通过纳米晶体横向生长制造胶体纳米片的方法与流程

文档序号:11971750阅读:415来源:国知局
通过纳米晶体横向生长制造胶体纳米片的方法与流程
本发明提供通过已经存在的纳米晶体或纳米片的横向扩展制造胶体纳米片的方法。所述扩展生长通过预定的时间内连续加入前体获得。本发明还涉及所获得的纳米晶体材料及所述材料的应用。现有技术具有至少一个纳米维度的结构的生长导致新的物理特性。这些纳米材料显示显著不同于大块材料的行为。当尺寸减小到纳米尺度时,电子1、光学、磁力2以及等离子3性质被改变。这些新材料引起在例如光学、电子和催化课题方面产生越来越大的兴趣。从20世纪80年代初以来,其中半导体胶体纳米晶体已经被深入研究。对于这些材料,当它们的尺寸为纳米尺度时,光学特性被强烈影响45。它们的吸收移向蓝色,且它们在只依赖于所述颗粒尺寸的波长处发荧光。低于一定尺度(由材料的玻尔半径所定义),量子限制具有显著的效果。对于半导体,当粒度减小时,其导致较大的带隙6。在CdSe的情况下,玻尔半径为5.6nm,和大带隙对应于710nm。因此,对于低于10nm的尺寸,CdSe纳米晶体发蓝色(直径2nm)、绿色(直径为3nm)、橙色(直径为4nm)和红色(直径为7nm)荧光7。因此,光谱是表征这些纳米材料的重要工具。可使用吸收或发射光谱估计平均粒度和粒度分布。通常通过两步骤方法8合成颗粒,其中首先将前体成核,然后所形成的种子生长9。在高温(250℃-300℃)下将前体溶液迅速注入烧瓶中,所述烧瓶填充有可以是配位或非配位的有机溶剂的混合物。成核经很短的时间发生,并伴有前体浓度的下降以及烧瓶温度下降。剩余的前体在生长步骤期间使用,以使种子生长,直至它们完整使用。直至最近,之前的方法总是导致球形纳米晶体。在过去的十年,深入研究导致各向异性形状的颗粒如棒状10或四足结构11。后者增加通过成核生长方法可达到的可能形状的动物学。取决于纳米晶体形状,可以观察到几种限制。在球形的纳米晶体(量子点)的情况下限制是三维的,而对于棒和线,限制是二维的。到目前为止,在胶体纳米晶体的情况下,仅仅没有一维限制。对于具有大至少一个量级(在CdSe的情况下至少10nm)的横向扩展的薄物件(厚度小于玻尔半径),后者可以获得。下面,这些物件将被描述为纳米片。在本文中,纳米片是一种具有惊人的物理性质的新型纳米材料。一旦它们的厚度被原子级地控制,则所述物件的确仅在一个维度(其厚度)上表现限制,导致:·窄的荧光光谱12·短的荧光寿命·大的吸收截面此外,生长横向扩展大于1μm的此类纳米晶体的能力将铺平新应用的道路。基于软化学方法的超薄半导体膜的生长将允许其用于光伏、电子(例如场效应晶体管)或光学应用。在2000-2010年十年中,纳米片的胶体合成一直是非常有吸引力的研究课题。已经开发了纳米片的几种合成,它们中的每个导致不同种类的材料。现有的主要方法是直接剥离层状材料,使用配体毒害(以停止生长)给定晶体面的纳米片生长。或者,纳米片可以通过具有拓扑(topotactically)转化的层状结构的中间体化合物获得。常用直接剥离方法获得石墨烯、氢氧化物或氧化物(如二氧化钛)片材。作为第一个步骤,降低层之间的相互作用能。然后,可以将片材机械分裂。对于离子化合物,可以通过阳离子交换方法得到层间距离的增加,其中初始阳离子交换大阳离子如四丁基氢氧化铵13。该膨胀减弱层间键,最后可以通过超声分离片材。在石墨烯的情况下,可使用合适的溶剂如N-甲基吡咯烷酮获得层间的相互作用能14。所述方法通常导致几个埃厚的单片。没有进一步生长是可能的。通过大的脱落物件的大小确定横向扩展。纳米片厚度的可能控制是可能的,因为后者取决于初始化合物的层状结构以及由此其化学性质。获得不同种类纳米片的更通用的方法涉及通过适当的表面配体毒害某些晶体面。