当加热到350℃时,发生额外的氢吸收,达到>9重量%。在第二和第三个周期,吸收变快,在300℃约2小时之内产生9重量%的吸收。向起始排空容积中的解吸开始于约270℃。在270-340℃和380-440℃分别出现了两个解吸步骤。当加热到450℃时,达到8重量%氢的解吸。头两个周期的解吸动力学几乎相同。5-6bar的最终压力可能会受平衡的限制(参见下图6)。使用附着在Sieverts装置上的残余气体分析仪(RGA)对解吸气体进行质谱分析,显示只有氢气放出,尽管排出液中可能含有低浓度的物质如B2H6或HCl。
根据实施例2制备的样品的吸收和解吸等温线如图6所示。等温线测量是在用于温度匀变实验的同一Sieverts装置中手动地进行的。在315℃和450℃之间(具体地在330℃、363℃、400℃和450℃)显示了吸收等温线,在400℃显示了解吸等温线。所述等温线显示了从2-8重量%的容量为大约10重量%的倾斜平稳态。平衡压力从315℃的4.5bar变化到450℃的19bar。在400℃获得的吸收和解吸等温线显示了2-3bar的滞后。
图7是一个使用在4重量%的吸收平衡压力(图6)的初步van’tHoff曲线(平衡压力的对数对绝对温度的倒数)。图7的曲线“a”显示从4重量%的吸收等温线获得的平衡压力。从315℃到400℃特性与40.5 kJ/mol-H2的脱氢焓、在225℃的1bar平衡压力和81.3 kJ/K-mol-H2的熵呈线性关系,在450℃(1000/T=1.38),平衡压力低于根据在较低温度的线性性质外推得出的预计压力。
在图7中,曲线“b”显示了对LiBH4脱氢形成LiH+B的特性估计。曲线“c”显示了对于从IEA/DOE/SNL数据库获得的MgH2/Mg的平衡压力。LiBH4/LiH+B体系的焓预计将为+67 kJ/mol-H2。与纯LiBH4相比,LiBH4+1/2MgH2体系的加氢/脱氢焓低25 kJ/mol-H2,且在400℃下平衡压力从大约1bar增长到了12bar。或者,将线性性质外推对于1bar的平衡氢气压力可以得出225℃的温度。总地来说,平衡压力表明MgH2的添加使LiBH4对于储氢显著失稳。
对于LiBH4+1/2MgH2体系,其平衡压力特性在大约360℃(1000/T=1.57)与MgH2/Mg的曲线交叉。看来在360℃以下其平衡压力比纯MgH2的大。因此,除LiBH4之外,MgH2也被去稳定。在此区域内,结合的LiBH4和MgH2体系具有高于任一单一组分的平衡压力。在360℃以上从4重量%处的等温线获得的平衡压力在MgH2/Mg的平衡压力之下。在这些条件下,认为体系以一种替代反应机制反应LiBH4+1/2Mg_LiH+1/2MgB2+3/2H2(反应7)由于Mg的加氢是放热的,上述替代反应(反应7)的焓应当小于上面在LiBH4+1/2MgH2的脱氢反应中所述指定为反应1的反应的焓。因此,在360℃以上平衡压力随温度的变化应当显示更低的焓,即更小的斜率。在450℃测得的平衡压力低于由较低温度外推出的压力。尽管不希望受任何具体理论限制,但相信此数据点可能表明从低于约360℃的温度的反应1向较高温度的替代反应(反应7)的跃迁。尽管在等温线数据内没有观察到两个平稳态,温度匀变解吸测量显示两个解吸步骤,它们可能相应于MgH2的脱氢继之以Mg与LiBH4形成MgB2的反应。根据本发明的一个优选实施方案,向LiBH4中添加MgH2产生了一个实际氢容量为约8-10重量%的可逆的、去稳定的储氢材料体系。与纯LiBH4相比加氢/脱氢焓降低了25 kJ/mol-H2,且对于1bar的平衡压力温度预计将为225℃。
