一种提高蒽醌降解物再生催化剂活性的方法

文档序号:3474677阅读:232来源:国知局
一种提高蒽醌降解物再生催化剂活性的方法
【专利摘要】本发明公开了一种提高蒽醌降解物再生催化剂活性的方法,该方法主要包括对催化剂前驱物假一水铝石运用表面原位生长技术进行原位再生,以提高催化剂比表面积和增加孔容;再采用固体碱与催化剂掺杂复配技术制备负载型高分散蒽醌降解物再生催化剂,这不仅可以避免液体活性组分的快速流失,而且靠活性组分与载体的强相互作用使活性氧化铝的性能长期得以保持,从而成倍提高了蒽醌降解物再生催化剂的使用寿命,并使催化剂长期具有较高的蒽醌降解物再生活性。
【专利说明】一种提高蒽醌降解物再生催化剂活性的方法
【技术领域】
[0001]本发明属于新材料制备领域,涉及一种提高催化剂活性的方法,具体涉及一种提高蒽醌降解物再生催化剂活性的方法。
【背景技术】
[0002]蒽醌法是世界上大规模制备过氧化氢(H2O2)的主要方法,在该工艺中蒽醌与氢气反应生成氢蒽醌,然后通过氧气或空气氧化使氢蒽醌再转变为蒽醌,同时生成过氧化氢。由于副反应的发生,在工作液中逐渐形成了一些不具备过氧化氢生产能力的降解物,使贵重的有效蒽醌含量不断降低。目前工业生产中通常以负载苛性钠的活性氧化铝对蒽醌降解物进行再生,因苛性钠的逐渐流失以及活性氧化铝不断减活,再生催化剂的使用寿命很短,一般不超过50天。由于采用低效蒽醌降解物再生催化剂,直接增加了过氧化氢的生产成本,并在过氧化氢行业中造成每年数以万吨计的优质铝土资源的浪费,不符合国家可持续发展战略。
[0003]碱性活性氧化铝是目前蒽醌法生产H2O2最常用的蒽醌降解物再生催化剂,通常有条形或球形两种,尽管碱性活性氧化铝催化剂对蒽醌降解物具有一定的再生能力,满足目前的工业生产要求,但是由于用液碱作用活性组分,不可避免的存在液碱活性组分的快速流失现象,导致再生活性下降迅速,使用寿命短。因此一种新的能克服上述缺陷提高蒽醌降解物催化剂活性的方法称为本领域技术人员亟待解决的技术问题。

【发明内容】

[0004]本发明所要解决的技术问题是,针对以上现有技术存在的缺点,提出一种提高蒽醌降解物再生催化剂活性的方法,该方法以氢氧化铝直接快速脱水为原料,运用表面原位生长技术,采用固体碱与催化剂掺杂复配技术,提高蒽醌法制双氧水生产流程中的氢化降解物还原再生为有效蒽醌催化剂的活性,使得蒽醌降解还原再生量达到5 g/L以上,使用寿命延长到100天以上。
[0005]本发明解决以上技术问题的技术方案是:
一种提高蒽醌降解物再生催化剂活性的方法,包括如下步骤:
(1)以含3-8wt%表面吸附水的氢氧化铝为原料送入干燥塔进行干燥,干燥至表面吸附水含量为0.1-1%后再送入粉碎机粉碎;
(2)将步骤(I)中粉碎后的原料送入快脱炉进行快速脱水得到快脱粉;快脱炉进行快速脱水时灼减控制在5-9wt% ;
(3)将快脱粉与去离子水混合装进高压釜中,在温度为1701:,压力0.8MPa下进行水热处理,并保持0-36小时进行自然原位生长得到原粉;去离子水的加入量为快脱粉体积的2倍;
(4)将原粉与固体碱充分混合再加入稀硝酸进行捏合,然后经压滤机压滤制成条;固体碱的溶度质量百分含量为l_5wt%,稀硝酸溶度质量百分比含量为5-10Wt%,压滤制成的条直径在2-5mm ;
(5)将步骤(4)中压滤制成的条送入烘房中,在120°C下烘5-20h,然后进行快速焙烧,焙烧温度为550-600°C,焙烧5-8h,得到Al2O3催化剂,Al2O3催化剂的孔容> 0.55ml/g,比表面积≥180 m2/g,再生活性≥5 g/L。
[0006]本发明进一步限定的技术方案是:
前述提高蒽醌降解物催化剂活性的方法中,步骤(1)中粉碎后氢氧化铝的粒度为400-800 目。
[0007]前述提高蒽醌降解物催化剂活性的方法中,步骤(5)中Al2O3催化剂其晶型为Y型,Al2O3催化剂的孔容为:0.55-1.0ml/g ;比表面积为:200-250 m2/g ;再生活性:5-10 g/L0
[0008]前述提高蒽醌降解物催化剂活性的方法中,步骤(5)中的焙烧是在活化炉中进行,活化炉为全自动活化炉,所有控制系统由手动升级为全自动连锁控制,测温、测压和放料系统均实现连锁,全部由电脑自动控制,杜绝了人为因素的影响。