在晶体的某些面上分子的优先吸收避免垂直该面的方向上材料的生长。这导致强的各向异性生长1516。所述方法通常用于纳米棒的生长。中毒分子有广泛的化学性质:·表面活性剂17·聚合物18·硫醇19·胺202122·无机离子20,23作为合成的材料可以是:·金属纳米板(使用PVP182425、CTAB26、离子2023)稀土氧化物2227(使用油酸或油胺)·硫化合物(使用Cu2S19辅助硫醇)…尽管其一般性,但是该毒害方法有一些缺点。小心控制所得到的纳米片的厚度的确是不可能的。获得具有所有相同厚度(厚度单分散)的纳米片也是不可能的。此外,据我们所知,对于这些材料没有后生长横向扩展的报道。或者,利用层状中间体化合物合成纳米片是可能的。该方法已被成功地报道通过层状氢氧化物获得金属纳米片(钴、镍或铜28)或氧化物纳米片(MgO29)。同样地,通过形成层状金属伯胺复合物,然后与硫或硒前体反应获得许多层状氧族化合物(chalcogenide)。根据此类方法,已经获得YICdSe30、CdMnSe31、ZnS32333435或In2S336的前体纳米片。值得一提的是,铅硫脲层状复合物也允许PbS纳米片合成37。后种方法第一次允许获得厚度以原子尺度定义的氧族化合物(chalogenide)片30。不过,对得到的厚度没有控制以及对后期合成横向生长未见报道。最近,已经提出用于CdSe纳米板(nanoplatelet)合成的方法12。在该方法中,将乙酸盐快速注入热的反应混合物中,该混合物包含硒粉和作为前体的羧酸镉。有纳米片的快速形成,其通常伴有一些不期望的量子点(各向同性纳米胶体)。使用文献1238的常用方法已经进行了用于合成具有大的横向扩展的纳米片的一些尝试。如所提出的,不能简单地修改这些方法以获得纯的纳米片。参考文献38中描述的专利提出获得具有大的横向尺寸的纳米片。后者描述了其中将纳米片和前体初始引入反应烧瓶中的方法。不过,使用该方法,系统地有一些各向同性的CdSe量子点以及氧化镉纳米结构的寄生形成,参见图3。因而要求一些如下面所提出的显著的变化以获得具有大的横向扩展的无寄生颗粒的生长纯纳米片的方法。总之,该获得纳米片的现有方法不允许合成对厚度进行原子控制以及从纳米到微米的可调节的横向扩展的颗粒。

技术实现要素:
本发明涉及通过至少一初始胶体纳米颗粒的横向生长合成胶体纳米片的方法。所获得的材料是与式MnXy相关的结晶半导体,在式MnXy中M是过渡金属,而X是氧族化合物。该方法包括以下步骤:·第一有机溶液的制备,该第一有机溶液为非或几乎非配位的,作为合成溶剂,且包含至少一初始胶体纳米晶体。·第二有机溶液的制备,该第二有机溶液包含M、X的前体和乙酸盐。·在纳米晶体生长的预定温度下在预定的时间范围内在预定量的第一溶液中缓慢引入预定量的第二溶液。本发明的另一个目的是以与式MnXy相关的纳米片形状合成结晶半导体的方法,在式MnXy中M是过渡金属,而X是氧族化合物。该方法包括以下步骤:·第一有机溶液的制备,该第一有机溶液为非或几乎非配位的,作为合成溶剂。·第二有机溶液的制备,该第二有机溶液包含M、X的前体和乙酸盐。·以纳米片形状在晶体半导体生长的预定温度下在预定的时间范围内在预定量的第一溶液中缓慢引入预定量的第二溶液。在一个实施方案中,所述纳米片形状的结晶材料具有大于10nm的横向扩展。在一个实施方案中,所述纳米片形状的结晶材料具有在0.3nm至100nm之间的横向扩展。在一个实施方案中,所述至少一初始胶体纳米颗粒由CdO、CdS、CdSe、CdTe、ZnO、ZnS、ZnSe、ZnTe、PbO、PbS、PbSe、PbTe、HgS、HgSe、HgTe、CuInS2、CuInSe2、AgInS2、AgInSe2、CuS、Cu2S、Ag2S、Ag2Se、Ag2Te、FeS、FeS2、InP、Cd3P2、Zn3P2、FeO、Fe2O3、Fe3O4、Al2O3、TiO2及它们的合金制成。