实施例3在实验三中,以与上面实施例1中所述相同的方法制备含有2mol%的TiCl3催化剂的摩尔比为2∶1的LiBH4与MgH2混合物。在两种不同气氛条件下将球磨后的样品脱氢,以显示氢气气氛对反应产物的影响。
图8显示了两种不同脱氢方案的X射线衍射(XRD)数据。扫描A显示了通过在压力为5 atm(大约500kPa)的流动氢气下加热到400℃而脱氢的材料的XRD。扫描A表示反应产物包括MgB2,但并没有可察觉量的Mg金属生成。扫描B中的样品是通过在1 atm(100kPa)的流动氩气气氛下加热到400℃脱氢的。扫描B中的XRD图案表示作为反应产物形成了Mg金属,但没有可探测量的MgB2形成。因而,在本发明的某些实施方案中,当可取地具有氢气生成反应的可逆性时,优选地在有氢气存在的情况下进行稳定氢化物与去稳定氢化物的脱氢反应,优选地在氢气气氛中,以使得可以形成能够很容易通过暴露于氢气再生的反应产物(例如MgB2,而非元素Mg和B)。
因此,根据本发明的储氢材料提供一种稳定的可逆固相储氢组合物材料,这在移动式燃料电池应用中尤其有利。产生氢气的反应很容易通过温度与压力控制,且所需的能量输入被显著降低以增加整个体系的效率,同时储氢容量大大增加。根据本发明的储氢材料体系提供一种稳定、安全和能源效率高的长时间存储氢同时在温和条件下既允许氢释放又允许可逆反应的机构。本发明的说明本质上仅仅是示例性的,因此不偏离发明要旨的变体都在本发明的范围之内。这些变体不应被认为偏离了本发明的精神和范围。
权利要求
1.一种在工业实际可行的温度与压力条件下可逆地存储氢的方法,此方法包括提供含有稳定储氢氢化物和去稳定氢化物的混合物,其中所述稳定氢化物能够在第一能级(E1)释放氢;和使所述稳定氢化物与所述去稳定氢化物反应,以在第二能级(E2)释放氢;其中E2小于E1,且所述反应在工业实际可行的温度和压力下是充分可逆的。
2.根据权利要求1的方法,其中所述反应是轻微吸热的。
3.根据权利要求1的方法,其中E2比E1小至少约10%。
4.根据权利要求1的方法,其中E2比E1小至少约20%。
5.根据权利要求1的方法,其中E2比E1小至少约30%。
6.根据权利要求1的方法,其中材料释放超过7重量%的氢。
7.根据权利要求1的方法,其中材料释放超过9重量%的氢。
8.根据权利要求1的方法,其中所述第二能级E2与小于约10kJ/mol-H2且大于0kJ/mol-H2的自由能有关。
9.根据权利要求1的方法,其中所述去稳定氢化物能够在不存在所述稳定氢化物时在第三能级E3释放氢,且其中所述第二能级E2小于所述第三能级E3。
10.根据权利要求1的方法,其中所述第一能级E1与大于在1bar压力下释放氢所需的约250℃的第一温度有关,而所述第二能级E2与小于在1bar压力下释放氢所需的约250℃的第二温度有关。
11.根据权利要求10的方法,其中所述第二温度小于约200℃。
12.根据权利要求10的方法,其中所述第二温度小于约175℃。
13.根据权利要求1的方法,其中所述第一能级E1与在400℃的温度下小于1bar的第一平衡压力相关,而所述第二能级E2与在约400℃的温度下大于约10bar的第二平衡压力有关。
14.根据权利要求1的方法,其中所述混合物包含多种稳定氢化物。
15.根据权利要求1的方法,其中所述混合物包含多种去稳定氢化物。
16.根据权利要求1的方法,其中所述混合物进一步包含不同于所述去稳定氢化物的去稳定化合物,其中所述去稳定化合物促进在从所述第一能级(E1)降低的能级从氢存储材料中释放氢。
17.根据权利要求1的方法,其中在所述反应之前,将所述稳定氢化物和所述去稳定氢化物的平均粒径降低到约25μm之下。
