天然气转化为长链烃类的工艺的制作方法

文档序号:3432222阅读:214来源:国知局
专利名称:天然气转化为长链烃类的工艺的制作方法
技术领域
本发明涉及一种将甲烷转化为长链烃类的化学工艺,和一种装置,其包括适用于该工艺的催化反应器。
背景技术
WO 01/51194和WO 03/048034(Accentus plc)公开了一种工艺,其中,甲烷与蒸汽在第一催化反应器中反应,产生了一氧化碳和氢气;接着将产物气体混合物在第二催化反应器中进行Fischer-Tropsch合成反应。总的结果是将甲烷转化为较高分子量的烃类,该烃类在通常条件下是液体。在该工艺两步反应中,即蒸汽/甲烷重整和Fischer-Tropsch合成两步反应中需要不同的催化剂;并且也公开了每个步骤中所用的催化反应器。随着反应的吸热和放热,催化反应器将热量转移给反应气体或从反应气体中吸收热量;可以通过燃烧为蒸汽/甲烷重整反应提供所需的热量。然而,Fischer-Tropsch合成反应生成了不同链长的烃类,其包括蜡类物质,在一些情况下这是不希望的。

发明内容
本发明提供了一种处理天然气以生成长链烃类的工艺,该工艺包括天然气与蒸汽进行重整反应生成一氧化碳和氢气的混合物,接着将该混合物进行Fischer-Tropsch合成反应,其中该Fischer-Tropsch合成反应是在高于230℃的升高的温度下,气时空速大于10000hr-1的条件下进行,以获得C5+烃类产物选择率低于65%,并且一氧化碳的转化率不高于75%。
优选在17-21个大气压(绝对压力)下进行Fischer-Tropsch合成反应。在此相对较低的压力和较高的温度下,链增长概率因数(α)仅为约0.6-0.7。因此,烃类主要是短链烃类术语C5+指的是含有5个或更多碳原子的烃类。因此,这种模式下进行的操作产生了主要组成在通常条件下为气体的烃类;但是另一方面,这也确保了石蜡烃类(高于C17)的比例低于产品的1%。因此,通过冷凝Fischer-Tropsch合成产物而得到的液态烃类可以直接用作机车燃料而无需进一步的化学处理。操作温度高于常规温度是适当的,并且随着温度的提高,反应速率快速增加,因此有必要在较高的空速下进行操作从而限制水的产量以及随之产生的损坏催化剂的危险。
一氧化碳转化为烃类的转化率为60%-75%。这就确保了水蒸气的比例不会达到使得催化剂有可能水热老化的程度。可以通过冷凝和分离来自Fischer-Tropsch合成的液体来取得较高的一氧化碳转化率,接着将剩余气体在相同的操作条件下进行进一步Fischer-Tropsch合成反应。以这种方式冷凝并移除水份具有避免催化剂水热老化的优点。
该工艺也产生了尾气,该尾气含有氢气和大量的气化烃类。优选至少将一部分尾气用于发电,例如用作驱动发电机的叶轮机的燃料。这样不仅可以为本工艺的运行提供电能,例如将气体压缩至适于Fischer-Tropsch合成反应的压力,也可以将剩余的电能用作其他用途。例如,一些电能可应用于生产纯净水,该纯净水可以用在蒸汽/甲烷重整、或其他用途如饮用水;这就有可能必需对半成水或盐水进行反渗透或真空蒸发处理。可以用金属膜或变压吸附工艺对尾气进行处理以产生相对纯的氢气,例如可以用作燃料电池。
优选,蒸汽/甲烷重整反应和Fischer-Tropsch合成反应均在紧凑催化反应器中进行。此类催化反应器确定了交替设置的第一和第二流体流动通道以确保其间的气体具有良好的热接触。例如,其可以包括层叠的多个扁平金属板,其上凹槽确定了第一和第二气体流体通道。可替换的,通道可以由交替层叠的齿形板以及扁平板来确定。根据所要求的反应来提供适宜的催化剂。为了确保所需的良好热接触,蒸汽/甲烷重整反应器中的第一和第二气体通道在垂直于板的方向上优选低于5mm,更优选低于3mm;在Fischer-Tropsch反应器中,优选深度小于10mm。波纹状或凹状金属箔片、金属筛网、或波纹状或褶皱状金属毡状片材可以用作流体通道中催化剂结构的基底以提高热传递和催化剂表面积。优选,可以将催化剂结构从叠层的凹槽中移出,这样当催化剂成为废催化剂时,其就可以被替换了。