在一个实施方案中,所述初始胶体纳米颗粒是胶体纳米片。在一个实施方案中,所述结晶半导体MnXy选自CdO、CdS、CdSe、CdTe、ZnO、ZnS、ZnSe、ZnTe、PbO、PbS、PbSe、PbTe、HgS、HgSe、HgTe、CuInS2、CuInSe2、AgInS2、AgInSe2、CuS、Cu2S、Ag2S、Ag2Se、Ag2Te、FeS、FeS2、InP、Cd3P2、Zn3P2、FeO、Fe2O3、Fe3O4、Al2O3、TiO2及它们的合金。在一个实施方案中,所述结晶半导体MnXy掺杂有过渡金属。在一个实施方案中,可以将乙酸盐的一部分引入第一溶液中。在一个实施方案中,纳米晶体种子是纳米片在一个实施方案中,所述第一有机溶液由之前进行的胶体纳米晶体合成获得的粗制混合物制成。在一个实施方案中,M前体是M的羧酸盐(caboxylatesalt),特别是M的乙酸盐、M的油酸盐、M的硬脂酸盐、M的肉豆蔻酸盐或M的苯甲酸盐。在一个实施方案中,M前体是M的膦酸盐(phosphonatesalt)。在一个实施方案中,M前体是M的二硫氨基甲酸盐或黄原酸盐。在一个实施方案中,X前体是以0.01M直到化学计量(stoechimetric)比例的浓度溶解在膦中的X化合物。在一个实施方案中,X前体是以0.01M至0.2M之间的浓度溶解在烯烃(alcene)中的X化合物。在一个实施方案中,X前体是分散在非配位或几乎非配位溶剂中的X细粉末(例如100目)。在一个实施方案中,将配体加入第二溶液中。该配体可以是羧酸、胺、硫醇、膦或氧化膦。在一个实施方案中,温度T在20℃至350℃之间。在一个实施方案中,在长于1小时的时间范围内加入所述第二溶液。在一个实施方案中,将乙酸盐精细研磨并分散在所述第二溶液中。在一个实施方案中,将乙酸盐溶解在适当的溶剂中。在一个实施方案中,用于溶解乙酸盐的溶剂选自水、乙醇、异丙醇、二甲亚砜。在一个实施方案中,所述结晶材料是CdSe,而乙酸盐是乙酸镉。在一个实施方案中,所述第一溶液选自1-十八碳烯、三辛胺、甲苯或甚至是苯甲酸苄酯(benzylbenzoate)。在一个实施方案中,所获得的纳米晶体具有均质组成。在一个实施方案中,所获得的纳米晶体具有异质(heterogeneous)组成。与沉积的MnXy材料相比,所述至少一初始纳米晶体具有不同的组成。在一个实施方案中,所获得的纳米晶体可以用作生长薄膜的前体。在一个实施方案中,所获得的纳米晶体可以用作例如在低温下在基质上生长半导体超薄膜的前体。在一个实施方案中,所获得的纳米晶体可以用作发光二极管、晶体管或激光的有源元件。在一个实施方案中,所获得的纳米晶体可以用作用于催化的大比表面积材料。在一个实施方案中,所获得的纳米晶体可以用作例如电极的材料。在一个实施方案中,所获得的纳米晶体可以用作光电池的有源元件:吸收器或集电极。根据本发明的方法的其它特性和优点在阅读实施例的详细描述时将显示。后者作为非限制性例示给出并参考附图。附图说明图1显示在462nm处发光和根据实施例1合成的可能实现本发明的CdSe轧制片材。图2显示在393nm处发光的CdSe聚集片材。图3显示在462nm处发光的CdSe轧制片材,其根据实施例1的改版合成,其中仅乙酸镉在烧瓶(溶液1)中。图4显示异质组成片材方案的俯视图。具体实施方式之后将描述的本发明的一些实施方案显示半导体纳米晶体的一些二维的生长方法。这些方法允许达到微米以上的横向尺寸,同时保持厚度恒定并控制在单原子层内。