18.根据权利要求1的方法,其中在所述反应之前,将所述稳定氢化物和所述去稳定氢化物的平均粒径降低到约15μm之下。
19.根据权利要求1的方法,其中所述混合物进一步包含一或多种催化剂。
20.根据权利要求1的方法,其中所述反应是在氢气气氛中进行的。
21.根据权利要求20的方法,其中所述氢气气氛的氢气压力大于或等于2atm(200kPa)。
22.根据权利要求20的方法,其中所述氢气气氛的氢气压力大于或等于6atm(500kPa)。
23.一种在工业实际可行的温度与压力条件下可逆地存储氢的方法,此方法包括提供含有稳定储氢氢化物和去稳定氢化物的混合物,其中所述稳定氢化物能够在第一能级(E1)释放氢并由通式AHx表示,其中A包括选自周期表13或15族的元素,且所述去稳定氢化物由通式MHy表示;和使所述稳定氢化物与所述去稳定氢化物反应,以在第二能级(E2)释放氢;其中E2小于E1,且所述反应按以下反应进行nAHx+mMHy_AnMm+1/2(nx+my)H2其中M是不同于A的一或多种阳离子,选择n、m、x和y以保持电中性,且所述反应在工业可行的压力和温度条件下是充分可逆的。
24.根据权利要求23的方法,其中所述稳定氢化物由通式AHx表示,其中A包括选自周期表13或15族的元素,所述去稳定储氢氢化物材料由通式MHy表示,其中所述反应按以下可逆反应进行nA′cA″dH(c+d)+mMHy_A′nHc+A″nMm+1/2(nd+my)H2其中M是不同于A的一或多种阳离子,并选择n、m、c、d、x和y以保持电中性。
25.一种在工业实际可行的温度与压力条件下可逆地存储氢的方法,此方法包括提供含有稳定储氢氢化物和去稳定氢化物的混合物,其中所述稳定氢化物能够在第一能级(E1)释放氢;和使所述稳定氢化物与所述去稳定氢化物反应,以在第二能级(E2)释放氢;其中E2小于E1,且E2与小于约10kJ/mol-H2且大于0kJ/mol-H2的自由能有关,而且所述反应在工业实际可行的温度和压力下是充分可逆的。
26.根据权利要求25的方法,其中所述第一能级E1与大于在1bar压力下释放氢所需的约250℃的第一温度有关,而所述第二能级E2与小于在1bar压力下释放氢所需的约250℃的第二温度有关。
27.一种可逆的储氢材料,含有由通式AHx表示的稳定储氢氢化物和由通式MHy表示的去稳定储氢氢化物,其中A是一种含硼的阳离子,M是一种含有不同于A中的阳离子的一或多种阳离子的阳离子,选择x和y以保持电中性,其中所述稳定氢化物能够在第一能级释放氢,且所述稳定氢化物在有所述去稳定氢化物存在的情况下在第二能级释放氢,并且所述第二能级显著低于所述第一能级。
28.根据权利要求27的材料,其中该材料释放超过7重量%的氢。
29.根据权利要求27的材料,其中所述第二能级比第一能级小至少约10%。
30.根据权利要求27的材料,进一步包含多种所述稳定氢化物或所述去稳定氢化物中的至少一种。
31.根据权利要求27的材料,进一步包含不同于所述去稳定氢化物的去稳定化合物,其中所述去稳定化合物促进在从所述第一能级降低的能级从所述稳定氢化物中释放氢。
32.根据权利要求27的材料,其中该材料按以下可逆反应释放氢nAHx+mMHy_AnMm+1/2(nx+my)H2其中选择n、m、x和y以保持电中性。
33.根据权利要求32的材料,其中所述反应发生在氢气气氛中。