此类反应器提供了较短的扩散通道,因此热传递和质量传递的速度可以比较快,从而化学反应速度也比较快。因此该反应器提供了较高的能量密度。因此反应器可以相当的小并且轻,例如可以用标准ISO集装箱进行运输,因此可以用移动装置来进行该工艺。例如,日产200桶燃料的装置中并不需要任何尺寸超过半尺寸ISO集装箱的部件。也可以在偏远地区建立该反应器(在发现天然气和半咸水或盐水的地方),并提供了一种供应机车燃料、电能和饮用水的一体化方法。
本发明还提供了一种将天然气转化为长链烃类的装置,该装置包括上述的反应器,如上所述操作该装置以直接产生机车燃料,并产生含有大量的短链烃类的尾气。
通过列举实施例并参考附图来进一步并更为详细的介绍本发明,其中

图1是本发明化学工艺流程图;和图2为不同α值的质量分数分布图。
本发明涉及一种将天然气(主要是甲烷)转化为长链烃类的化学工艺以提供无需重要的进一步加工即可使用的液体燃料。第一步骤涉及蒸汽重整,即进行下列反应H2O+CH4→CO+3H2该反应是吸热反应,并在第一气体通道中被铑或铂/铑催化剂催化。该反应所需的热量可以通过可燃气体(如甲烷或氢气)的燃烧反应来提供,该燃烧反应是放热反应并也可以被邻近第二气体流动通道的钯催化剂催化。上述情况中的催化剂优选均在定形铝载体上,该载体通常在金属基底上形成100μm厚的覆盖层。可以在常压下进行上述两个反应,但是可选择的,在升高的压力条件下进行重整反应。燃烧产生的热量可以通过分隔相邻通道的金属板进行传递。
接着将蒸汽/甲烷重整反应所产生的气体混合物进行Fischer-Tropsch合成反应以产生长链烃类,即n CO+2n H2→(CH2)n+nH2O该反应是放热反应,其在升高的温度、升高的压力并在催化剂存在的条件下进行,通常升高的温度为230-280℃,例如240℃,通常升高的压力为1.7-2.1MPa(绝对压力),例如1.8MPa,催化剂可以是例如铁、钴或熔融的磁铁并且使用钾作助催化剂。优选用于Fischer-Tropsch合成反应的催化剂包含具有特定表面积140-230m2/g的γ-氧化铝覆盖层、其上约有10-40%的钴(相对于铝的重量)、以及低于10%钴重量的助催化剂,如钌、铂或钆。气时空速很高,例如为20000h-1(这是在标准温度和压力下测量的每小时进入反应器的气体体积,其是反应器自由体积的数倍),从而来抑制一氧化碳的转化率以及水蒸汽的产量。
参考图1,该图为总化学工艺流程图,其中显示了该流程装置的各部件。天然气原料5主要包括甲烷和,在这个实施例中,一定比例的C2-C11的高碳烃类。通常根据天然气来源的不同,这些高碳烃类可以为10%v/v。
通过阀门8来调整气体压力,接着利用来自催化燃烧中的热废气在热交换器10中将气体5预热至约400℃,接着进入固定床脱硫系统12将气体中的硫含量降低至0.1ppm或更低。脱硫后的天然气5接着与蒸汽混合,例如在流体涡流混合器14中混合。利用来自催化燃烧中的热废气在热交换器16中将气体/蒸汽混合物加热至500℃。混合物进入到绝热固定床预重整器18中,在此混合物与镍或铂/铑基甲烷化催化剂接触。预重整反应器18的操作压力为5-12bar(5-12个大气压绝对压力)。高碳烃类与蒸汽反应形成了甲烷和CO。