也可以通过控制一些合成参数例如前体性质、反应温度和/或在反应混合物中纳米晶体的存在控制所获得的纳米片的厚度。根据本发明的这些生长方法允许获得不含任何寄生各向同性的纳米晶体的纯纳米片,而无需合成后纯化。该晶体生长的新方法面临在高温下快速注入前体的模式成核/生长,这在目前所有的胶体半导体纳米晶体有机合成中被使用。的确,在本发明的一个实施方案中,在合成期间将所述前体缓慢地引入烧瓶中。通过烧瓶的温度和注射速度控制成核速率,系统转向到平衡的生长状态,其中所有的注入前体由纳米片生长所消耗,该初始成核使得在反应介质中有足够的种子以在任何时间消耗引入的前体。从而通过所引入的前体控制纳米片的最终尺寸(其横向维度)。此外,所提出的生长方法还面临由《软模板》的方法合成的纳米片的描述,其中溶液层状复合物(其可用乙酸盐完成)导致生长形成纳米片。在本发明的一个实施方案中,将包含精细研磨且充分分散的乙酸盐的前体溶液缓慢地加入反应混合物中,所述反应混合物可以仅是热的有机溶剂,而无乙酸盐。因此,通过控制温度和前体性质有可能控制所述片的厚度,同时通过注射速度控制它们的浓度以及通过所引入的前体量控制它们的横向尺寸。特别地,片的几何形状由所使用的乙酸盐的性质决定。在下文中,我们将通过通式MX指定纳米晶体材料二元化合物,在通式MX中M是过渡金属,而X为氧族元素。可通过所描述的方法合成的片是CdO、CdS、CdSe、CdTe、ZnO、ZnS、ZnSe、ZnTe、PbO、PbS、PbSe、PbTe及其合金。还可以生长掺杂有Fe、Cu、Mn、Mg、Co等的前面提到的相同材料。该合成包括在包含非或几乎非配位有机溶剂以及纳米晶体种子的烧瓶中缓慢引入M前体和X前体以及乙酸盐。为得到二维生长,使用乙酸盐。其可以是任何种类的,不同乙酸盐的使用导致纳米片的不同几何形状。应注意,在CdSe的情况下,使用乙酸镉导致方形片。在本发明的一个实施方案中,将乙酸盐用研钵精细研磨并分散在引入溶液中。在这种情况下,合成被控制且不导致不希望的化合物如由乙酸盐的热分解引起的各向同性纳米晶体或氧化物的存在。然后,可能得到具有优于微米的大的横向尺寸的纳米片,而如果乙酸盐直接在反应介质中存在则其是不可能的。事实上,在这种情况下,其逐渐损害合成且其不导致大的纯纳米片。一般地,所用的M前体是由脂肪酸制成的M(羧酸盐)2。M前体也可以为M(乙酸盐)复合物。更精确地,M前体可以是M(油酸盐)复合物、M(硬脂酸盐)复合物或M(肉豆蔻酸盐)复合物。X前体可以是含有X的液体或X粉末的均质分散体。更精确地,X前体可以是以0.1M至化学计量浓度溶于膦(三苯基膦、三丁基膦、三辛基膦...)的X,或者其可以是以0.01M至0.2M的浓度溶于烯烃如1-十八碳烯的X。X前体还可以是II氧化价如H2X或Na2X。所述溶剂可以是非配位或几乎非配位的任何种类的有机溶剂。更精确地,所述溶剂可以是1-十八碳烯、三辛胺、甲苯或苯甲酸苄酯。在前体引入期间烧瓶温度可以在20℃至250℃的范围。这取决于前体以及我们要合成的纳米片的厚度。特别地,温度可以在的范围。优选地,合成在惰性气氛(氩气或氮气)下运行以避免形成不需要的氧化物,但是其也可以在空气中进行。实施例将参考下面例示性而非限制性的实施例描述本发明。实施例1:在462nm处发光的纳米片的合成在100ml三颈烧瓶中,引入10ml1-十八碳烯以及之前在研钵中研磨的40mg(乙酸)2镉2H2O。将混合物磁力搅拌并在真空下脱气30分钟。然后,将反应介质在惰性气氛(氩气)下通过并在180℃下加热。同时,将之前在研钵中研磨的40mg(乙酸)2镉2H2O、240mg(肉豆蔻酸)2镉和4ml三辛胺的混合物在搅拌下加热直至(肉豆蔻酸)2镉完全溶解。然后加入4ml于ODE中的0.1M硒溶液。该混合物通过冷却形成凝胶。