34.根据权利要求27的材料,其中该材料按以下可逆反应释放氢nAHx+mMHy_AnMm+1/2(nx+my)H2其中A含有选自以下的一或多种元素锂(Li)、钠(Na)、钾(K)、铍(Be)、镁(Mg)、钙(Ca)及其混合物,M含有选自以下的一或多种元素铝(Al)、砷(As)、硼(B)、钡(Ba)、铍(Be)、钙(Ca)、镉(Cd)、铈(Ce)、铯(Cs)、铜(Cu)、铕(Eu)、铁(Fe)、镓(Ga)、钆(Gd)、锗(Ge)、铪(Hf)、汞(Hg)、铟(In)、钾(K)、镧(La)、锂(Li)、镁(Mg)、锰(Mn)、钠(Na)、钕(Nd)、镍(Ni)、铅(Pb)、镨(Pr)、铷(Rb)、锑(Sb)、钪(Sc)、硒(Se)、硅(Si)、钐(Sm)、锡(Sn)、锶(Sr)、钍(Th)、钛(Ti)、铊(Tl)、钒(V)、钨(W)、钇(Y)、镱(Yb)、锌(Zn)和锆(Zr)、甲基(CH3)及其混合物,并选择n、m、x和y以保持电中性。
35.根据权利要求27的材料,其中所述稳定氢化物是复合稳定氢化物,且该材料按以下可逆反应释放氢nA′cA″dH(c+d)+mMHy_A′nHc+A″nMm+1/2(nd+my)H2其中选择n、m、c、d、x和y以保持电中性。
36.根据权利要求27的材料,其中所述稳定氢化物是复合氢化物,而所述去稳定氢化物是二元氢化物。
37.根据权利要求27的材料,其中所述稳定氢化物选自以下化合物硼氢化锂(LiBH4)、铝氢化锂(LiAlH4)、硼氢化钠(NaBH4)、铝氢化钠(NaAlH4)、硼氢化镁Mg(BH4)2、铝氢化镁Mg(AlH4)2、硼氢化钙Ca(BH4)2、铝氢化钙Ca(AlH4)2及其混合物,而所述去稳定氢化物选自以下化合物氢化锂(LiH)、氢化钠(NaH)、氢化钾(KH)、氢化镁(MgH2)、氢化钙(CaH2)、铝氢化锂(LiAlH4)、硼氢化钠(NaBH4)、硼氢化锂(LiBH4)、硼氢化镁Mg(BH4)2、铝氢化钠(NaAlH4)及其混合物。
38.根据权利要求27的材料,其中所述稳定氢化物选自硼氢化锂(LiBH4)、硼氢化钠(NaBH4)、硼氢化镁(Mg(BH4)2)及其混合物,而所述去稳定氢化物选自氢化锂(LiH)、氢化镁(MgH2)、氢化钠(NaH)及其混合物。
39.根据权利要求27的材料,进一步包含一或多种催化剂。
40.一种可逆的储氢材料,含有由通式AHx表示的稳定储氢氢化物,其中A包含选自周期表13或15族的至少一种元素,和由通式MHy表示的去稳定储氢氢化物,其中M是不同于A的一或多种阳离子,且选择x和y以保持电中性,且其中所述稳定氢化物能够在第一能级释放氢,且所述稳定氢化物在有所述去稳定氢化物存在的情况下在第二能级释放氢,其中所述第二能级显著低于所述第一能级。
41.根据权利要求40的材料,其中所述第二能级比第一能级小至少约10%。
42.根据权利要求40的材料,其中该材料按以下可逆反应释放氢nAHx+mMHy_AnMm+1/2(nx+my)H2其中选择n、m、x和y以保持电中性。
43.根据权利要求42的材料,其中所述可逆反应发生在氢气气氛中。
44.根据权利要求40的材料,其中所述稳定氢化物是复合氢化物阳离子型,且所述材料按以下可逆反应释放氢nA′cA″dH(c+d)+mMHy_A′nHc+A″nMm+1/2(nd+my)H2其中选择n、m、c、d、x和y以保持电中性。
45.根据权利要求40的材料,其中A进一步包含选自周期表1和2族的至少一种元素或其混合物。
46.根据权利要求40的材料,其中A进一步包含选自周期表3-12族的至少一种过渡金属元素。