气体混合物以较低温度通常为450℃从预重整器18中流出。接着,再进入重整反应器20前通过阀门19将压力降低至优选3-7bar(a),更优选4-5bar(a)。重整器20是上述的紧凑催化反应器,该反应器由板叠层制成,该板叠层形成了用于吸热和放热反应的流体路径,该反应器具有良好的热接触性能,并且含有,例如在波纹状金属箔片基底上的适宜催化剂。重整器20的重整通道上含有铂/铑催化剂,并且蒸汽和甲烷反应生成了一氧化碳和氢气。重整反应器的温度从进口处的450℃升高至出口处的800-850℃。进入混合物14中的蒸汽和气体的流速要使得进入重整器20中的蒸汽∶碳的摩尔比为1.2-1.6,优选为1.3-1.5。考虑到气体5中的高碳烃类的含量,因此预重整器18进口处的蒸汽与碳的比例要高于上述比例。
重整反应器20中的吸热反应所需的热量由短链烃类和氢气的混合物进行催化燃烧来提供,该混合物为Fischer-Trop8ch合成的尾气22;该尾气22与来自空气压缩器24的空气流进行混合。在重整反应器20内的邻近流动通道中的钯铂催化剂上进行燃烧反应。燃烧气体路径相对于重整气体路径是共流的。催化剂包括γ-氧化铝载体,其上覆有钯/铂混合物3∶1,该催化剂在很宽的温度范围内都很有效。沿着反应器20提供各步骤中的可燃气体混合物以确保在燃烧通道的长度方向上发生燃烧反应。
一氧化碳和氢气的混合物以高于800℃的温度从重整器20中流出,并且通过将其流经蒸汽发生热交换器26而急冷至低于400℃。用泵28将水泵入进该热交换器26中,因而将用于重整工艺的蒸汽通过控制阀门30输送到混合器14中。用冷却水将气体混合物在热交换器32中进一步冷却至约60℃,因此过量的水得到了冷凝并通过流经旋流器33和分离容器34而得到分离。接着用压缩机36将气体混合物压缩至约压力的2倍,在流经第二旋流器41和分离容器42之前,用热交换器40对该气体混合物进行再次冷却以除去冷凝水。被分离的水再次循环回到蒸汽发生回路中。接着用第二压缩机44将气体压缩至18个大气压。
接着,高压一氧化碳和氢气流入到催化Fischer-Tropsch反应器50中,该反应器为上述的板叠层紧凑催化反应器;反应混合物在一套通道中流动,而冷却剂在另一套通道中流动。所述气体流以15000-20000hr-1的气时空速流动,平均温度为230-250℃。在制冷剂通道中利用制冷剂流体来除出所释放出的热以保持Fischer-Tropsch通道中的温度,尽可能接近于等温反应。所述制冷剂被循环,通过强制通风空气冷却器与环境空气热交换,将其温度保持在所需温度。
Fischer-Tropsch合成的反应产物主要是水和C17及低于C17的链烷烃类,该反应产物流经热交换器54和旋流分离器56被冷却凝结为液体(包括所需燃料组分)接着在分离室58中被分离为水、烃类和尾气三相,并且在常温常压下对燃料产物进行脱气处理。收集并分离气相中剩余的烃类和多余的氢气(Fischer-Tropsch尾气22)。一部分流经降压阀60为重整反应器20中的催化燃烧工艺提供燃料(如上所述)。剩余尾气62进入气体涡流机63来驱动发电机64。
气体涡流机64产生了装置所需的全部能量,并且还有剩余能量可以输出。主要需要电力的装置是压缩机36和44,以及泵24和28;电能也可以用于操作真空蒸馏单元以提供用于产生蒸汽的工艺用水和提供饮用水。
Fischer-Tropsch合成所产生的烃类产物取决于链增长概率因数(α);该概率因数越大,产物中较长链长产物的比例就越高。参考图2,该图为对于不同α值,不同链长(碳原子)的质量分数分布图。该分布被称为Anderson-Schultz-Flory分布,其可由下列方程表示Mn=n(1-α)2αn-1其中Mn是碳链长n的质量分数。α值受反应温度和反应压力的影响。在这个实施例中,反应温度保持在约240℃,压力为1.8MPa。这就使得α值相对较低为约0.6-0.7,这样最高质量分数是那些常规条件下为气体的烃类-甲烷、乙烷、丙烷、丁烷,因此形成了尾气。另一方面,高于C22的长链烃类的质量分数可以忽略不计。