该凝胶在180℃下在2小时内注入反应介质中,从而导致横向尺寸大于200nm的纳米片的成核和生长。实施例2:在510nm处发光的纳米片的生长在100ml三颈烧瓶中,引入10ml1-十八碳烯以及之前在研钵中粉碎的40mg(乙酸)2镉2H2O和10nmol通过参考文献12描述的方法合成的CdSe纳米晶体。将混合物磁力搅拌并在真空下脱气30分钟。然后,将反应介质在惰性气氛(氩气)下引入并在180℃下加热。同时,将40mg之前在研钵中研磨的(乙酸)2镉2H2O、240mg(肉豆蔻酸)2镉和4ml三辛胺的混合物在搅拌下加热直至(肉豆蔻酸)2镉完全溶解。然后加入4ml于ODE中的0.1M硒溶液。该混合物通过冷却形成凝胶。该凝胶在200℃下在4小时内注入反应介质中,从而导致横向尺寸大于100nm的纳米片的成核和生长。在本发明的其他实施方案中:在100ml三颈烧瓶中,引入10ml1-十八碳烯以及10nmol通过参考文献12描述的方法合成的CdSe纳米晶体。将混合物磁力搅拌并在真空下脱气30分钟。然后,将反应介质在惰性气氛(氩气)下引入并在240℃下加热。同时,制备96mg之前在研钵中研磨的(乙酸)2镉2H2O溶于1ml乙醇、46μl油酸、1ml丁醇和4ml于ODE中的0.1M的硒溶液中的混合物。该溶液在240℃下在10分钟内注入反应介质中,导致横向尺寸大于100nm的纳米片的成核和生长。实施例3:在393nm处发光的纳米片的合成在100ml三颈烧瓶中引入10ml甲苯。将烧瓶在100℃下加热,同时制备含有5ml甲苯、133mg(乙酸)2镉2H2O、30mg苯甲酸和100μl化学计量的TOPSe的注射器。然后在1小时内以5ml/h的速度将注射器注入甲苯的热烧瓶中。反应介质慢慢变混浊,指示在393nm处发光的大纳米片的形成。通过离心将这些从反应介质中分离,并重悬于甲苯中。该根据所提供的实施例的纳米晶体的新制造途径允许厚度控制以及调整所获得的纳米片的横向尺寸。其开辟了这些材料在多种领域如光伏、电子及光学中新应用的道路。通过引入的前体的量控制横向尺寸,同时通过合成参数:温度、前体和反应介质中纳米晶体的初始存在控制厚度。已经注意到,根据所公开的方法的纳米片的合成使球形纳米晶体的形成和乙酸盐分解的反应降到最低。特别地,缓慢注入前体和乙酸盐的薄粉末完全避免不希望的反应如球形纳米晶体的形成,从而允许获得纯纳米片。实施例4:纳米片CdSe/CdS的生长在100ml三颈烧瓶中,引入10ml1-十八碳烯(ODE)以及10nmol通过参考文献12描述的方法合成的CdSe纳米晶体。将混合物磁力搅拌并在真空下脱气30分钟。将反应气氛转换至氩气并将溶液在240℃下加热。同时,制备由96mg(乙酸)2镉2H2O溶于1ml乙醇、46μl油酸、1ml丁醇和4ml于ODE中的0.1M的硫组成的混合物。该溶液在240℃下在30分钟内注入反应混合物中,导致横向尺寸大于50nm的CdSe/CdS的核心/冠(core/crown)纳米片的生长。核心/冠片的结构图示于图4中,其中A1是CdSe,而A2是CdS。参考文献1Ekimov,A.I.;Onushchenko,A.A.JetpLett.1981,34,345-349.2Vassiliou,J.K.;Mehrotra,V.;Russell,M.W.;Giannelis,E.P.;McMichael,R.D.;Shull,R.D.;Ziolo,R.F.J.Appl.Phys.1993,73,5109-5116.3El-Sayed,M.A.AccountsChem.Res.2001,34,257-264.4Rossetti,R.;Nakahara,S.;Brus,L.E.JournalofChemicalPhysics