[0009]本发明的有益效果是:
(I)本发明提高蒽醌降解物催化剂活性的方法中先将原料含表面吸附水的氢氧化铝送入干燥塔进行干燥脱水,保证粉碎后的快脱粉干燥且避免粉碎过程中粘连在粉碎机上造成原料的损耗,提闻成本。
[0010](2)本发明中运用水热处理与表面原位生长技术相结合对催化剂进行处理,在水热条件下,粒子进行了原位生长使晶粒增大,从而造成空隙增大,制备出大孔容、高比表面活性氧化铝。
[0011](3)本发明中使用固体碱代替液碱作为活性组分并与催化剂采用掺杂复配技术,不仅可以避免液碱活性组分的快速流失现象,而且靠活性组分与载体的强相互作用使活性氧化铝的性能长期得以保持,从而成倍提高了蒽醌降解物再生催化剂的使用寿命,并使催化剂长期具有较高的蒽醌降解物再生活性。
[0012](4)本发明步骤(5)的焙烧是在全自动活化炉中进行,代替了目前使用的手动控制活化炉,稳定产品质量在蒽醌工作液中长期浸泡不变软、不粉化;提高氧化铝活性,增强蒽醌衍生物降解物再生能力,延长了催化剂的使用寿命。
[0013](5)本发明中制备出的条形催化剂孔容≥0.55 ml/g;比表面积≥180 m2/g;再生活性>5 g/L;使用寿命> 100天,有效抑制了副反应的发生,不影响双氧水的生产,降低了双氧水的生产成本。
【专利附图】

【附图说明】
[0014]图1为本发明实施例检测活化样品的XRD图。
[0015]图2为本发明所得催化剂与传统催化剂活性的比较示意图。
[0016]图3为本发明中蒽醌降解物再生催化剂的活性曲线。
【具体实施方式】
[0017]实施例1
本实施例提供一种提高蒽醌降解物再生催化剂活性的方法,包括如下步骤: (1)以含3被%表面吸附水的氢氧化铝为原料送入干燥塔进行干燥,干燥至表面吸附水含量为0.5%后再送入粉碎机粉碎;
(2)将步骤(I)中粉碎后的原料送入快脱炉进行快速脱水得到快脱粉;快脱炉进行快速脱水时灼减控制在8wt% ;
(3)将快脱粉与体积为快脱粉体积2倍的去离子水混合装进高压釜中在温度为170°C,压力0.8 MPa下进行水热处理,水热处理12h进行自然原位生长得原粉;
(4)将原粉与溶度质量百分含量为lwt%的固体碱充分混合再加入溶度质量百分比为Swt %的稀硝酸进行捏合,然后经压滤机压滤制成直径为3_的条;
(5)将步骤(4)中的压滤后的条送入烘房中,在120°C下烘9h,然后在全自动活化炉中进行焙烧,焙烧温度为550°C,焙烧7h。
[0018]在本实施例中,步骤(I)中粉碎后氢氧化铝的粒度为600目。
[0019]在本实施例中,经测定步骤(3)中Al2O3催化剂其晶型为Y型,Al2O3催化剂的孔容为:0.56ml/g ;比表面积为:240 m2/g ;再生活性5.8 g/L。
[0020]实施例2
本实施例提供一种提高蒽醌降解物再生催化剂活性的方法,包括如下步骤:
(1)以含6wt%表面吸附水的氢氧化铝为原料送入干燥塔进行干燥,干燥至表面吸附水含量为0.2%后再送入粉碎机粉碎;
(2)将步骤(I)中粉碎后的原料送入快脱炉进行快速脱水得到快脱粉;快脱炉进行快速脱水时灼减控制在5wt% ;
(3)将快脱粉与2倍体积快脱粉的去离子水混合装进高压釜中在温度为170°C,压力
0.8 MPa下进行水热处理,水热处理保持24小时期间进行自然原位生长得到原粉;
(4)将原粉与溶度质量百分含量为3wt%的固体碱充分混合再加入溶度质量百分比为5wt%的稀硝酸进行捏合,然后经压滤机压滤制成直径为4_的条;
(5)将步骤(4)中的压滤后的条送入烘房中,在120°C下烘15h,然后进行快速焙烧,焙烧温度为580°C,焙烧5h。
[0021]在本实施例中,步骤(I)中粉碎后氢氧化铝的粒度为640目。
[0022]在本实施例中,经测定步骤(3)中Al2O3催化剂其晶型为Y型,Al2O3催化剂的孔容为:0.58ml/g ;比表面积为:220 m2/g ;再生活性6.1 g/L。
[0023]实施例3
本实施例提供一种提高蒽醌降解物催化剂活性的方法,包括如下步骤:
(1)以含8wt%表面吸附水的氢氧化铝为原料送入干燥塔进行干燥,干燥至表面吸附水含量为0.6%后再送入粉碎机粉碎;
(2)将步骤(I)中粉碎后的原料送入快脱炉进行快速脱水得到快脱粉;快脱炉进行快速脱水时灼减控制在6wt% ;
(3)将快脱粉与2倍体积快脱粉的去离子水混合装进高压釜中在温度为170°C,压力
0.8 MPa下进行水热处理,水热处理保持36小时期间进行自然原位生长得到原粉;
(4)将原粉与溶度质量百分含量为5wt%的固体碱充分混合再加入溶度质量百分比为IOwt %的稀硝酸进行捏合,然后经压滤机压滤制成直径为5mm的条;
(5)将步骤(4)中的压滤后的条送入烘房中,在120°C下烘17h,然后进行快速焙烧,焙烧温度为600°C,焙烧6h。
[0024]在本实施例中,步骤(1)中粉碎后氢氧化招的粒度为700目。
[0025]在本实施例中,经测定步骤(3)中Al2O3催化剂其晶型为Y型,Al2O3催化剂的孔容为:0.59ml/g ;比表面积为:210 m2/g ;再生活性6.3 g/L。
[0026]实施例检测:
按实施例2中的步骤进行操作,利用Bruker AXS公司生产的D8 Advance X射线衍射仪在水热处理时间为O、12、24、36小时的活化样品进行X射线衍射分析其晶相(电压40 kV,电流40 mA,扫描速率0.02° s_l),结果如图1所示。
[0027]图1为活化样品的XRD图,由图可知:样品在2 Θ =37.1 ,39.49° , 45.95°和66.91°处分别出现衍射强度较大的特征峰,与JCPDS标准卡上(10-0425)的Y -Al2O3相一致,说明样品经焙烧后,晶相为Y-A1203。这些样品结构演化特点可以从其衍射峰宽化上看出,随着衍射峰的半峰宽的降低,伴随着晶粒尺寸的增大,可由Scherrer公式计算Y -Al2O3在(640)面上的晶粒尺寸大小,见表1。
[0028]表1 不同水热处理时间下活化样品的晶粒尺寸
【权利要求】
1.一种提高蒽醌降解物催化剂活性的方法,其特征在于,包括如下步骤: (1)以含3-8wt%表面吸附水的氢氧化铝为原料送入干燥塔进行干燥,干燥至表面吸附水含量为0.1-1%后再送入粉碎机粉碎; (2)将步骤(1)中粉碎后的原料送入快脱炉进行快速脱水得到快脱粉;所述快脱炉进行快速脱水时灼减控制在5-9wt% ; (3)将快脱粉与去离子水混合装进高压釜中,在温度为1701:,压力0.8MPa下进行水热处理,并保持0-36小时进行自然原位生长得到原粉;所述去离子水的加入量为快脱粉体积的2倍; (4)将原粉与固体碱充分混合再加入稀硝酸进行捏合,然后经压滤机压滤制成条;所述固体碱的溶度质量百分含量为l_5wt%,稀硝酸溶度质量百分比含量为5-10Wt%,压滤制成的条直径在2-5mm ; (5)将步骤(4)中压滤制成的条送入烘房中,在120°C下烘5-20h,然后进行快速焙烧,焙烧温度为550-600°C,焙烧5-8h,得到Al2O3催化剂,所述Al2O3催化剂的孔容> 0.55ml/g,比表面积≥180 m2/g,再生活性≥5 g/L。
2.如权利要求1所述的提高蒽醌降解物再生催化剂活性的方法,其特征在于,所述步骤(1)中粉碎后氢氧化招的粒度为400-800目。
3.如权利要求1所述的提高蒽醌降解物再生催化剂活性的方法,其特征在于,步骤(5)中Al2O3催化剂其晶型为Y型,Al2O3催化剂的孔容为:0.55-l.0ml/g;比表面积为:200-250 m2/g ;再生活性:5-10 g/L。
4.如权利要求1所述的提高蒽醌降解物再生催化剂活性的方法,其特征在于,步骤(5)中的焙烧是在活化炉中进行,所述的活化炉为测温、测压和放料系统均实现连锁的全自动活化炉。
【文档编号】C01B15/023GK103706346SQ201310736807
【公开日】2014年4月9日 申请日期:2013年12月27日 优先权日:2013年12月27日
【发明者】李国印, 俞杰 申请人:江苏晶晶新材料有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1