从上述讨论的方程式中可以看出蒸汽重整反应所形成的氢气要多于Fischer-Tropsch合成所需要的氢气。因此尾气22中含有大量的氢气以及少量的低级烷烃(C1-C5)。然而,由于一氧化碳的转化率向当低,尾气22中同样也含有大量的一氧化碳。因此可以通过将其流经第二该类反应器(未显示)来进行第二Fischer-Tropsch合成反应,从而一氧化碳的总转化量有所增加,并且在某种程度上还能获得更多所需的产品。
分离器58的产物是液体,大部分是饱和直链烷烃;平均碳链长约为8,并且链长在约6-17之间。因此其基本相当于熟知的JP-8喷气燃料。
改变Fischer-Tropsch反应器50的操作参数是被欣赏的,液相产物的性质可以改变以生产不同类型的燃料例如柴油。
权利要求
1.一种处理天然气以生成长链烃类的工艺,该工艺包括天然气与蒸汽进行重整反应从而产生了一氧化碳和氢气的混合物,接着该混合物进行Fischer-Tropsch合成反应,其特征在于Fischer-Tropsch合成反应是在升高的温度高于230℃下,气时空速大于10000hr-1的条件下进行,以获得C5+烃类产物选择率低于65%,并且一氧化碳的转化率不高于75%。
2.一种如权利要求1所述的工艺,其中Fischer-Tropsch合成反应的操作压力为17-21个大气压。
3.一种如权利要求1或2所述的工艺,其中Fischer-Tropsch合成反应的产物被冷凝分离为液相和尾气,并且至少一部分的尾气用于发电。
4.一种如权利要求3所述的工艺,其中电能为将气体混合物压缩至适宜于Fischer-Tropsch合成反应的压力提供了所需的能量。
5.一种如权利要求4所述的工艺,其中电能也可以用作其他用途。
6.一种进行如上述任意一项权利要求所述的工艺的装置,该装置包括用于蒸汽/甲烷重整的第一反应器(20)和用于Fischer-Tropsch合成的第二反应器(50),其中上述的每个反应器(20,50)中含有多个叠层的金属板,其确定了第一和第二气体流动通道,通道交替设置从而确保其间的流体具有良好的热接触。
7.一种如权利要求6所述的装置,其中每个反应发生的流体通道均含有位于金属基底上的催化剂结构,该催化剂结构可以被移出。
8.一种处理天然气以生成长链烃类的工艺,该工艺包括天然气与蒸汽进行重整反应从而产生了一氧化碳和氢气的混合物,接着该混合物进行Fischer-Tropsch合成反应,其特征在于Fischer-Tropsch合成反应是在高于230℃的升高温度下,气时空速大于10000hr-1的条件下进行,以获得链增长概率因数(α)不大于0.7,并且一氧化碳的转化率不高于75%。
全文摘要
一种将天然气转化为长链烃类的工艺,该工艺包括天然气与蒸汽进行重整反应从而产生了一氧化碳和氢气的混合物,接着将该混合物进行Fischer-Tropsch合成反应。Fischer-Tropsch合成反应是在高于230℃升高的温度下,气时空速大于10000hr
文档编号C01B3/32GK1938399SQ200580008466
公开日2007年3月28日 申请日期2005年3月9日 优先权日2004年3月16日
发明者M·J·鲍 申请人:康帕克特Gtl有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1