1983,79,1086-1088.5Ekimov,A.I.;Onushchenko,A.A.JetpLett.1984,40,1136-1139.6Efros,A.L.;Rosen,M.Annu.Rev.Mater.Sci.2000,30,475-521.7Yu,W.W.;Qu,L.;Guo,W.;Peng,X.ChemistryofMaterials2003,15,2854-2860.8JongnamPark,J.J.,SoonGuKwon,YoungjinJang,TaeghwanHyeon,AngewandteChemieInternationalEdition2007,46,4630-4660.9Murray,C.B.;Norris,D.J.;Bawendi,M.G.JournaloftheAmericanChemicalSociety1993,115,8706-8715.10Peng,X.G.;Manna,L.;Yang,W.D.;Wickham,J.;Scher,E.;Kadavanich,A.;Alivisatos,A.P.Nature2000,404,59-61.11Manna,L.;Scher,E.C.;Alivisatos,A.P.JournaloftheAmericanChemicalSociety2000,122,12700-12706.12Ithurria,S.;Dubertret,B.JournaloftheAmericanChemicalSociety2008,130,16504-16505.13Sasaki,T.;Watanabe,M.JournalofPhysicalChemistryB1997,101,10159-10161.14Hernandez,Y.;Nicolosi,V.;Lotya,M.;Blighe,F.M.;Sun,Z.;De,S.;McGovern,I.T.;Holland,B.;Byrne,M.;Gun'Ko,Y.K.;Boland,J.J.;Niraj,P.;Duesberg,G.;Krishnamurthy,S.;Goodhue,R.;Hutchison,J.;Scardaci,V.;Ferrari,A.C.;Coleman,J.N.NatNano2008,3,563-568.15Kumar,S.;Nann,T.Small2006,2,316-329.16Young-wookJun,J.-s.C.,JinwooCheon,AngewandteChemieInternationalEdition2006,45,3414-3439.17Xu,S.L.;Sun,X.;Ye,H.;You,T.;Song,X.Y.;Sun,S.X.MaterialsChemistryandPhysics2010,120,1-5.18Li,C.;Cai,W.;Cao,B.;Sun,F.;Li,Y.;Kan,C.;Zhang,L.AdvancedFunctionalMaterials2006,16,83-90.19Sigman,M.B.;Ghezelbash,A.;Hanrath,T.;Saunders,A.E.;Lee,F.;Korgel,B.A.JournaloftheAmericanChemicalSociety2003,125,16050-16057.20Deng,Z.T.;Mansuipur,M.;Muscat,A.J.JournalofPhysicalChemistryC2009,113,867-873.21Puntes,V.F.;Zanchet,D.;Erdonmez,C.K.;Alivisatos,A.P.JournaloftheAmericanChemicalSociety2002,124,12874-12880.22Si,R.;Zhang,Y.W.;You,L.P.;Yan,C.H.Angew.Chem.