47.根据权利要求40的材料,其中A包含选自以下的一或多种元素硼(B)、铝(Al)、锂(Li)、钠(Na)、钾(K)、铍(Be)、镁(Mg)、钙(Ca)及其混合物,且其中M包含选自以下的一或多种元素铝(Al)、砷(As)、硼(B)、钡(Ba)、铍(Be)、钙(Ca)、镉(Cd)、铈(Ce)、铯(Cs)、铜(Cu)、铕(Eu)、铁(Fe)、镓(Ga)、钆(Gd)、锗(Ge)、铪(Hf)、汞(Hg)、铟(In)、钾(K)、镧(La)、锂(Li)、镁(Mg)、锰(Mn)、钠(Na)、钕(Nd)、镍(Ni)、铅(Pb)、镨(Pr)、铷(Rb)、锑(Sb)、钪(Sc)、硒(Se)、硅(Si)、钐(Sm)、锡(Sn)、锶(Sr)、钍(Th)、钛(Ti)、铊(Tl)、钒(V)、钨(W)、钇(Y)、镱(Yb)、锌(Zn)和锆(Zr)、甲基(CH3)及其混合物。
48.根据权利要求40的材料,其中A包含硼(B)。
49.根据权利要求40的材料,其中所述稳定氢化物选自以下化合物硼氢化锂(LiBH4)、铝氢化锂(LiAlH4)、硼氢化钠(NaBH4)、铝氢化钠(NaAlH4)、硼氢化镁Mg(BH4)2、铝氢化镁Mg(AlH4)2、硼氢化钙Ca(BH4)2、铝氢化钙Ca(AlH4)2及其混合物,而所述去稳定氢化物选自以下化合物氢化锂(LiH)、氢化钠(NaH)、氢化钾(KH)、氢化镁(MgH2)、氢化钙(CaH2)、铝氢化锂(LiAlH4)、硼氢化钠(NaBH4)、硼氢化锂(LiBH4)、硼氢化镁Mg(BH4)2、铝氢化钠(NaAlH4)及其混合物。
50.根据权利要求40的材料,其中所述稳定氢化物选自硼氢化锂(LiBH4)、硼氢化钠(NaBH4)、硼氢化镁Mg(BH4)2及其混合物,而所述去稳定氢化物选自氢化镁(MgH2)、氢化锂(LiH)、氢化钠(NaH)及其混合物。
51.一种可逆的储氢材料,含有由通式AHx表示的稳定储氢氢化物和由通式MHy表示的去稳定储氢氢化物,其中A是一种包含选自以下的一或多种元素的阳离子锂(Li)、钠(Na)、钾(K)、铍(Be)、镁(Mg)、钙(Ca)及其混合物,M是一种含有一或多种不同于A中那些阳离子并选自以下的阳离子铝(Al)、砷(As)、硼(B)、钡(Ba)、铍(Be)、钙(Ca)、镉(Cd)、铈(Ce)、铯(Cs)、铜(Cu)、铕(Eu)、铁(Fe)、镓(Ga)、钆(Gd)、锗(Ge)、铪(Hf)、汞(Hg)、铟(In)、钾(K)、镧(La)、锂(Li)、镁(Mg)、锰(Mn)、钠(Na)、钕(Nd)、镍(Ni)、铅(Pb)、镨(Pr)、铷(Rb)、锑(Sb)、钪(Sc)、硒(Se)、硅(Si)、钐(Sm)、锡(Sn)、锶(Sr)、钍(Th)、钛(Ti)、铊(Tl)、钒(V)、钨(W)、钇(Y)、镱(Yb)、锌(Zn)和锆(Zr)、甲基(CH3)及其混合物,并选择x和y以保持电中性,其中所述稳定氢化物能够在第一能级释放氢,且所述稳定氢化物在有所述去稳定氢化物存在的情况下在第二能级释放氢,且所述第二能级比所述第一能级小至少约10%。
全文摘要
本发明提供一种在工业实际可行的温度与压力条件下可逆地存储氢的方法。将稳定储氢氢化物与去稳定氢化物混合。稳定氢化物能够在第一能级释放氢。当稳定氢化物中存在去稳定氢化物时,稳定氢化物在第二能级释放氢。第二能级明显低于第一能级。本发明进一步提供含有稳定氢化物和去稳定氢化物的储氢材料体系。
文档编号C01B6/24GK1938220SQ200580009718
公开日2007年3月28日 申请日期2005年3月22日 优先权日2004年3月26日
发明者J·J·瓦乔, F·O·梅坦斯, S·L·斯凯思, M·P·巴洛格 申请人:通用汽车公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1