-Int.Edit.2005,44,3256-3260.23Zhang,G.;Sun,S.;Li,R.;Zhang,Y.;Cai,M.;Sun,X.ChemistryofMaterials2010,22,4721-4727.24Sun,Y.;Xia,Y.Science2002,298,2176-2179.25Ah,C.S.;Yun,Y.J.;Park,H.J.;Kim,W.J.;Ha,D.H.;Yun,W.S.ChemistryofMaterials2005,17,5558-5561.26Huang,W.L.;Chen,C.H.;Huang,M.H.JournalofPhysicalChemistryC2007,111,2533-2538.27Yu,T.;Joo,J.;Park,Y.I.;Hyeon,T.JournaloftheAmericanChemicalSociety2006,128,1786-1787.28Xu,R.;Xie,T.;Zhao,Y.G.;Li,Y.D.Cryst.GrowthDes.2007,7,1904-191129Yu,J.C.;Xu,A.W.;Zhang,L.Z.;Song,R.Q.;Wu,L.JournalofPhysicalChemistryB2004,108,64-70.30Joo,J.;Son,J.S.;Kwon,S.G.;Yu,J.H.;Hyeon,T.JournaloftheAmericanChemicalSociety2006,128,5632-5633.31Yu,J.H.;Liu,X.;Kweon,K.E.;Joo,J.;Park,J.;Ko,K.-T.;Lee,D.W.;Shen,S.;Tivakornsasithorn,K.;Son,J.S.;Park,J.-H.;Kim,Y.-W.;Hwang,G.S.;Dobrowolska,M.;Furdyna,J.K.;Hyeon,T.2010,9,47-53.32Yu,S.H.;Yoshimura,M.AdvancedMaterials2002,14,29633Li,J.P.;Xu,Y.;Wu,D.;Sun,Y.H.SolidStateCommunications2004,130,619-622.34Yao,W.T.;Yu,S.H.;Pan,L.;Li,J.;Wu,Q.S.;Zhang,L.;Jiang,H.Small2005,1,320-325.35Fan,L.B.;Song,H.W.;Zhao,H.F.;Pan,G.H.;Yu,H.Q.;Bai,X.;Li,S.W.;Lei,Y.Q.;Dai,Q.L.;Qin,R.F.;Wang,T.;Dong,B.;Zheng,Z.H.;Ren,X.G.JournalofPhysicalChemistryB2006,110,12948-12953.36Park,K.H.;Jang,K.;Son,S.U.AngewandteChemieInternationalEdition2006,45,4608-4612.37Hu,H.M.;Deng,C.H.;Huang,X.H.;Li,Y.;Sun,M.;Zhang,K.H.Chin.J.Inorg.Chem.2007,23,1403-1408.38Dubertret,B.;Ithurria,S.USpatentapplicationn°61/095,978
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1